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Supplementary Note 1:
xiRT: Multi-task Retention Time Prediction using Neural Networks

Overview

The schematic architecture of the xiRT was presented in Figure 1 of the manuscript, while Supplementary
Figure 1 shows a more detailed view (exemplary configuration). Here, we want to give more details about the
individual layers. The input layer dimension is dynamically defined by the longest peptide that was identified
in the set of PSMs/CSMs. In the example in Supplementary Figure 1 this was set to 59. Subsequently, the
input is passed to a predefined embedding layer in TensorFlow. The embedding layer finds a continuous vector
representation from a list of positive integers. A hyper-parameter for the network is the length of the embedding
vector, here set to 50.

Siamese Architecture

The heart of the xiRT network is a recurrent layer where we either used a Gated Recurrent Unit (GRU-) [1] or a
Long short-term memory (LSTM)-layer [2]. These layers are especially suited for the handling sequential data,
e.g. language data or peptide sequences. They are available as GPU and CPU implementations in TensorFlow
and can thus be used interchangeably within xiRT. The central assumption for recurrent layers is that the order
of the input (here amino acids) plays a pivotal role in the prediction process [3]. By optionally applying a
bidirectional GRU/LSTM layer, the input sequence is handled forward and backward. To speed up the training
process, the activations are further batch-normalized to µ = 0, σ = 1. The above-described parts of the network
are designed in a Siamese fashion. That means that two input sequences (i.e. the individual peptides in a
crosslink) are passed to their custom inputs. However, these layers process the input in the same manner since
they share the same weights. The combination of the outputs from the Siamese network can be handled in
multiple ways. In Supplementary Figure 1 an Add-layer was used, which simply adds the two inputs element-
wise. For the retention time prediction of linear peptides there is only a single input and thus no Siamese or
additive layers are necessary.

Task Specific Layers

The architecture described above is also shared between the different prediction tasks. In this manuscript,
we developed a multi-task network that predicts peptide retention behaviour during SCX, hSAX and RP
chromatography. For this, the individual task-networks were designed in a symmetric fashion. They are defined
by a sequence of layers with: layeri = Dropout(BatchNormalization(Dense(x))). Per default we used i = 3 and
a pyramid-like structure for the dense layers with nneurons = [300, 150, 75]. The default dropout-rate was set to
0.1 for all dense layers. Moderate kernel regularization (l2, λ = 0.001) was also used.

For each task, a custom prediction layer and a loss function are defined. The two employed fractionation
techniques SCX and hSAX are handled as ordinal regression problems in which sigmoid activations were used
and binary cross-entropy as loss. For the RP, we used a linear activation function and the mean squared
error as loss function. Note that the handling of data from fractionation also allows to treat the problem
as classification or as regression task and thus the use of softmax or linear activation functions are possible
(also configurable in xiRT). The total loss is computed as weighted sum of the three individual losses, e.g.
losstotal = wfractionation ∗ (lossSCX + losshSAX) + lossRP . Using Adam (Adaptive Moment Estimation) as
optimizer, the learning rate was fixed to 0.001 during development and optimization on linear data. After
optimization for crosslink data a higher learning rate (0.01) achieved faster convergence with similar accuracy
together with a batch-size of 256 and was therefore chosen as default value in xiRT.

Implementation Details

xiRT is implemented in the popular deep learning framework TensorFlow 2.0 [4]. All training and prediction
scripts were run on a TITAN X (Pascal) with 12.8 GB of memory. The usage of a dedicated GPU allows
to use optimized recurrent layers in TensorFlow. These layers have a ”CuDNN”-prefix, e.g. CuDNNGRU.
CuDNNLSTM. Our implementation can also be used on systems without GPUs, at the cost of higher run time.
TensorFlow also allows the usage of so-called callbacks. The most important callbacks in our implementation
are 1) ReduceLRonPlateau, 2) EarlyStopping and 3) ModelCheckpoint. The 1) callback is used to reduce the
learning rate by a factor of 0.5 when the performance has not improved in 15 epochs by a minimum delta of 1e-4.
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Similarly, 2) is used to speed up the training by stopping the process if no improvements were achieved in a
configurable number of epochs. In addition, for the final model the best weights over all epochs are chosen based
on the performance on the validation split. Finally, 3) is used to store the weights and model architecture on
disk. This allows applying the best model for the respective cross-validation folds and the candidate rescoring.
For transfer learning applications these trained models can also be used for new data sets. Most parameters of
the network such as learning rate, optimizer, batch size, epochs, callback settings, number of layers / neurons can
be adapted through a dedicated YAML file. The online documentation for xiRT on GitHub contains examples
for various training and RT dimension scenarios.
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Supplementary Figure 1: Example parameterization of xiRT. Dashed box represents the Siamese network part.
Boxes represent individual layers with their names, input and output dimensions. Question marks represent
the unknown batch-size at compilation time of the network.
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Supplementary Figure 2: Cross-validation results from applying xiRT on linear peptide input. a) Average
training performance on all tasks (SCX - blue; hsAX - purple; RP - red) over 75 epochs from k=3 CV-folds.
Confidence intervals show standard deviation from a 3-fold CV with the dashed/solid line representing the mean
for the validation/training data, respectively.. b) Evaluation metrics for all tasks on the different CV folds. c-e)
Representative results for a random prediction fold. Abbreviations: val, validation; pred, prediction, unval,
unvalidated; mse, mean squared error; acc, accuracy.; racc, relaxed accuracy (|error| ≤ 1).
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Supplementary Figure 3: Crosslink identifications over fractions / time. (a-b) Distribution of CSMs across
native fraction numbers from the off-line fractionation based on strong cation exchange (SCX) and hydrophilic
strong anion exchange (hSAX) chromatography. Black lines indicate the eluent concentration (represented by
conductivity) at the beginning of the fraction. (c) Distribution of CSMs across reversed-phase retention time
bins. Black lines indicate the eluent concentration (fraction of eluting mobile phase B) at the beginning of
the fraction. Data corresponds to 11072 CSMs at 1% FDR, all target-target hits excluding matches involving
human proteins.
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Supplementary Figure 4: Comparison of peptide properties from the E. coli target database and the H. sapiens
entrapment database. Variables: KR, K/R count in peptide; aromatic, F/Y/W counts; acids, D/E counts;
isoelectric point and GRAVY were computed using Biopython [5]. Boxplots show the median as line in the
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merge layer

Supplementary Figure 5: Hyper-parameter optimization for xiRT. Appropriate hyper-parameters were assessed
following cross-validation (k=3) on crosslinked peptides. The different merge functions (add, average, concat,
multiply - from light blue to dark blue) represent tensorflow implementations for the combination of the two
input vectors from the Siamese network outputs. Bars indicate the mean.
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Supplementary Figure 9: Learning results on crosslink data from 3-fold cross-validation (five replicates). a)
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Supplementary Figure 12: SHAP explanations for the SCX elution time of a crosslinked peptide that eluted in
SCX fraction 6 (0-based). See Supplementary Figure 11 for a detailed description.
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Supplementary Figure 13: SHAP values for individual amino acids of crosslinked peptides contributing towards
early or late elution in SCX/hSAX/RP separations. Positive (red) SHAP values contribute towards later elution,
negative (blue) SHAP values contribute towards earlier elution. Horizontal grey lines highlight R, K, clK, H
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Supplementary Figure 14: Visualization of the embedding space throughout the network for each task. UMAP
parameters: metric, Euclidean; min dist, 0.0; n neighbors, 15. Individual plots correspond to the add (shared)
and dense (task-specific) layers in Supplementary Figure 1. UMAP was applied to a cross-validation model
from the E. coli DSS data set. Note that the given parameterization of UMAP might be suboptimal for all the
selected embedding spaces. Color bar represents the retention time in each dimension either in minutes (RP)
or discrete fractions (hSAX/SCX).
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Supplementary Figure 15: Evaluation of combining xiRT with pLink2 search results. a-c) Cross-validation
results on the second prediction fold using all three RT dimensions (hSAX, SCX, RP). pLink2 data was filtered
to a Q-value of 0.01 for the training process in xiRT. d) Error characteristics for TT (green, n=6436), TD
(orange, n=214) and DD (brown, n=34) CSMs. P-values are derived from a two-sided, independent t-test with
Bonferroni correction between TT and TD observations. P-values: 1.545e-03 (hsax), 5.667e-04 (scx), 3.381e-04
(rp), test-statistics: -3.364e+00 (hsax), -3.632e+00 (scx), -3.586e+00 (rp). e) Dimensionality reduced feature
space using UMAP with default parameters. Black dots represent CSMs that passed the 0.01 Q-value cutoff.
Only heteromeric crosslink spectrum matches are shown. TT and TD CSMs from E. coli are shown in green
and red, while TT and TD CSMs from human peptides crosslinked to E. coli are shown in orange (TT) and
peach (TD).
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Supplementary Note 2:
Hyper-Parameter Optimization on Linear Data

Neural networks are subject to many parameters that need tuning to achieve the best possible performance.
Based on our initial work on the prediction of hSAX RTs for linear peptides [7], we came up with an initial
architecture and then optimized it manually. Further, we choose a step-wise approach to find suitable hyper-
parameters during a 3-fold cross-validation search. The first grid of hyper-parameters is shown in Table 1. For
the CV, we split the data into a training fold, a validation fold (10% of the training fold data) and a testing
fold per CV iteration. We also use the term prediction fold synonymous to the testing fold since we only use
the testing fold predictions for CSM rescoring later on. All decoy-PSMs and identifications with a FDR higher
than the selected training FDR are assigned to an unvalidation fold. After the first round of CV on a set of
576 parameters, another grid-search (320 parameters) was performed with adjusted hyper-parameters (Table
2). This second grid was based on the best performing parameters in the first iteration with slight variations.
Note, the linear peptide identifications at 1% PSM-FDR were used for this procedure (n=20802 unique se-
quences, ignoring identifications to the entrapment database). For the execution of the hyper-parameter search,
we again designed a snakemake [8] workflow that can run an arbitrary number of configuration files. The best
final parameters were then chosen based on the means of the loss, r2rp, accuracyhSAX and accuracySCX in the
testing sets during CV. Note that the 2-step optimization offers a reasonable trade-off between finding optimal
parameters and decreasing the necessary run time.

The best parameters from optimization (Tab. 1, Tab. 2), showed an average (± standard deviation) R2
of 0.99 ± 0.003 for the RP task, average accuracy 64% ± 0.9 for hSAX task and 46% ± 0.7 for the SCX task
(Supplementary Figure 2). By using a relaxed accuracy metric (absolute prediction error ≤ 1 fraction), hSAX
RT prediction achieved 92% ± 0.3 and SCX RT prediction 74% ± 0.7.

The network performance across the individual CV-folds of the best parameter was very comparable in
terms of training time and performance (Supplementary Figure 2a). The CV was performed on 20802 unique
CSMs (train: 12481, validation: 1387, prediction: 6934 observations). The learning trajectory of the number of
epochs follows a very smooth learning curve and shows a constant improvement in the training and validation
fold with a small gap between the training and validation performance. We also observed that the prediction
accuracy for hSAX is better than for SCX in both, training and validation data. This trend is also observable
in the prediction folds (Supplementary Figure 2b). In addition, the performance drop from the validation fold
to the prediction fold is rather small which is desirable and shows good generalization ability of the network.
A lower prediction performance on the unvalidation split can be expected and hence serves as another quality
check. The predictions were made with the best classifier from the CV split. The individual predictions for a
single CV-fold are more accurate for the RP than for SCX or hSAX (Supplementary Figure 2c-e). While the
RP predictions achieve an r2 of 0.99, the accuracy in SCX and hSAX is limited to 0.64 and 0.45, respectively.
The different behaviour of hSAX and SCX might be explained through deviating peptide separation behaviour
with the applied gradients (Supplementary Figure 3). While the shape of the gradients is similar, the hSAX
gradient led to a more uniform distribution of crosslinked peptides across the elution window in contrast to
the more confined elution of crosslinked peptides in later SCX fractions. Therefore, adjacent SCX fractions are
expected to show a higher overlap in their identifications than fractions from hSAX.

S-12



Supplementary Table 1: First parameter grid for the optimization on linear peptide data.

Parameter Parameter Grid Selected Parameter

recurrent type CuDNNGRU CuDNNGRU
recurrent units 25, 75, 125 75
recurrent activity l2 lambda 0, 0.001 0.001
recurrent kernel l2 lambda 0 0
dense layers 3 3
dense neurons (300, 150, 75), (150, 100, 50) (150, 100, 50)
dense kernel l2 lambda (0.001, 0.001, 0.001) (0.001, 0.001, 0.001)
dense dropout (0.3, 0.3, 0.3), (0.1, 0.1, 0.1) (0.1, 0.1, 0.1)
dense activation (relu, relu, relu), (swish, swish, swish) (swish, swish, swish)
embedding length 50, 100 50
batch size 256, 512 256
class weight 1, 250, 500 250

Note: Parameters with a prefix ”recurrent” were used for a single recurrent layer. Parameters with the
”dense” prefix were used for the task specific layers. A total set of 576 parameter combinations were used
during the grid search. Remaining settings were left at defaults. The best parameter was determined based on
the testing folds in a 3-fold CV experiment. Training time was limited to 75 epochs and early stopping
patience was set to 15.

Supplementary Table 2: Second parameter grid for the optimization on linear peptide data.

Parameter Parameter Grid Selected Parameter

recurrent type CuDNNGRU, CuDNNLSTM CuDNNGRU
recurrent units 75 75
recurrent activity l2 lambda 0, 0.001 0.001
recurrent kernel l2 lambda 0, 0.001 0.001
dense layers 3 3
dense neurons (300, 150, 75) (300, 150, 75)
dense kernel l2 lambda (0.001, 0.001, 0.001) (0.001, 0.001, 0.001)
dense dropout (0.2, 0.2, 0.2), (0.1, 0.1, 0.1 ) (0.1, 0.1, 0.1)
dense activation (relu, relu, relu), (swish, swish, swish) (relu, relu, relu)
embedding length 50, 75 50
batch size 256 256
class weight 1, 50, 100, 200, 250 50

Supplementary Note 3:
xiRT Explainability Analysis

In this section we describe the analysis of the SHAP values from the learned multi-task model. For this, the
used tensorflow-version needed to be downgraded to 1.15 together with SHAP (v. 0.36.0). As background data
100 randomly chosen CSMs were provided. To use the DeepExplainer, the trained network had to be dissected
into the single tasks. Furthermore, the ordinal regressions setup for hSAX and SCX complicates the analysis
since each sigmoid activation of the output vector can be explained via SHAP (padded positions were ignored).
Therefore, we only focused on the SHAP values for the relevant prediction decision, i.e. the sigmoid activiation
that was <= 0.5. With this special model architecture, the returned SHAP-values failed the ’check additivity’
flag in the SHAP package and the check was thus disabled. However, the magnitude and overall explanations
from the DeepExplainer show realistic feature importance values for the RT contributions on residue level. Since
the SHAP values only represent an approximation of the contributions we further explored their magnitude.
In Supplementary Figure 11 we demonstrate the explainability via SHAP of a crosslinked peptide’s predicted
retention time (hSAX fraction). The residues D, E, R and K behave mostly as expected. In addition, aromatics
(Y, F) also contribute to stronger retention and hence later elution times, while A contributes towards earlier
elution times. These observations are in line with an earlier study on the hSAX RT behavior[7]. Similarly,
an explanation for a SCX prediction is shown in Supplementary Figure 12. The global SHAP values based
on the raw sequence inputs to xiRT are shown in Supplementary Figure 13. For hSAX again, D, E, F, Y,
W belong to the major contributors towards extended retention times. For SCX, the positive contribution is
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mainly attributed towards R, K and H. Note that crosslinked K residues, contribute much less towards later
elution times than non-crosslinked K residues.

Supplementary Table 3: RT features used for prediction on E. coli data set.

# Feature Name Description

1 hsax-error crosslinked - raw error between observed and predicted (hSAX)
2 scx-error crosslinked - raw error between observed and predicted (SCX)
3 rp-error crosslinked - raw error between observed and predicted (RP)
4 hsax-error-peptide1 raw peptide 1 error (hSAX)
5 scx-error-peptide1 raw peptide 1 error (SCX)
6 rp-error-peptide1 raw peptide 1 error (RP)
7 hsax-error-peptide2 raw peptide 2 error (hSAX)
8 scx-error-peptide2 raw peptide 2 error (SCX)
9 rp-error-peptide2 raw peptide 2 error (RP)

10 peptide1 mean median of all peptide1 error (absolute values)
11 peptide1 sum sum of all peptide1 error (absolute values)
12 peptide1 max maximum of all crosslinked errors
13 peptide1 min minimum of all peptide1 errors
14 peptide2 mean median of all peptide2 errors (absolute values)
15 peptide2 sum sum of all peptide2 errors (absolute values)
16 peptide2 max maximum of all peptide2 errors
17 peptide2 min minimum of all peptide2 errors
18 cl mean median of all crosslinked errors (absolute values)
19 cl sum sum of all crosslinked errors (absolute values)
20 cl max maximum of all crosslinked errors
21 cl min minimum of all crosslinked errors
22 initial prod log2 product (absolute values + 0.1) of all initial errors (#1-9)
23 initial sum sum (absolute values) of all initial errors (#1-9)
24 initial min minimum (absolute values) of all initial errors (#1-9)
25 initial max maximum (absolute values) of all initial errors (#1-9)
26 hsax-error square squared hsax-error for crosslinked errors
27 hsax-error abs absolute hsax-error for crosslinked errors
28 scx-error square squared scx-error for crosslinked errors
29 scx-error abs absolute scx-error for crosslinked errors
30 rp-error square squared rp-error for crosslinked errors
31 rp-error abs absolute rp-error for crosslinked errors
32 hsax-error-peptide1 square squared hsax-error for peptide1 errors
33 hsax-error-peptide1 abs absolute hsax-error for peptide1 errors
34 scx-error-peptide1 square squared scx-error for peptide1 errors
35 scx-error-peptide1 abs absolute scx-error for peptide1 errors
36 rp-error-peptide1 square squared rp-error for peptide1 errors
37 rp-error-peptide1 abs absolute rp-error for peptide1 errors
38 hsax-error-peptide2 square squared hsax-error for peptide2 errors
39 hsax-error-peptide2 abs absolute hsax-error for peptide2 errors
40 scx-error-peptide2 square squared scx-error for peptide2 errors
41 scx-error-peptide2 abs absolute scx-error for peptide2 errors
42 rp-error-peptide2 square squared rp-error for peptide2 errors
43 rp-error-peptide2 abs absolute rp-error for peptide1 errors

Note: Features computed from xiRT predictions. All errors or predictions are derived from the same xiRT
model for crosslinked peptides. In the case of individual peptide predictions (peptide1/peptide2), the second
sequence in the input is set to all-zeroes. This feature set was used in the E. Coli analysis with all three RT
dimensions.
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Supplementary Table 4: Unique and redundant CSMs across hSAX and SCX fractions.

Total Unique Redundant hSAX hSAX SCX SCX
(red/same) (red/diff) (red/same) (red/diff)

Counts 39226 4500 6843 3729 3114 2849 3994
% 100 40 60 33 27 25 35

Note: Unique and redundant CSM identifications at 1% CSM-FDR (separate for heteromeric and self-links).
Unique CSMs are combinations of peptide 1, peptide 2, link site and charge state that were only identified
once. Redundant (red) CSMs were identified more than once and thus can either have different RT times
(”diff”) or the same RT times (”same”). Percentages show the observations divided by the sum of unique and
redundant CSMs (rounded). The theoretical accuracy limit for hSAX and SCX was derived by summing the
percentages of unique and ’red/same’ CSMs (hSAX: 73%, SCX: 65%).

Supplementary Table 5: Rescoring gains with different number of chromatographic dimensions.

level reference RP SCX-RP hSAX-RP SCX-hSAX-RP

heteromeric CSM 724 902 (+1.25x) 977 (+1.35x) 1092 (+1.51x) 1199 (+1.66x)
heteromeric Peptide 507 619 (+1.22x) 664 (+1.31x) 737 (+1.45x) 801 (+1.58x)
heteromeric Residues 414 508 (+1.23x) 546 (+1.32x) 603 (+1.46x) 654 (+1.58x)
heteromeric PPI 109 135 (+1.24x) 131 (+1.2x) 157 (+1.44x) 152 (+1.39x)

self CSM 10357 10404 (+1.0x) 10428 (+1.01x) 10439 (+1.01x) 10443 (+1.01x)
self Peptide 6521 6565 (+1.01x) 6586 (+1.01x) 6598 (+1.01x) 6601 (+1.01x)
self Residues 4810 4853 (+1.01x) 4873 (+1.01x) 4886 (+1.02x) 4888 (+1.02x)
self PPI 478 514 (+1.08x) 531 (+1.11x) 540 (+1.13x) 543 (+1.14x)

Note: The data corresponds to all E. coli target-target identifications at 5% CSM-, Peptide-, Residue-level
FDR and 1% PPI-FDR. Rescoring was performed using a linear SVM. Highest values are marked in bold. The
hyper-parameters for the rescoring were chosen dynamically via cross-validation for each run (’class weight’:
’None’, all conditions; ’C’: 100 (RP, SCX-RP, SCX-hSAX-RP); ’C’: 10 (hSAX-RP)), according to the sklearn
API. Values are rounded to two digits.

Supplementary Table 6: CSMs / PPIs involving a human protein (rescored results).

PSMID Protein 1 Protein 2 Protein 2 Peptide 1 Peptide 2 Peptide 2
(E. coli) (human) (E. coli) (human) (E. coli)
initial corrected initial corrected

2262348 P0AFG6 P50552 P0AFG6 SEEKclASTPAQR KELQKclVK KIKclELVAK
3165715 P0AFG6 P50552 P0AFG6 EDVEKclHLAK KELQKclVK KIKclELVAK
2545576 P0AFG6 P50552 P0AFG6 LLAEHNLDASAI- KELQKclVK KIKclELVAK

KclGTGVGGR

Note: The displayed CSMs correspond to the rescored identifications involving a human peptide as shown in
the manuscript (Figure 4). Three human target CSMs are shown that result in a single PPI between a human
protein and the E. coli protein SucB at 1% PPI-FDR (up to 5% for lower FDR levels). Manual inspection
revealed the SucB peptide KIKELVAK as a better match, i.e. a peptide of the same E. coli protein that the
peptide 1 is from. It had not been matched as it carries a rare modification that was not included in our
original search.
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Supplementary Note 4:
pLink2 Processing

The recalibrated MGF files were searched with pLink 2 (2.3.9) with the following search parameters: Flow
Type, HCD; Cross-Linker, DSS with AlphaSites = BetaSites = [KSTY; Enzyme, Trypsin; Missed Cleavages,
2; Peptide Mass [600, 6000]; Precursor Tolerance, 5ppm; Fragment Tolerance, 3ppm; Fixed Modifications,
Carbamidomethylation[C]; Variable Modifications, Oxidation[M]. The filter parameters were as follows: Filter
Tolerance, 10 ppm; FDR, separate FDR 1% at CSM level; Compute E-value, False.

We further processed the unfiltered results table from pLink2 in order to get all CSMs (including decoys)
and their associated error estimates for usage in xiRT. In short, we added the information about peptide origin,
target-decoy origin, species, peptide positions and RT in SCX/hSAX/RP. These steps were only performed
with the peptides that pass the 0.5 Q-value threshold (similar to the xiSEARCH processing, as only 50%
CSM-FDR data was used). These additional annotation steps were necessary since the filtered pLink2 results
(*.filtered cross-linked-spectra) do not provide the necessary information (e.g. decoy hits and error estimates
are not provided).

The generated file was then used as input for xiRT. For xiRT, the same settings as for xiSEARCH were
used. In total 35822 peptides were used as input data. During the CV 3866 peptides were used for training, 430
for validation and 2147 for prediction (prediction-fold is visualized in Supplementary Figure 15, together with a
2D-feature space representation using UMAP[9]. Using crosslinks identified from pLink2 lead to a comparable
prediction performance as using xiSEARCH (3871 training peptides, 431 validation peptides, 2151 prediction
peptides).
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