
REVIEWER COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

In this manuscript, the authors present a novel means to incorporate retention time information into 

cross-linking mass spectrometry data analyses. The authors integrate this through a new learning 

model and python package termed “xiRT” which complements other works in the “xi” lineup 

(xiView, xiNET, xiSearch, etc.). They then go on to show that the use of xiRT enables a “…2-fold 

increase in protein-protein interactions detected…”, which is an impressive improvement. The 

utilization of the retention time dimension in LC-MS/MS analyses is an interesting one, but also one 

that has in part been previously devised by this group (Chen & Rappsilber, Nat Protocols [2019]). The 

main advance here seems to be the use of the new learning model to estimate retention times and 

use this estimation to filter out spurious cross-linked peptide identifications. The predominant effect 

being improved retention of heteromeric linkages. The implementation of this learning model is 

interesting, though the widespread applicability seems potentially limited. I commend the authors 

on making the data and the code available. My main concerns surround the extensibility of this 

platform to other workflows (there are many in crosslinking MS) and how the model/entrapment 

database were built. 

 

Based on the above and the comments below, I believe this paper may be of interest to the Nature 

Communications audience with the requested revisions to include information that is essential for 

understanding the utility of the project. 

 

Major Concerns 

1. Entrapment database. The authors spend a great deal of effort describing the entrapment 

database used to establish their false discovery rate estimates and test the xiRT model. The database 

is made up of two filtered proteomes (human and E. coli). The authors minimize direct overlap of the 

two cohorts of 2850 proteins (i.e. BLASTp based filter) but do little to show the properties of the 

resulting peptides are consistent within the databases. Plots describing these properties should be 

included at the very least, but I encourage the authors to thoroughly explore this, and if they have 

already done so (which is assumed based on the mention of using “…a greedy nearest neighbor 

approach …”[p6, ln137]) it is essential that they report these data to properly assess the manuscript. 

a. Amino acid composition, hydrophobicity, and peptide length would be the most important for 

comparison as these will have a direct effect on retention time. The authors make minor mention of 

this (p13-14, ln329-330), but offer very little to demonstrate the bold claim that “…physicochemical 

differences are therefore not explaining the observed effect.” 



2. Decoy annotation. Could the authors clarify if human proteins were considered “decoys” for the 

purposes of FDR estimation? Adding this to the “Spectra & Peptide Spectrum Match Processing” 

section would be helpful. 

3. Database availability. The final database should be included with the manuscript. There are 6 

FASTA files in the JPost project, none of which are clearly labeled as the “entrapment database”. 

4. Entrapment comparison. Did the authors try to use and compare the RT diff with Percolator or 

PeptideProphet as in their previous work (Mendes et al MSB [2019])? 

5. Model performance. Do the authors have a sense of why MSE for the SCX and SAX differ by 2- to 

3-fold (Fig 2, S3) for CSMs and linear peptides at 40+ epochs? The number of fractions were similar 

as well as the CSM count profiles (Figure S1). This extends to: why was the SAX accuracy higher than 

the SCX accuracy? 

6. Model dimensionality. Are the SCX and SAX subnetworks required for the benefit of xiRT, or can 

these be eliminated for more generalizability to other workflows? Can the authors provide a 

comparison of the learned model with only the RP subnetwork? This would be important as most 

groups do not use the fractionation strategy demonstrated in this work (SEC + SAX + SCX + RP). 

7. Fractions. Do the authors estimate that their modeling would perform better or worse with larger 

numbers of fractions or with the removal of either the SAX or SCX fractionation? 

8. Utility and Extensibility. The authors spend extensive time determining the utility for a single 

workflow to investigate an E. coli PPI network. How extensible to they believe this platform will be 

for the general XL-MS user? Can the authors describe how this software could be used with different 

workflows beyond xiSearch/xiRescore? 

9. Expanding Usage. How do the authors envision extending this to human PPI network 

investigations, e.g. for building an entrapment database or estimating RTs? Including information on 

this in the Discussion/Conclusions would aid readers’ understanding of the utility of this technique 

outside of the demonstrated use-case. 

10. Heteromeric linkages. Are the authors concerned that the main benefit between xiScore and 

xiRescore in Figure 4b for CSMs and PPIs is for heteromeric linkages (the claimed 2.1-fold 

improvement)? As the author’s know (Lenz et al. preprint), these linkages are more likely to contain 

decoy matches compared to self-linkages. The Lenz et al. data also appears to be filtered to a 5% 

FDR rather than the 1% FDR for xiRescore, though it is used for validation. Furthermore, as there are 

fewer heteromeric human PPIs than CSMs, did the authors observe multiple CSMS within the same 

human protein pairs? What do they make of these consistent, wrong “interactions”? 

11. RT Comparisons. Other groups have used RT for crosslinked peptide matching (e.g. most recently 

Steigenberger et al MCP [2020]). The authors should provide comparison of whether the 2-fold 

improvement can be gained through simpler methods – which would be more widely adaptable – to 

utilize retention time in their analyses. 

12. Structure-based FDR. Owing to the large collection of E. coli protein structures, did the authors 

incorporate any kind of structure-based FDR for estimating intraprotein interactions (Mintseris & 



Gygi, 2019, PNAS)? There may even be a chance for validation of the heteromeric linkages in well 

studied complexes. 

13. P8, ln 235-238. Can the authors explain why the 4-fold difference was not explained, while the 

difference observed for the random draw was 3.17-fold? 

14. Fold improvement. The Conclusion section highlights at 2.1% improvement in total heteromeric 

crosslinks, but the overall improvement is much more modest. As noted in point 10, these are also 

the most likely to result from false positives. 

 

Minor Concerns 

I. Figure 1a is misleading in the depiction of the database usage. The implication is that each spectra 

is searched against full databases and these are processed by BLAST/Comet to generate the final 

dataset. 

II. P1, ln 19. The margin of error comment is a little misleading as it really represents 11% windows 

around the fractions. So, with 20 fractions, this would be +/- 2 fractions, etc. 

III. P1, ln 22. The claim “…2-fold increase in protein-protein interactions detected…” is misleading 

based on the actual results presented in Figure 4b. 

IV. P2, ln 38. There have been several enrichable linkers developed prior to the PhoX linker and 

should be referenced. The authors should also mention chromatographic enrichment (e.g. SCX), and 

IMS enrichment strategies (Schnirch et al Anal Chem [2020], Steigenberger et al, MCP [2020]). All 

these methods are potentially complimentary. 

V. P2, ln 46. The claim of “…multi-dimensional chromatography workflows can yield in the order of 

10,000 CSMs at 1-5% false discovery rate (FDR)…” should have a reference associated with it or be 

removed. 

VI. The author’s consistently use lower case lettering for acronyms (e.g. “blast” in Figure 1a) and the 

first letter of named programs (e.g. “comet” [p5, ln104]). These should be changed throughout the 

figures and manuscript to the correct usages. 

VII. The authors set up “three major challenges” in the opening paragraph (p2, ln 28-36), but do not 

mention how their new pipeline solves the issues of low abundance, unequal fragmentation, or 

combinatorial complexity. Could they provide details on where they think the current work fits into 

to solving these central issues? 

VIII. The “Sample Preparation” section of the Methods makes no mention of reducing the proteins 

prior to alkylaton. Was this step performed? 

 

 

 



Reviewer #3 (Remarks to the Author): 

 

The manuscript by Giese et al. describes a machine learning algorithm for the prediction of 

crosslinked peptide retention times under multidimensional fractionation techniques. When using 

the difference between these predictions and the observed retention times additional parameters 

were produced that improved the number protein-protein interactions observed at various FDR 

thresholds. These additional interactions shown to be plausible when compared to entrapment 

interactions, suggest that RT prediction is a valuable tool to improve crosslink search results over 

search score alone. 

 

The concepts in the paper are interesting, and parallel beneficial efforts that were made in single 

peptide identification and validation. The authors provide their software tool (xiRT), which appears 

to be generalizable to workflows outside their lab, and thus a widely useful tool to the community. 

Considering that crosslinked peptide identification has typically been fraught with false 

identifications, and that current efforts have largely focused on controlling the error by adopting 

stricter thresholds, this work perhaps promises to improve analyses through retention of more 

[correct] identifications following validation. I see this research as having a positive impact on the 

crosslinking community. 

 

The manuscript does contain several points that need clarification prior to publication: 

 

1. xiRT RT prediction appears to be based on DePART, which is merely referenced in the manuscript. 

I feel this is a critical component that requires at least a brief overview, even if in the supplementary 

information. 

 

2. 3D fractionation does not appear to be commonplace to me. Most crosslinking research seems to 

use simply RP fractionation, and possibly the addition of SCX. Though the online instructions for xiRT 

possibly indicate it works with RP-only data, the manuscript is not clear on this fact. How much 

benefit could be expected if simpler fractionation schemes are used (SCX-RP or RP only, for 

example)? This might be highly relevant considering the RP model struggled with TD matches (see 

line 322). 

 

3. I found the SHAP analysis difficult to follow. (a) feature interactions were designated as ';' in the 

supp_info, but with '*' in the main text (and described with ';' in the caption). (b) is the use of '*' to 

indicate that these interactions are actually each predictor multiplied together and treated as a 

parameter? (c) how was only 10 features (of 130) chosen to illustrate importance of various 

features? I find it unlikely to assume that all 130 are similar. (d) how come there appears to be a 



large difference in the top 10 features for each SHAP plot provided (1 in main text, 2 in supp_info)? 

Might expanding the analysis beyond 10 features help identify features common among each 

analysis, and presumably most important to the model? 

 

4. Machine learning algorithms benefit most from large datasets. The datasets here are large, far 

larger than many publications (144 acquisitions vs. a dozen or fewer in many publications I've seen). 

The authors noted the limitation and performed analyses on subsets to model the effect. But I feel 

this effort stopped short of providing realistic context to the readers. What would someone do if 

they had only 100 CSMs? Can the authors actually recommend minimum dataset sizes for reliable 

xiRT performance? And if so, are they still applicable when using fewer features (such as performing 

the analysis on RP-only data)? 

 

5. I attempted to use xiRT and hit two roadblocks that can probably be fixed by improving the online 

tutorial. (a) xiRT aborted because libcuda.so.1 could not be found. This is because I don't have an 

NVIDIA card, and I thought from the documentation that CUDA was optional. If not, this needs to be 

explicitly stated. (b) xiRT config and setup config are not documented. While I think I could navigate 

one file correctly, I cannot make sense of the parameters listed in the other. Both of these files need 

clear documentation and tutorials, not simply a link to YAML. 

 

 

Reviewer #4 (Remarks to the Author): 

 

xiRT did a good job in retention time (RT) prediction for cross-linked peptides (CX). This is certainly a 

novel method since there are no RT prediction tools for CXs as I know so far. There are 3 main 

contributions for xiRT as shown in its abstract: (1) Model CXs by using Siamese Net and using multi-

task learning for SCX, hSAX, and RT prediction; (2) It is quite accurate for SCX, hSAX, and RT 

prediction; (3) Percolator-like rescoring based on predicted SCX, hSAX, and RT features would 

significantly increase the PPI detections at a proteome-scale (E. coli lysate). This work will be useful 

for CX-MS analysis. 

 

Here are my comments: 

 

1. It is a great idea to use Siamese Net to model CX problems. Although I do not work on the pLink 

project, I have a similar idea for predicting "something" of CXs, but this work moved faster than us. 

 



 

2. Multi-task learning (MTL) is also a good idea. My question is, although MTL can save the training 

and predicting time, I wondered if single-task learning can achieve a better performance? And what 

the common knowledge did the model learn within the shared layers? The latter question may be 

too difficult to answer, therefore, at least, authors should show MTL is necessary for higher 

predicting accuracies. 

 

 

3. After the model is designed, it is not hard to build deep neural network models for RT prediction 

using traditional regression techniques, but it is interesting that xiRT uses ordinal regression models 

for SCX and hSAX prediction. But there is a concern here: the number of fractions should be fixed for 

deep ordinal regression network, making it difficult to extend for different fraction numbers? How 

do the authors consider this problem? 

 

 

4. At line 109, I suggest to put the sentence "Before the identification with xiSEARCH the masses of 

precursor and fragment ions were recalibrated." into the front of the xiSEARCH settings, otherwise it 

will be confused that why fragment tolerance is only 5 ppm. 

 

 

5. At line 144, the authors said that "The input of xiRT are amino acid sequences with arbitrary 

modifications", but at the next line, it said "... encoded by replacing every amino acid by an integer", 

obviously the encoding did not really take "arbitrary" modifications into account, at least I did not 

find it in this paper. 

 

 

6. At line 186, xiRT uses rbf kernel for its Percolator-like algorithm. Is it necessary to use a non-linear 

kernel instead of a linear one? As we know, Percolator uses the linear kernel. Besides, the features 

(score, RT difference, etc.) used by xiRT may have linear properties. The on-linear kernel tends more 

easily to be overfitting, especially for some scenarios such as CX search which has fewer training 

samples. 

 

 

7. At line 190, I don't understand why there are so many (130) features. 



 

 

8. From line 191 to 193, does it mean all DXs are negative samples? If so, this description may be too 

complicated to understand. Otherwise, what did the last sentence suppose to mean? 

 

 

9. At line 200, xiRT uses a 3-fold CV for rescoring steps. It is reliable, but my question is about 

extensibility. Most of the structural biologists may only concern about protein-complex level 

identification instead of proteome-wide level identification, which means there may be not that 

enough CX-peptides for 3-fold CV for protein-complex identification. 

 

 

10. Line 233, it is a good idea to use PPI-level evidence to validate CX identifications, but the 

problems are how to estimate the PPI-level error rate itself? How PPI-error-rate increases as the 

CSM-FDR increases? 

 

 

11. Line 236, "Randomly drawing pairs of E. coli proteins" may be a wrong simulation to evaluate the 

false negatives at 10% or 50% CSM-FDR. As we all know, there are a lot of True-False-linked CXs (i.e. 

half-correct CXs) at x% CSM-FDR, hence the pairs are not totally random, maybe they are mostly 

"half-random". I suggest authors should re-consider this simulation. 

 

 

12. Line 152, it said that xiRT uses an additive layer, but it said: "Multiply-layer was used" in 

"Siamese Architecture" in Supporting Information S1, it might be a small mistake. 

 

 

13. Fig. 1d, This network illustration might be not ‘siamese’ enough, readers cannot get what is the 

siamese net from this figure if they have not heard about it. 

 

 

14. Fig. 4b, I have two questions here: 



 

a. What is the PPI FDR? I've never heard about it. 

 

b. For the increment of the xiRescore, the proportion of PPI identifications are significantly larger 

than that of CSMs, does these additionally identified PPIs are “one-hit-wonder”? Or how to evaluate 

the quality of additionally identified PPIs? 

 

 

 

Dr. Zeng, Wen-Feng 
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REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author): 

 

In this manuscript, the authors present a novel means to incorporate retention time information into cross-

linking mass spectrometry data analyses. The authors integrate this through a new learning model and 

python package termed “xiRT” which complements other works in the “xi” lineup (xiView, xiNET, xiSearch, 

etc.). They then go on to show that the use of xiRT enables a “…2-fold increase in protein-protein 

interactions detected…”, which is an impressive improvement. The utilization of the retention time 

dimension in LC-MS/MS analyses is an interesting one, but also one that has in part been previously 

devised by this group (Chen & Rappsilber, Nat Protocols [2019]).  

 

We are pleased that the reviewer recognizes the novel means presented in this manuscript for 

the usage of retention times for Crosslinking MS. Please note that the manuscript by Chen et al. 

describes a protocol for the quantitation of crosslinked peptides. The published workflow uses 

measured retention time to align MS1 features for their quantitation in Skyline. Chen et al. did 

not touch on retention time prediction. 

 

The main advance here seems to be the use of the new learning model to estimate retention times and 

use this estimation to filter out spurious cross-linked peptide identifications. The predominant effect being 

improved retention of heteromeric linkages. The implementation of this learning model is 

interesting, though the widespread applicability seems potentially limited. I commend the authors on 

making the data and the code available. My main concerns surround the extensibility of this platform to 

other workflows (there are many in crosslinking MS) and how the model/entrapment database were built. 

 

Based on the above and the comments below, I believe this paper may be of interest to the Nature 

Communications audience with the requested revisions to include information that is essential for 

understanding the utility of the project. 

 

Major Concerns 

1. Entrapment database. The authors spend a great deal of effort describing the entrapment database 

used to establish their false discovery rate estimates and test the xiRT model. The database is made up 

of two filtered proteomes (human and E. coli). The authors minimize direct overlap of the two cohorts of 

2850 proteins (i.e. BLASTp based filter) but do little to show the properties of the resulting peptides are 

consistent within the databases. Plots describing these properties should be included at the very least, 

but I encourage the authors to thoroughly explore this, and if they have already done so (which is 

assumed based on the mention of using “…a greedy nearest neighbor approach …”[p6, ln137]) it is 

essential that they report these data to properly assess the manuscript. 

a. Amino acid composition, hydrophobicity, and peptide length would be the most important for 

comparison as these will have a direct effect on retention time. The authors make minor mention of this 

(p13-14, ln329-330), but offer very little to demonstrate the bold claim that “…physicochemical differences 

are therefore not explaining the observed effect.” 
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We now show that the peptide length, basic (K/R) / aromatic (F/Y/W) / acidic (D/E) amino acid 

counts, isoelectric point and GRAVY estimates are similar for the target peptides from E. coli 

and the entrapment-peptides from H. sapiens, see Figure S4. 

 

2. Decoy annotation. Could the authors clarify if human proteins were considered “decoys” for the 

purposes of FDR estimation? Adding this to the “Spectra & Peptide Spectrum Match Processing” section 

would be helpful. 

 

We added this information to the “Database Creation” section. In short, human targets were 

treated as targets and human decoys were treated as decoys for FDR estimation. 

 

3. Database availability. The final database should be included with the manuscript. There are 6 FASTA 

files in the JPost project, none of which are clearly labeled as the “entrapment database”. 

 

The jPOST project contains a “readme.txt” file that explains the databases and naming 

conventions used in the project. Note that only SwissProt curated protein sequences 

(“reviewed”) were used. The snippet for the FASTA sequences is pasted below (the final 

database corresponds to “6”). 

 

FASTA: 

---------- 

1) EColi_K12_reviewed_20190828 - E. coli reference proteome 

2) EColi_K12_reviewed_20190828_4389_cometfilter - 1) minus all proteins not identified in a 

comet search 

3) HS_proteome_UP000005640_rev_20190905.fasta - Homo sapiens reference proteome 

4) HS_proteome_UP000005640_rev_20190905_blastfilter.fasta - 3) minus all proteins that 

contain peptides that were also found in 1) via a blast search (100% seq. coverage) 

5) HS_proteome_UP000005640_rev_20190905_blastfilter_nearest.fasta - selection from 4) 

where each protein was selected based on K/R, peptide length to match the proteins in 2) 

6) EColi_K12_reviewed_20190828_cbnn_filter.fasta - Combined 2) and 5) (comet-blast-

nearest-neighbor_filter). 

 

 

4. Entrapment comparison. Did the authors try to use and compare the RT diff with Percolator or 

PeptideProphet as in their previous work (Mendes et al MSB [2019])? 

 

We are aware that Kojak uses PeptideProphet and has used Percolator. We contacted the 

author of Kojak (Michael Hoopman) and learned that the discriminant score in PeptideProphet 

and the mixture modeling would need to be implemented for each feature (e.g. RP, SCX, hSAX 

prediction errors in our case) and are thus substantial work on the PeptideProphet codebase 

would be necessary to incorporate our features. Therefore, extending PeptideProphet to use RT 

features is not feasible within this work. However, we hope that our work motivates the author of 

Kojak/PeptideProphet to consider adding RT features to their workflow. Note that the author of 

Kojak recommends using PeptideProphet over Percolator (Kojak release updates “I recommend 
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switching to PeptideProphet in the Trans-Proteomic Pipeline.” http://www.kojak-

ms.org/news/archive2017.html). The higher error rates when using Percolator have also been 

shown by an independent group [4]. 

 

5. Model performance. Do the authors have a sense of why MSE for the SCX and SAX differ by 2- to 3-

fold (Fig 2, S3) for CSMs and linear peptides at 40+ epochs? The number of fractions were similar as well 

as the CSM count profiles (Figure S1). This extends to: why was the SAX accuracy higher than the SCX 

accuracy? 

 

1) Linear vs. crosslink performance 

The number of epochs that a neural network needs to be trained to achieve good 

training / validation performance is a function of multiple parameters. Important ones 

include the number of training samples and thus the number of batches for a given 

batch-size. For each batch that is used for training, the parameters of the network are 

updated via gradient descent. With more training data, more batches are needed and 

thus more adjustments to the initial weights can be performed within a single epoch. 

Since the linear peptide identifications by far exceed crosslinked peptide identifications, 

the two figures cannot be quantitatively compared at specific epochs. At the same 

epoch, the linear peptide network has seen much more data and has performed more 

updates to the weights. In addition, the combinatorics for linear peptide combinations are 

not as complex as crosslinked peptide combinations. Therefore, ‘slower learning’ of 

crosslinked spectrum matches follows our expectation. 

 

2) SCX vs. hSAX 

From our experience, crosslinked peptides distribute more equally across the used 

hSAX gradient, while for SCX they are typically enriched in the later fractions of the 

gradient. Therefore, the peptides are better separated using hSAX with less redundant 

peptide pairs across fractions. We also observed this effect when comparing non-unique 

CSMs (Peptide1, Peptide2, Link Sites, Charge) at 1% FDR. By counting the unique 

CSMs and redundant CSMs that are found in the same fraction one can estimate the 

theoretical upper bound on the prediction accuracy (see Figure S8 and Table S4). For 

hSAX (73%) this upper bound is higher than for SCX (65%) in our data. We have now 

included these estimations in the manuscript to make this clearer. 
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6. Model dimensionality. Are the SCX and SAX subnetworks required for the benefit of xiRT, or can these 

be eliminated for more generalizability to other workflows? Can the authors provide a comparison of the 

learned model with only the RP subnetwork? This would be important as most groups do not use the 

fractionation strategy demonstrated in this work (SEC + SAX + SCX + RP). 

 

We are aware that there is no standard regarding the peptide fractionation. Therefore, we 

developed xiRT for flexible use cases of one or more retention time dimensions. Upon request 

by reviewer 4 (comment 2), we have added a single-task vs. multi-task comparison to the 

supplementary material (S6-S7), in which we also probed xiRT by forwarding only RP 

information. Here, we did not find significant performance differences in retention prediction 

between the 1-task (RP-only), 2-task (SCX-RP/hSAX-RP) or 3-task (SCX-hSAX-RP) models but 

reduced runtime. 

 

We then moved on to investigate if RP retention time only can help in identifying crosslinks. We 

thought of an extreme test, i.e. to look at the ability of RP retention only to separate true and 

false matches without addition of any mass spectrometric data and added this as new Figure 

3a. As one might expect, this does not lead to a full separation using UMAP. Nonetheless, 

information on RP retention behavior clearly leads to some separation of true and false 

matches. This improves very much when adding further retention information (hSAX and SCX) 

in Figure 3b. We would like to emphasize again that this uses no mass spectrometric 

information. This means that retention time alone carries substantial information that can help 

distinguish true from false matches.  

 

Finally, to push the RP RT only question even further, we tested xiRT with a much smaller data 

set from Shakeel et al. [3], with 20 acquisitions (BS3 crosslinker used in this data set) for which 

we only used RP retention data. When we trained xiRT on CSMs filtered to 1% CSM-FDR, the 

model could not converge and only resulted in an r^2 of 0.49. However, when we pretrained 

xiRT on the data from this manuscript (DSS-crosslinked E. coli proteome) we achieved an 

average r^2 of 0.91 with weight-adjustment and an r^2 without weight-adjustment 0.37. We 

added this analysis as new Figure S10. This means that xiRT is applicable to purified 

complexes in an RP-only workflow and thus generalizes to the currently most widely used 

application area of crosslinking mass spectrometry (Steigenberger et al. 2020 [7]). Notably, we 

see a 1.7-fold increase in heteromeric links in this analysis at constant FDR.  

 

7. Fractions. Do the authors estimate that their modeling would perform better or worse with larger 

numbers of fractions or with the removal of either the SAX or SCX fractionation? 

 

We anticipate that a more fine-grained fractionation leads to better prediction performance. 

However, as shown in response to point 5 of this reviewer, redundant CSMs across fractions 

will remain a challenge (see Table S4). As stated in our response to the previous question, we 

have added the single-task vs. multi-task comparison to the supplementary material (S6-S7), in 

which we did not find significant performance differences between the 1-task (RP-only), 2-task 

(SCX-RP/hSAX-RP) or 3-task (SCX-hSAX-RP) models but reduced runtime. 
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8. Utility and Extensibility. The authors spend extensive time determining the utility for a single workflow to 

investigate an E. coli PPI network. How extensible to they believe this platform will be for the general XL-

MS user? Can the authors describe how this software could be used with different workflows beyond 

xiSearch/xiRescore? 

 

Please note that we have now added the analysis of a purified multiprotein complex and herein 

included the example of using RP data only, as mentioned in our response above (comment 6). 

RP RTs could be learned for such a small dataset thanks to transfer learning and led to 

substantial improvements in identified links (1.7-fold for heteromeric links) at constant FDR. This 

shows that xiRT is not limited to large and multidimensional datasets. Very pleasingly, xiRT is 

highly useful also to enhance the analysis of multiprotein complexes [3], which is of relevance to 

the large number of laboratories that use crosslinking for such endeavor. 

 

We appreciate that there are many search workflows beyond that of our lab. Fortunately, and 

intentionally, xiRT does not use any search tool specific information. Due to the very way of 

how we set up xiRT, it can be taken as a component by the respective developers to 

complement their existing workflow with retention time prediction. xiRT is an open-source code, 

stand-alone application that uses tabular search result data. To prove the point, we used the 

results of pLink2 for our E. coli dataset at pLink 1% CSM-FDR as training input for xiRT. As 

expected, xiRT could learn retention times also from pLink2 (e.g. for RP mean r2 of 0.9 +- 0 

(std)) on the prediction folds not used for training, which demonstrates the general usability of 

xiRT beyond xiSEARCH (new Fig. S15).  

 

We would have liked to also demonstrate the added benefit of RT information within the pLink2 

framework. However, we encountered problems that we duly raised to the developers of pLink2 

by opening a Github issue (https://github.com/pFindStudio/pLink2/issues/80) on 20 Oct 2020. 

Unfortunately, we did not receive a response nor was pLink2 updated to this date (5 Mar 2021). 

This and our experience with Kojak/PeptideProphet (see response to comment 4 above) 

exemplifies the problems of trying to enhance the workflow of others. Hopefully, our success 

with retention time prediction and the open availability of xiRT will motivate the developers of 

other workflows to amend them with retention time prediction soon. 

 

Looking at the larger picture, xiRT was developed for the retention time prediction of crosslinked 

peptides. We see the strength of xiRT in the following points: 

1) xiRT works search engine independent. The only required input are CSMs with FDR 

estimates on CSM level. We now added an evaluation using pLink2 (Fig. S15) to 

demonstrate this. 

2) xiRT works with an arbitrary number of RT dimensions. Importantly, even with a single 

chromatographic dimension (e.g. reversed-phase) and for a purified protein complex, 

xiRT achieves accurate RT prediction through transfer learning, as we now show (Fig. 

S10), and thus improves the original search outcome (Fig. 5). 

3) RT information might benefit the crosslinking field in multiple areas: rescoring, targeted 

acquisitions, DIA acquisitions, spectral library generation. 

 

https://github.com/pFindStudio/pLink2/issues/80
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We added a note to the conclusion section to communicate the utility more clearly. 

 

9. Expanding Usage. How do the authors envision extending this to human PPI network investigations, 

e.g. for building an entrapment database or estimating RTs? Including information on this in the 

Discussion/Conclusions would aid readers’ understanding of the utility of this technique outside of the 

demonstrated use-case. 

 

In this manuscript we focused on the development of a machine learning framework suited for 

RT prediction of crosslinked peptides. xiRT is agnostic to the workflow / sample / organism and 

simply requires a collection of CSMs with error estimates in a CSV format. Therefore, xiRT can 

also be used to predict the retention times of human crosslinks.  

 

There may be a confusion resulting from our use of an entrapment database. The entrapment 

database was solely used as control after the rescoring. As decoys were used during training, 

we needed a different model for false matches to check the validity of our scoring approach. A 

separation of decoys and other known false matches (here human target matches) indicates 

overfitting. Indeed, we observed no increase in known false targets (human targets) after 

rescoring (Fig. 4b). We would like to emphasize that the entrapment database was not used for 

the prediction of retention times and is therefore not needed to use xiRT. 

 

10. Heteromeric linkages. 

1) Are the authors concerned that the main benefit between xiScore and xiRescore in Figure 4b for CSMs 

and PPIs is for heteromeric linkages (the claimed 2.1-fold improvement)? As the author’s know (Lenz et 

al. preprint), these linkages are more likely to contain decoy matches compared to self-linkages.  

 

The manuscript by Lenz et al. shows that with separate FDR estimation for heteromeric and 

self-links, the chance for a CSM being wrong is a function of the FDR (and not whether a link is 

self or heteromeric). Therefore, with proper FDR control, heteromeric links are not more likely to 

be false / contain decoy matches.   

The larger increase in heteromeric links with use of RTs as additional information source 

indicates that a larger fraction of heteromeric links remain currently unidentified (at a given FDR 

based on score cut-offs coming from spectrum matching only). In contrast, even with much 

worse spectra (and correspondingly scores) do self-links pass the same FDR threshold (since 

there are far fewer possible pairwise peptide combinations for self-links than for heteromeric 

links; for reference, please see supplementary Fig. 1a in [2]). In essence, after the extensive 

peptide fractionation employed (nearly) all the self-links in the MS data were already identified 

while many heteromeric links with MS data were not. 

 

2) The Lenz et al. data also appears to be filtered to a 5% FDR rather than the 1% FDR for xiRescore, 

though it is used for validation.  

 

In this study, we focused on more stringent FDR estimates because the initial training of xiRT is 

best done with high-confident identifications with few false positives. In addition, we were 

interested in how far more CSMs can be identified at lower FDR thresholds. Generally speaking, 

FDR thresholds are often tightly bound to personal preferences and applications. For example, 
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Lenz et al. uses 5% FDR for showing the principles of FDRs but restricts the FDR to 1% for 

investigation of PPI interactions later. Both FDR values of 1% and 5% are commonly used in the 

field (see [2] Table S1). 

 

3) Furthermore, as there are fewer heteromeric human PPIs than CSMs, did the authors observe multiple 

CSMS within the same human protein pairs? What do they make of these consistent, wrong 

“interactions”? 

 

We observed only 3 human target CSMs, resulting in a single PPI between a human protein 

and the E. coli protein SucB at 1% PPI-FDR (up to 5% for lower FDR levels). There were no 

human-human PPIs detected at this FDR. Nevertheless, it is indeed surprising that all 3 human 

target CSMs matched to a single PPI. When we investigated this in detail, we noticed that all 3 

CSMs included the same human peptide (Table R1). This might be a consequence of the (true) 

second peptide not being in the database (e.g. natural genetic variant). Indeed, closer 

inspection revealed as a better match the SucB peptide KIKELVAK, i.e. a peptide of the same 

E. coli protein that the link partner is from. It had not been matched as it carries a rare 

modification that we had not included in our original search. This alternative peptide transforms 

the heteromeric PPI into a self link, which is probably the correct interpretation. 

 

Table R1: CSMs / PPIs involving a human protein (rescored). 

PSMID matches the ID of the results reported by xiSEARCH / xiFDR. 

PSMID Protein1 Protein2 
initial 

Protein2 
corrected 

Peptide1 (E. coli) Peptide2 (human) 
Initial match 

Peptide2 (E. coli) 
Corrected match 

2262348 P0AFG6 P50552 P0AFG6 SEEKclASTPAQR KELQKclVK KIKclELVAK 

3165715 P0AFG6 P50552 P0AFG6 EDVEKclHLAK KELQKclVK KIKclELVAK 

2545576 P0AFG6 P50552 P0AFG6 LLAEHNLDASAIKclGT
GVGGR 

KELQKclVK KIKclELVAK 

 

11. RT Comparisons. Other groups have used RT for crosslinked peptide matching (e.g. most recently 

Steigenberger et al MCP [2020]). The authors should provide comparison of whether the 2-fold 

improvement can be gained through simpler methods – which would be more widely adaptable – to utilize 

retention time in their analyses. 

 

We would like to emphasize that to the best of our knowledge RT prediction of crosslinked 

peptides has not been done, prior to our work. Steigenberger et al. describes an approach to 

distinguish mono-linked and cross-linked peptides by measuring collision cross sections in ion 

mobility-mass spectrometry and then training an SVM classifier “to maximize the separation 

between mono-linked and cross-linked peptides”. Indeed, we also use an SVM classifier, in our 

case for rescoring. SVM is one of the simplest approaches one can take and widely used (for 

example by Steigenberger et al.). A filtering-approach might be perceived as even simpler. 

However, for one, one would have to filter in a high-dimensional space as we have multiple 

predicted retention time features (also covering the individual peptides). Secondly, we want to 

integrate the retention dimensions with the mass spectrometric score. SVMs are an established 
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approach to do this (e.g. Percolator / ProteinProspector / pLink2, albeit none using RT for 

crosslinks yet). 

 

12. Structure-based FDR. Owing to the large collection of E. coli protein structures, did the authors 

incorporate any kind of structure-based FDR for estimating intraprotein interactions (Mintseris & Gygi, 

2019, PNAS)? There may even be a chance for validation of the heteromeric linkages in well studied 

complexes.  

 

In this study we focus on the protein-protein-interactions between heteromeric links since these 

are usually the target in proteome-wide CLMS analysis. We focus the validation on known PPI 

interactions in (curated) databases such as STRING / APID. Albeit evaluating intra-protein 

interactions via mapping crosslinks onto structures has been suggested to lead to misleading 

conclusions [5], we followed the advice of the reviewer to validate the achieved improvements in 

our multiprotein complex analysis (new Fig. 5), among other quality controls. 

 

13. P8, ln 235-238. Can the authors explain why the 4-fold difference was not explained, while the 

difference observed for the random draw was 3.17-fold? 

 

Please note that “4-fold versus 3.17-fold” is comparing different FDR ranges (1 - 50% and 10 - 

50% CSM-FDR). Correct would have been 4- versus 9-fold for our initial data for the full CSM-

FDR range. Additionally, please note that we now adapted the sampling process for the random 

matches, following the comment of another reviewer, and changed the discussion in the text 

(p.11 “Semi-randomly (...)”). However, the fold difference remains the same (4- versus 9-fold). 

We assume the reviewer wonders about this difference. Therefore, we would like to point out 

that: 

1) The now used method is rather pessimistic to estimate the number of expected random 

matches (one protein from APID/STRING; the other from the fasta database) which might 

lead to inflated numbers of random matches. However, we think this does not account for 

the large difference between random and true PPIs. Rather we think the following does: 

2) There are many more random PPIs possible than true PPIs that are covered by our data. 

As the score threshold is lowered more and more, random PPIs will pass while the limited 

number of true PPIs will be exhausted at some point. This is amplified by the tendency of 

true CSMs to fall into the same PPIs, while random matches will accumulate [2]. 

3) Be this as it may, to us the most important point about this graph (Fig. 1b) is that the 

absolute number of PPIs that are correct and hidden in the 50% CSM-FDR data is still 

much larger than expected by random matching. Here, the absolute differences give a 

reasonable estimate on the number of missed PPIs at e.g. 50% CSM-FDR. Therefore, it is 

worth looking for additional information sources (such as RT) that help distinguish true from 

random matches. 
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14. Fold improvement. The Conclusion section highlights at 2.1% improvement in total heteromeric 

crosslinks, but the overall improvement is much more modest. As noted in point 10, these are also the 

most likely to result from false positives. 

 

As noted above, with separately computed FDR estimates heteromeric links are as trustworthy 

as self-links, see [1,2]. We would expect the gains to be larger for PPIs, given that the majority 

of self-links are already identifiable based on MS data alone due to the much smaller search 

space (see SI Fig.1a in [2]). Note, it is PPIs that we and many others are very interested in. 

 

Minor Concerns 

I. Figure 1a is misleading in the depiction of the database usage. The implication is that each spectra is 

searched against full databases and these are processed by BLAST/Comet to generate the final dataset. 

 

We adapted the figure to better represent the actual workflow and corrected the tool names. 

 

II. P1, ln 19. The margin of error comment is a little misleading as it really represents 11% windows 

around the fractions. So, with 20 fractions, this would be +/- 2 fractions, etc. 

 

We used the relaxed accuracy (racc) metric of +/-1 error on each prediction task independently. 

For each task (SCX, hSAX), this metric is estimated on the prediction folds from multiple CSMs. 

According to the used definition, a racc of 90% follows the intuition that in 90% of the cases the 

margin of error is within +/-1 between the observed and predicted fraction. 

 

III. P1, ln 22. The claim “…2-fold increase in protein-protein interactions detected…” is misleading based 

on the actual results presented in Figure 4b. 

 

We have adapted the text and references to that figure accordingly. 

 

IV. P2, ln 38. There have been several enrichable linkers developed prior to the PhoX linker and should 

be referenced. The authors should also mention chromatographic enrichment (e.g. SCX), and IMS 

enrichment strategies (Schnirch et al Anal Chem [2020], Steigenberger et al, MCP [2020]). All these 

methods are potentially complementary. 

 

We have improved the coverage of and indeed focused on chromatographic methods in 

crosslinking MS in the introduction while covering other methods now through citing reviews.  

 

V. P2, ln 46. The claim of “…multi-dimensional chromatography workflows can yield in the order of 10,000 

CSMs at 1-5% false discovery rate (FDR)…” should have a reference associated with it or be removed. 

 

We added four references in which more than 10,000 CSMs were identified. 

 

VI. The author’s consistently use lower case lettering for acronyms (e.g. “blast” in Figure 1a) and the first 

letter of named programs (e.g. “comet” [p5, ln104]). These should be changed throughout the figures and 

manuscript to the correct usages. 

 

We corrected the spelling of the mentioned programs and acronyms. 
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VII. The authors set up “three major challenges” in the opening paragraph (p2, ln 28-36), but do not 

mention how their new pipeline solves the issues of low abundance, unequal fragmentation, or 

combinatorial complexity. Could they provide details on where they think the current work fits into to 

solving these central issues? 

 

We restructured parts of the abstract and introduction to make it clearer how RT information can 

help with the mentioned challenges and come back to this in the conclusion.  

 

VIII. The “Sample Preparation” section of the Methods makes no mention of reducing the proteins prior to 

alkylaton. Was this step performed? 

 

The sample preparation in this manuscript was kept rather short, however, it follows the exact 

same protocol as described in Lenz et. al [2]. We added the missing reduction step to the 

sample preparation section. 
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Reviewer #3 (Remarks to the Author): 

 

The manuscript by Giese et al. describes a machine learning algorithm for the prediction of crosslinked 

peptide retention times under multidimensional fractionation techniques. When using the difference 

between these predictions and the observed retention times additional parameters were produced that 

improved the number protein-protein interactions observed at various FDR thresholds. These additional 

interactions shown to be plausible when compared to entrapment interactions, suggest that RT prediction 

is a valuable tool to improve crosslink search results over search score alone. 

 

The concepts in the paper are interesting, and parallel beneficial efforts that were made in single peptide 

identification and validation. The authors provide their software tool (xiRT), which appears to be 

generalizable to workflows outside their lab, and thus a widely useful tool to the community. Considering 

that crosslinked peptide identification has typically been fraught with false identifications, and that current 

efforts have largely focused on controlling the error by adopting stricter thresholds, this work perhaps 

promises to improve analyses through retention of more [correct] identifications following validation. I see 

this research as having a positive impact on the crosslinking community. 

 

The manuscript does contain several points that need clarification prior to publication: 

 

1. xiRT RT prediction appears to be based on DePART, which is merely referenced in the manuscript. I 

feel this is a critical component that requires at least a brief overview, even if in the supplementary 

information. 

 

We added a note to the “xiRT - 3D Retention Time Prediction” methods section (p.7). 

 

2. 3D fractionation does not appear to be commonplace to me. Most crosslinking research seems to use 

simply RP fractionation, and possibly the addition of SCX. Though the online instructions for xiRT 

possibly indicate it works with RP-only data, the manuscript is not clear on this fact. How much benefit 

could be expected if simpler fractionation schemes are used (SCX-RP or RP only, for example)? This 

might be highly relevant considering the RP model struggled with TD matches (see line 322). 

 

Many large-scale studies have shifted to use at least one additional retention dimension. xiRT 

works with an arbitrary number of chromatographic retention dimensions. We have added 

analyses using RP only, SCX-RP and hSAX-RP in the E. coli data to the supplementary 

Material (Fig. S6). In any case, we now performed the entire analysis also on a multiprotein 

complex, the FA-complex [3] where we only used the RP dimension. In this set-up, the RP 

information alone helped to increase the number of detected crosslinks (new Fig. 5). 

 

3. I found the SHAP analysis difficult to follow.  

(a) feature interactions were designated as ';' in the supp_info, but with '*' in the main text (and described 

with ';' in the caption).  

(b) is the use of '*' to indicate that these interactions are actually each predictor multiplied together and 

treated as a parameter?  

 

We completely reworked the feature generation and simplified the supplementary material 

resolving the mentioned concerns. The complete list of features is now given in Table S3. 
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(c) how was only 10 features (of 130) chosen to illustrate importance of various features? I find it unlikely 

to assume that all 130 are similar. 

 

Showing 10 features was a choice made to simplify the interpretation of the results. These 10 

features were detected as most important by the magnitude of the SHAP value. As shown in 

Figure 3c, the magnitude of the SHAP value is already quite small for the 10th feature. 

Therefore, the following features will have an even smaller impact on the model prediction. Note 

that we revised the feature set in the revised manuscript and ended up with a smaller number of 

features overall. In any case, we increased the number of shown features to 15.  

 

(d) how come there appears to be a large difference in the top 10 features for each SHAP plot provided (1 

in main text, 2 in supp_info)? Might expanding the analysis beyond 10 features help identify features 

common among each analysis, and presumably most important to the model? 

 

Based on the reviewers concerns we have simplified the presentation of the SHAP results. We 

now limit the presentation to the TTs that were not used during training with an SVM-score > 0.5 

to focus on the features that help detecting previously unidentified TTs. In response to the 

question, given the old results: the beauty of SHAP lies within the ability to locally explain 

feature importance, i.e. analyze the feature importance of individual observations like a specific 

CSM. For the presented SHAP analysis we previously used very different subsets a) TTs with 

an FDR > 1% (main text), b) 50 TT / 50 TD that with an FDR <= 1% and c) TDs with an FDR > 

1%. Therefore, SHAP revealing different sets for the top ten features of these three data 

subsets met our expectations.  

 

4. Machine learning algorithms benefit most from large datasets. The datasets here are large, far larger 

than many publications (144 acquisitions vs. a dozen or fewer in many publications I've seen). The 

authors noted the limitation and performed analyses on subsets to model the effect. But I feel this effort 

stopped short of providing realistic context to the readers.  

1) What would someone do if they had only 100 CSMs?  

2) Can the authors actually recommend minimum dataset sizes for reliable xiRT performance? 

3) And if so, are they still applicable when using fewer features (such as performing the analysis on 

RP-only data)? 

 

Already a few years ago, one could obtain ~1,000 CSMs from three replicate acquisitions of a 

single crosslinked protein (e.g. [6]). Nowadays, one can certainly achieve more in a typical 

analysis of a multiprotein complex. Crosslinking MS data acquisition of challenging samples 

generates a lot of data (see Table S1 in [2]). Here our method can be used best. However, 

smaller samples can still be used through the application of transfer-learning. 

 

We tested xiRT with a much smaller data set from Shakeel et al. [3], a purified multiprotein 

complex with 20 acquisitions (BS3-crosslinking data set). This is an example for a very routine 

experiment in structural biology of protein complexes done nowadays. For the FA-complex, we 

identified 1376 CSMs (TT: 1059 CSMs, 307 heteromeric CSMs) at 5% CSM-/peptide-pair FDR 

and 1% residue-pair FDR. When we trained xiRT on CSMs filtered to 1% CSM-FDR, the model 

could not converge and only resulted in an r^2 of 0.49. We would tend to call this a failure. 
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However, when we pretrained xiRT on the data in this manuscript (DSS-crosslinked) we 

achieved an average r^2 of 0.91 with weight-adjustment (new Fig. 5 and S10). So, xiRT also 

works for much smaller datasets and with a single chromatographic dimension (RP).  

 

5. I attempted to use xiRT and hit two roadblocks that can probably be fixed by improving the online 

tutorial. (a) xiRT aborted because libcuda.so.1 could not be found. This is because I don't have an 

NVIDIA card, and I thought from the documentation that CUDA was optional. If not, this needs to be 

explicitly stated. (b) xiRT config and setup config are not documented. While I think I could navigate one 

file correctly, I cannot make sense of the parameters listed in the other. Both of these files need clear 

documentation and tutorials, not simply a link to YAML. 

 

We have greatly improved the documentation on Github1, as well as the general 

documentation2. The improved documentation shows a slightly improved installation guide that 

should fix the mentioned cuda problem (we recommend using conda for the TensorFlow 

installation). The reviewer is correct that xiRT can be used either with CPU or GPU. However, 

the respective option must be given in the parameter file for which we improved the 

documentation as well3. In addition, we added a couple of example parameterization of xiRT to 

better reflect the possible use cases4. 

 

  

 
1 https://github.com/Rappsilber-Laboratory/xiRT 
2 https://xirt.readthedocs.io/en/latest/ 
3 https://xirt.readthedocs.io/en/latest/parameters.html 
4 https://xirt.readthedocs.io/en/latest/usage.html#examples 

https://github.com/Rappsilber-Laboratory/xiRT
https://xirt.readthedocs.io/en/latest/
https://xirt.readthedocs.io/en/latest/parameters.html
https://xirt.readthedocs.io/en/latest/usage.html#examples
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Reviewer #4 (Remarks to the Author): 

xiRT did a good job in retention time (RT) prediction for cross-linked peptides (CX). This is certainly a 

novel method since there are no RT prediction tools for CXs as I know so far. There are 3 main 

contributions for xiRT as shown in its abstract: (1) Model CXs by using Siamese Net and using multi-task 

learning for SCX, hSAX, and RT prediction; (2) It is quite accurate for SCX, hSAX, and RT prediction; (3) 

Percolator-like rescoring based on predicted SCX, hSAX, and RT features would significantly increase 

the PPI detections at a proteome-scale (E. coli lysate). This work will be useful for CX-MS analysis. 

 

Here are my comments: 

 

1. It is a great idea to use Siamese Net to model CX problems. Although I do not work on the pLink 

project, I have a similar idea for predicting "something" of CXs, but this work moved faster than us. 

 

2. Multi-task learning (MTL) is also a good idea. My question is, although MTL can save the training and 

predicting time,  

1) I wondered if single-task learning can achieve a better performance?  

2) And what the common knowledge did the model learn within the shared layers? The latter 

question may be too difficult to answer, therefore, at least, authors should show MTL is necessary 

for higher prediction accuracies. 

 

1) The Reviewer raises a valid question which we now answer in the supplementary material 

(Figure S6 and S7). In short, the performance is very comparable for single-task (ST) and multi-

task (MT) parameterizations and does not yield significant performance differences (ANOVA). 

However, the overall runtime of xiRT is greatly decreased (~1/3 on both CPUs and GPUs). This 

is extremely valuable for hyper-parameter optimization of the neural network. Note that we 

limited our analysis to 50% CSM-FDR which also greatly decreases runtime. Future 

developments, especially when rescoring workflows are applied after retention time prediction 

might need to use all identified CSMs for model building. 

 

2) In addition, we have investigated the learned features from the network with two approaches:  

 

a) We investigated the intermediate layers of the neural network by applying dimensionality 

reduction for each of the layers using UMAP. Interestingly, the RNN-layer mostly catches the 

RP features, while SCX / hSAX features are only weakly separated (Fig. S14). 

 

b) We have extended the usage of the SHAP package to the peptide sequences. However, 

SHAP has some current limitations with TensorFlow > 2.0, which does not support multi-task 

learning (natively) as well as ordinal feature encoding. This leads to larger errors in the 

estimated importance values via SHAP. Given their approximate nature, we limit ourselves to a 

description of the SHAP values in the supplementary information. E.g. feature attributions can 

be retrieved per residue in a crosslinked peptide (Fig. S11, Fig. S12) revealing insights into the 

(crosslinked) residue contributions towards retention time. This can be extended to global 

analysis (Fig. S13) that can improve the general understanding of retention mechanisms for 

crosslinked peptides. Importantly, this analysis is not necessarily limited to retention times. The 

recent interest in ion-mobility separation for crosslinked peptides is another interesting use case 
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for xiRT and the applied explanation model. To the best of our knowledge this is also the first 

approach to use explainable AI techniques for retention time prediction and crosslinked 

peptides. 

 

3. After the model is designed, it is not hard to build deep neural network models for RT prediction using 

traditional regression techniques, but it is interesting that xiRT uses ordinal regression models for SCX 

and hSAX prediction.  

1) But there is a concern here: the number of fractions should be fixed for deep ordinal regression 

network, making it difficult to extend for different fraction numbers?  

2) How do the authors consider this problem? 

 

In our opinion, two possible solutions exist: 

a) Neural networks offer the possibility to utilize already trained architectures and repurpose the 

trained model. As can be seen in the response to question 2 of this reviewer, the neural network 

already has very valuable information about the input data in the first layers. Therefore, in this 

scenario, the most appealing approach would be to remove the last layer from the initial trained 

model that holds the information how to combine the features into the fraction predictions. In this 

approach, arbitrary changes in the fractionation design are possible. Based on the reviewer’s 

concern, we added an option to xiRT to make the use of this scenario easier for the user (xiRT 

v. >1.1.0). This approach will require moderate retraining of the final layers of the network. 

b) xiRT also offers the possibility to use standard regression methods for the prediction of 

fractionation data by changing the activation function in the last (prediction) layer. While 

theoretically not optimal, this solution is easier to use and transform. 

 

4. At line 109, I suggest to put the sentence "Before the identification with xiSEARCH the masses of 

precursor and fragment ions were recalibrated." into the front of the xiSEARCH settings, otherwise it will 

be confused that why fragment tolerance is only 5 ppm. 

 

We thank the reviewer for the comment and adapted the text accordingly. 

 

5. At line 144, the authors said that "The input of xiRT are amino acid sequences with arbitrary 

modifications", but at the next line, it said "... encoded by replacing every amino acid by an integer", 

obviously the encoding did not really take "arbitrary" modifications into account, at least I did not find it in 

this paper. 

 

We clarified the respective text in the manuscript. “Arbitrary” here means that no peptide 

modifications from text format are excluded. The integer encoding is done on-the-fly for the 

entire alphabet in the input data (see paragraph “xiRT - 3D Retention Time Prediction”). 

 

6. At line 186, xiRT uses rbf kernel for its Percolator-like algorithm.  

1) Is it necessary to use a non-linear kernel instead of a linear one? As we know, Percolator uses the 

linear kernel. Besides, the features (score, RT difference, etc.) used by xiRT may have linear properties. 

The on-linear kernel tends more easily to be overfitting, especially for some scenarios such as CX search 

which has fewer training samples. 
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We thank the reviewer for the interesting question. While we did not observe overfitting in the 

first submission of the manuscript (judged by increase of entrapment hits after the rescoring), 

we decided to use linear SVM since it is much faster and, as the reviewer points out, more 

robust against overfitting. Together with a drastically changed feature set, we still achieve 

improvements on CSM- and PPI-level on complex E. coli data (Fig. 4), as well as a much 

smaller data set from a single complex (FA-complex, Fig. 5). In both cases we use the hits to 

the entrapment database before / after the rescoring as control. Since the entrapment TT hits 

are treated as TTs they should not increase after the rescoring and in fact they did not. 

 

7. At line 190, I don't understand why there are so many (130) features. 

 

We adapted the methods part explaining the feature generation. The number of features results 

from the crosslinked peptide predictions for the three RT dimensions (3 features), individual 

peptide predictions (3 features for peptide1 and 3 features for peptide2) and multiple other 

features based on this information. We have redefined the initial feature generation; please refer 

to Table S3 to get the full list of used features. 

 

8. From line 191 to 193, does it mean all DXs are negative samples? If so, this description may be too 

complicated to understand. Otherwise, what did the last sentence suppose to mean? 

 

We revised the text to better explain that  

1) TTs were treated as positively labeled observations and target-decoy and decoy-

decoy identifications were labeled as negative observations. 

2) only TTs <= 1% CSM-FDR were used, while all TD/DD regardless of the FDR were 

used. 

 

9. At line 200, xiRT uses a 3-fold CV for rescoring steps. It is reliable, but my question is about 

extensibility. Most of the structural biologists may only concern about protein-complex level identification 

instead of proteome-wide level identification, which means there may be not that enough CX-peptides for 

3-fold CV for protein-complex identification 

. 

We now show on data of a purified multiprotein complex that xiRT can predict retention times 

(thanks to transfer learning) and that these retention times positively affect the identification 

success (see response to Reviewer 3, comment 2). We added this analysis as new Fig. 5 and 

Fig. S10. 

 

10. Line 233, it is a good idea to use PPI-level evidence to validate CX identifications, but the problems 

are how to estimate the PPI-level error rate itself? How PPI-error-rate increases as the CSM-FDR 

increases? 

 

For the error estimation on PPI-level we used the tool xiFDR [1]. xiFDR was specifically 

developed for the error estimation for Crosslink MS data and deals with the several “levels'' of 

biological information with individual FDR estimates (spectrum, peptide-pair, residue-pair, 

protein-pair) - very similar to the peptide and protein FDR in proteomics. As the reviewer points 

out, this level-specific FDR estimation is important since an increase in CSM-FDR can lead to 
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significant increases on the PPI-FDR [1]. Our lab is introducing a very rigorous assessment of 

PPI-FDR estimation in a recent manuscript [2] which was implemented already in xiFDR and 

consequently also used here. 

 

11. Line 236, "Randomly drawing pairs of E. coli proteins" may be a wrong simulation to evaluate the 

false negatives at 10% or 50% CSM-FDR. As we all know, there are a lot of True-False-linked CXs (i.e. 

half-correct CXs) at x% CSM-FDR, hence the pairs are not totally random, maybe they are mostly "half-

random". I suggest authors should re-consider this simulation. 

 

The reviewer raises an interesting point that we have not considered in our previous approach. 

We followed the reviewer’s suggestion and implemented the mentioned strategy, i.e. the first 

protein is randomly drawn from the unique set of proteins in STRING/APID. The second protein 

is drawn from the FASTA file. This approach resulted in an increase in random matches in the 

respective databases, e.g. for 50% CSM-FDR the number of random matches increased from 

initially 54 random matches to 91 with the revised semi-random sampling strategy. Importantly, 

the number of “validated” PPIs still leaves room for many true PPIs to be discovered and 

secondly, the now used sampling strategy is rather pessimistic while the previous one was 

optimistic (conservative). The truth lies probably between the two estimates. 

 

12. Line 152, it said that xiRT uses an additive layer, but it said: "Multiply-layer was used" in "Siamese 

Architecture" in Supporting Information S1, it might be a small mistake. 

 

We adapted the text and Fig. S1 to match the best hyperparameters from the manuscript. 

Previously, the figure was showing a possible parameterization of xiRT since the “combination”-

layer after the Siamese networks can be chosen from a set of predefined options (add, concat, 

multiply, maximum, average). 

 

13. Fig. 1d, This network illustration might be not ‘siamese’ enough, readers cannot get what is the 

siamese net from this figure if they have not heard about it. 

 

We thank the reviewer for the comment and reworked the figure and the caption to help readers 

to understand the Siamese-part more intuitively. 

 

14. Fig. 4b, I have two questions here: 

a. What is the PPI FDR? I've never heard about it. 

 

PPI-FDR stands for protein-protein interaction FDR. As detecting PPIs is the target of many 

crosslinking studies (certainly if done at large scale), we use the information on how many PPIs 

pass a pre-defined FDR threshold as a key evaluation metric. For the error estimation on PPI-

level we used the tool xiFDR [1]. xiFDR was specifically developed for the error estimation in 

crosslinking MS data and deals with the several “levels'' of biological information (spectrum, 

peptide-pair, residue-pair, protein-pair) with customized FDR estimates. See response to 

comment 10, above. 
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b. For the increment of the xiRescore, the proportion of PPI identifications are significantly larger than that 

of CSMs, does these additionally identified PPIs are “one-hit-wonder”? Or how to evaluate the quality of 

additionally identified PPIs? 

 

Following a reviewer's comment, we now chose a more conservative approach for rescoring. 

The proportional gains in CSMs are now larger than those in PPIs (compare Fig. 4b). Most new 

CSMs resulting from rescoring fall into PPIs that were observed with multiple CSMs (Fig. 4d). 

Note also, that not only the number of CSMs changes but also their score which has a direct 

impact on the FDR estimation. The merging of CSM-level information into peptides pairs, 

residue pairs or protein interactions comes with a change in score in the used software xiFDR. 

E.g. multiple CSMs can represent the same crosslinked peptide pair and the score for that 

peptide pair is derived by: 𝑆𝑃𝑃 =  √ 𝛴(𝑆𝑃𝑆𝑀  ×  𝑆𝑃𝑆𝑀), where S represents the score for the 

respective level [2, SI]. Therefore, a change of score in the lowest level (CSM) can have a large 

impact on the other scores (peptide-pair, residue-pair and PPI).  

 

In addition, we perform three validation checks for the newly identified PPIs: 

1) Comparison to a much larger study (Lenz et. al.) 

2) Comparison to public databases (STRING / APID) 

3) Indirect quality assessment by comparing to the number of human PPIs. Since the 

number of these human PPIs is very low, the statistical power is low. However, a low 

number of human PPIs is of course desirable and could indeed be achieved after the 

machine learning step. 
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REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

NCOMMS-20-28567A – Revision 

 

The author’s present a much-revised manuscript and figures that improve the explanation and 

benefits of their methods. The novelty of the RT prediction and the improvements, particularly in 

heteromeric crosslink identifications remains impressive. The addition of 1-, 2-, and 3-task modeling 

and the new comparisons using RP-only and purified complex analyses add nice evidence for the 

utility of xiRT. Additionally, the new SHAP plots and surrounding work are quite nice. 

 

Upon reading the revised manuscript, I have some minor comments, but I believe this work is in 

good shape for publication. 

 

Comments 

 

1. The authors mention using their DSS xiRT predictions for a BS3 dataset (Shakeel et al.). The 

resulting links are chemically identical. Do the authors believe it would be possible to use the 

training data in this work to predict RTs for more complex crosslinkers? For example, how much is 

the hydrocarbon linker affecting the prediction results versus the physicochemical properties of the 

amino acids themselves? 

 

2. To clarify the intended question regarding heteromeric linkages, rather than “…these linkages are 

more likely to contain decoy matches…”, the question should have referenced the point in the Lenz 

et al. manuscript that “…most false positives in the total (self and heteromeric) set of crosslinks will 

be heteromeric.” The response that “…after the extensive peptide fractionation employed (nearly) 

all the self-links in the MS data were already identified while many heteromeric links with MS data 

were not” seems somewhat controversial. 

a. Are the authors arguing that the lower score thresholds needed for ‘accurate’ identification of 

self-links? If that were true how do the authors explain the relatively few total proteins with self-

links compared to all potential NHS-reactive residues in close proximity within a given cell or lysate? 

Or do the authors mean “identifiable crosslinks”? 



b. Alternatively, are the authors on the verge of speculating that they can do even better? E.g., using 

gas phase fractionation or IMS? 

 

3. The results described in Table R1 are quite interesting, and I would encourage the authors to 

include them and the description of these 3 human target CSMs. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

All my concerns have been addressed and I consider the manuscript ready for publication. 

 

 

Reviewer #4 (Remarks to the Author): 

 

Almost all of my concerns have been addressed, and obviously, the authors did more work than I 

expected, thank you very much. I think the manuscript can be published as it is. Congratulations to 

the authors for the new useful tool in CXMS. 

 

For further discussion, I am still not sure about the reliability of false-negative estimation in Fig. 1b. I 

am not sure if all PPIs in STRING/APID database should always be presented in different samples 

regardless of conditions (different growing states, different environments, or even different cells). 

Or are PPIs dynamically changing? If all PPIs are always presented regardless of conditions, then we 

can use them as positive controls. Otherwise, if only 50% PPIs are presented, we will lose 50% 

reliability. For example, we cannot say proteins are reliably identified because they are from the 

reviewed UniProt database. I am not familiar with PPIs as I am from computer science. 

 

This concern is not to say that improved identifications from xiRT are unreliable. But I think false-

negative estimation is still an open problem. 

 

Dr. Wen-Feng Zeng 
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REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author):  

  
 NCOMMS-20-28567A – Revision  
  
The author’s present a much-revised manuscript and figures that improve the explanation and benefits of their 
methods. The novelty of the RT prediction and the improvements, particularly in heteromeric crosslink 
identifications remains impressive. The addition of 1-, 2-, and 3-task modeling and the new comparisons using RP-
only and purified complex analyses add nice evidence for the utility of xiRT. Additionally, the new SHAP plots and 
surrounding work are quite nice.  
  
Upon reading the revised manuscript, I have some minor comments, but I believe this work is in good shape for 
publication.  
  
Comments  
  
1.  The authors mention using their DSS xiRT predictions for a BS3 dataset (Shakeel et al.). The resulting links are 
chemically identical. Do the authors believe it would be possible to use the training data in this work to predict RTs 
for more complex crosslinkers? For example, how much is the hydrocarbon linker affecting the prediction results 
versus the physicochemical properties of the amino acids themselves?  
 

Yes, we believe this is possible. A large part of what the network learned are contributions of the (non-
crosslinked) amino acids. Adjustments for crosslinked residues are usually only necessary on a subset of 
the network’s weights (depending on crosslinker specificity). The choice of the linker will likely have an 
impact on an analyte’s retention time, however we cannot quantify this influence yet. Within xiRT, 
transfer learning between datasets that use crosslinkers with different backbones should be 
straightforward, given similar chemical reactivity / site specificities.  
  
 2.    To clarify the intended question regarding heteromeric linkages, rather than “…these linkages are more likely 
to contain decoy matches…”, the question should have referenced the point in the Lenz et al. manuscript that 
“…most false positives in the total (self and heteromeric) set of crosslinks will be heteromeric.” The response that 
“…after the extensive peptide fractionation employed (nearly) all the self-links in the MS data were already 
identified while many heteromeric links with MS data were not” seems somewhat controversial.  

 
 a.    Are the authors arguing that the lower score thresholds needed for ‘accurate’ identification of self-links?  

Comparing the score threshold of self-links with that of heteromeric linkages clearly shows that the 
former is much lower than the latter for the same FDR. To us, this appears to be an observation made 
on the data rather than a point to argue. 

 
If that were true how do the authors explain the relatively few total proteins with self-links compared to all 
potential NHS-reactive residues in close proximity within a given cell or lysate?  

To us, there appears to be a confusion of points of views. We are looking at those links that can be 
found in our mass spectrometric data. There are likely many other links in the sample, below the 
detection limit of our mass spectrometric acquisition.  
 
Or do the authors mean “identifiable crosslinks”?  
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Yes indeed, if we define “identifiable crosslinks” as those that surpass the detection limit of our mass 
spectrometric acquisition, i.e. are covered by data. 

 
B. Alternatively, are the authors on the verge of speculating that they can do even better? E.g., using gas phase 
fractionation or IMS?  

When (insufficient) mass spectrometric evidence is limiting the identification of peptides, almost any 
kind of additional information will help in the identification process. 
xiRT can also use features from IMS such as collisional cross section. 

 
 3. The results described in Table R1 are quite interesting, and I would encourage the authors to include them and 
the description of these 3 human target CSMs.  

 
We added the data as a supplementary table 6. 
 

Reviewer #3 (Remarks to the Author):  

  
All my concerns have been addressed and I consider the manuscript ready for publication.  
  

Reviewer #4 (Remarks to the Author):  

  
Almost all of my concerns have been addressed, and obviously, the authors did more work than I 
expected, thank you very much. I think the manuscript can be published as it is. Congratulations to the 
authors for the new useful tool in CXMS.  
  
For further discussion, I am still not sure about the reliability of false-negative estimation in Fig. 1b. I am 
not sure if all PPIs in STRING/APID database should always be presented in different samples regardless 
of conditions (different growing states, different environments, or even different cells). Or are PPIs 
dynamically changing? If all PPIs are always presented regardless of conditions, then we can use them 
as positive controls. Otherwise, if only 50% PPIs are presented, we will lose 50% reliability. For example, 
we cannot say proteins are reliably identified because they are from the reviewed UniProt database. I am 
not familiar with PPIs as I am from computer science. This concern is not to say that improved 
identifications from xiRT are unreliable. But I think false-negative estimation is still an open problem.  
 
Dr. Wen-Feng Zeng 

 
We agree with the reviewer in that a PPI tentatively observed in an analysis is not automatically 
correct simply because it has been listed as a PPI before, e.g. in STRING/APID. In addition, the 
detectability of PPIs will change depending on growth states and other environmental stimuli 
etc.  
Importantly, we are not arguing about exact numbers of false negatives and use STRING/APID 
only as an estimate for false negatives. The substantial number of PPIs from STRING/APID 
seen among our negatives is not explicable by random drawing. Consequently, we must miss a 
considerable number of false negatives in our analysis when using MS evidence alone for 
decision-making. This motivated our use of retention time as an additional information source. 
 

 


