1	Supplementary Information for
2	Unexpectedly high mutation rate of a deep-sea hyperthermophilic
3	anaerobic archaeon
4	
5	Jiahao Gu, Xiaojun Wang, Xiaopan Ma, Ying Sun, Xiang Xiao * , Haiwei Luo *
6	
7	*Corresponding author.
8	Haiwei Luo (hluo2006@gmail.com), Xiang Xiao (zjxiao2018@sjtu.edu.cn)
9	
10	
11	This PDF file includes:
12	Supplementary Materials and Methods
13	
14	References
15	

16 Materials and Methods

17 Sampling, cultivation, and genome sequencing of Thermococcus eurythermalis isolates 18 Nine Thermococcus eurythermalis strains (Table S3) were isolated from samples of 19 Guaymas Basin hydrothermal vents in the cruise number AT 15–55, during 7-17 November 20 2009 [1]. Briefly, samples were stored in the Hungate anaerobic tubes and kept at 4° C. Then 21 the samples were enriched at 85°C or 95°C using *Thermococcales* Rich Medium (TRM). One 22 liter of TRM contains 3.3g pipes disodium salt, 23g NaCl, 5g MgCl₂·6H₂O, 0.7g KCl, 0.5g (NH₄)₂SO₄, 1mL K₂HPO₄ 5%, 1mL KH₂PO₄ 5%, 1mL CaCl₂· 2H₂O 2%, 0.05g NaBr, 0.01g 23 24 SrCl₂·6H₂O, 1mL Na₂WO₄ 10mM, 1mL FeCl₃ 25mM, 1g yeast extract, 4g tryptone and 1mg resazurin [2]. The medium was adjusted to pH 7.0, autoclaved and reduced with 0.5g sodium 25 26 sulphide before use. Next, enrichment cultures were inoculated on the solid medium prepared 27 with hungate roll-tube technique and incubated at 85° C or 95° C under atmosphere pressure. 28 Single colonies were transferred into new TRM medium and purified using roll-tube 29 technique for 3 times and stocks were kept at -80°C. More details of sampling and isolation 30 can be found in a previous paper [1]. Among these isolates, the complete genome of the type 31 strain A501 (GCA 000769655.1) was downloaded from the NCBI GenBank database [3], 32 and the rest eight strains were sequenced in the present study. To get enrichment of these eight strains, stocks kept in -80°C were inoculated into 50 mL anaerobic TRM medium in the 33 34 serum bottle and cultured in the incubator in 85°C. The liquid medium was supplemented 35 with sulfur and Na₂S·9H₂O. After enrichment, the cells were collected using centrifuge 36 (12,000 rpm, 10min). Genomic DNA of each isolate was extracted using the Magen Hipure

Soil DNA Kit and was sequenced using the Illumina Hiseq platform with 2×150 bp pairedend. Raw reads were first processed by Trimmomatic 0.32 [4] to remove adaptors and trim
bases of low quality. The draft genome of each isolate was assembled with quality reads
using SPAdes v3.10.1 [5] with default parameters. *Mutation accumulation experiment*

43 For culture propagation under high temperature, anaerobic high-temperature-tolerant plates were made every day before the transfer. Plates were made using anaerobic 44 45 *Thermococcus* Rich Medium [2] (TRM) with gelrite (15g liter⁻¹). After sterilization, 1.5 mL of a polysulfide solution [6] was added per liter of medium using syringe to make sure a 46 47 strictly anaerobic condition. The medium was transferred into an anaerobic chamber (COY, Vinyl Anaerobic Chamber) immediately, preventing it from cooling. This is because gelrite 48 49 used for making plates becomes solidified soon after it become cooler. Plates were made in 50 the chamber.

The mutation accumulation (MA) experiment started from a single founder colony of *Thermococcus eurythermalis* A501. It was transferred to new plates to form 100 independent lines. Plates were put into an anaerobic jar (GeneScience), which were together moved to an incubator. After incubation at 85°C under normal air pressure (optimal growth pressure from 0.1-30 MPa) for one day, the jar was transferred back into the anaerobic chamber. Plates were then taken out. This was the initiation of the MA process. Caution was taken to ensure a strictly anaerobic condition maintained throughout the experiment. A single/tiny (< 1 mm)

58	colony of each line was carefully picked and transferred onto a new plate. Then the new
59	plates were put back into the anaerobic jar for incubation. The single cell bottleneck of the
60	MA process occurred during every transfer.
61	The MA propagation was completed following 20 transfers, and four MA lines were
62	lost during the MA process. A single colony on each plate was transferred into 5 mL
63	anaerobic TRM medium in the anaerobic chamber. The liquid medium was supplemented
64	with sulfur and Na ₂ S·9H ₂ O. After incubation at 85°C for one day, stocks of each line were
65	kept at -80°C. Genomic DNA of each survived MA line was extracted using the Magen
66	Hipure Soil DNA Kit and sequenced using the same platform mentioned above. A
67	sequencing coverage depth of \sim 433× with an average library fragment size of \sim 470 bp was
68	obtained for each line.
69	
70	Generation time estimation with correction for cell death rate
71	To estimate the generation time, a whole single colony was cut from 10 randomly
72	selected MA lines. The selected 10 colonies each were moved into 5 mL anaerobic TRM
73	medium supplemented with Na ₂ S·9H ₂ O. After dilution and re-plating, live cell density (d)
74	was measured with viable cell counts. The live and dead cell staining was done to correct the
75	total cell density for each colony. Briefly, to obtain the sufficient cell density for staining, ten
76	single colonies were cut from every MA line selected above. Live and dead bacterial staining
77	kit (Yeasen Biotech Co.) was used in this study. The kit was tested to be effective in archaea.
78	The cells were put into 350 μ L anaerobic TRM medium supplemented with Na ₂ S·9H ₂ O.

After centrifuge with 10,000 g for 10 min, cells were resuspended in 50 μ L medium. Cell staining was done following the protocol of the kit. Fluorescence microscope (Nikon) was used to differentiate between live and dead cells. The ratio of live cells to total cells (r) was 0.942 (± 0.095) (Table S5). The number of cell divisions per transfer (*D*) was corrected by:

83
$$D = \log_2(\frac{d}{r})$$

where *d* is the live cell density and *r* is the ratio of live cells in total cells. The total number of generations that each MA line went through was the multiplication of average number of cell divisions per transfer and the total number of transfers. Since each MA line underwent 20 transfers with an average of 15.72 ± 1.76 cell divisions per transfer, there were a total of 314.4 ± 35.2 generations for each MA line.

89

90 Mutation calling and mutation rate determination

Raw reads were first processed by Trimmomatic 0.32 [4] to remove adaptors and trim
low-quality bases. Then the paired-end reads of 96 MA lines were individually mapped to the *T. eurythermalis* A501 reference genome using two different mappers: BWA-mem [7] and
NOVOALIGN v2.08.02 (www.novocraft.com). The resulting pileup files were converted to
SAM format with SAMTOOLS [8].
The above mapping results were processed by Picard MarkDuplicates
(http://broadinstitute.github.io/picard/) to remove duplicate reads which may arise during

- sample preparation like PCR duplication artifacts or derive from a single amplification
- 99 cluster. Base quality score recalibration was performed to adjust quality score affected by

100	systematic technical errors using BaseRecalibrator in GATK-4.0 [9]. Then base substitutions
101	and small indels were called using HaplotypeCaller implemented in GATK-4.0 [9]. Variants
102	were further filtered with standard parameters described by GATK Best Practices
103	recommendations, except that the Phred-scaled quality score $QUAL > 100$ and RMS
104	mapping quality $MQ > 59$ were set, which followed previous studies [9–12]. PCR primers
105	were designed with Primer Premier 5.0 [13] to confirm the presence of mutations identified
106	by the above bioinformatics method. Twenty base substitutions and nine indels were sampled
107	from 11 lines and validated. These lines were chosen because two of these lines showed the
108	highest base-substitution mutation rate and the remaining nine lines showed the longest indel
109	mutations (Table S1). The average number of analyzable sites and the average coverage per
110	site in the <i>T. eurythermalis</i> A501 MA lines were 2,123,047 (\pm 674) and 431 (\pm 57),
111	respectively.

The base-substitution mutation rate per nucleotide site per cell division (µ) for each
line was calculated according to the following equation:

114
$$\mu = \frac{m}{nG}$$

Where *m* is the number of observed base substitutions, *n* is the number of nucleotide sites analyzed, and *G* is the mean number of cell divisions estimated during the mutation accumulation process. Following a previous study [14], the total standard error of basesubstitution mutation rate across all MA lines was calculated by:

119
$$SE_{pooled} = \frac{S}{\sqrt{N}}$$

where *s* is the standard deviation of the mutation rate across all lines, and *N* is the number oflines analyzed.

122

123 The effective population size estimation for Thermococcus eurythermalis

124 The effective population size (N_e) of a prokaryotic species was calculated following the 125 equation $\pi_S = 2 \times N_e \times \mu$, where π_S is the nucleotide diversity at silent (synonymous) sites among 126 randomly sampled members of a species and μ is the unbiased spontaneous mutation rate. Microbial species commonly harbor genetically structured populations, which has a major 127 128 influence on π_s and thus N_e estimation. It is therefore important to identify strains allowed for free recombination when calculating N_e for a prokaryotic species [15]. The recently available 129 130 program PopCOGenT [16] identifies members from a prokaryotic species constituting a 131 panmictic population. The basic idea of PopCOGenT is that the recent homologous 132 recombination erased the single nucleotide polymorphisms (SNPs) and led to identical 133 regions between genomes, and therefore strains subjected with frequent recent gene transfers 134 are expected to show an enrichment of identical genomic regions compared to accumulation 135 of SNPs between genomes lacking recent transfer [16]. In practice, strains were connected 136 via recent gene flow into a network, and a putative population was identified as a cluster, 137 with within-cluster DNA transfer frequency much higher than that of between clusters. Only 138 one strain within each clonal complex was kept, which is also important for π_s estimation because an overuse of strains from a clonal complex is expected to underestimate π_s . Then 139 140 the cluster containing the largest number of strains was chosen as the panmictic population

141	for a given species. In the case of <i>T. eurythermalis</i> , all nine strains together form a panmictic
142	population, but two strains were not used in the calculation because they were repetitive
143	members of clonal complexes.
144	Next, the single-copy orthologous genes shared by all the seven T. eurythermalis
145	genomes were identified by OrthoFinder 2.2.1 [17]. Amino acid sequences of each gene
146	family were aligned with MAFFT v7.464 [18] and then imposed on nucleotide sequences.
147	The number of synonymous substitution per synonymous site (d_S) for each possible gene pair
148	in each gene family was computed with the YN00 program in PAML 4.9e [19]. The π_S of
149	each gene family was obtained by averaging all pairwise d_s values, and then the median π_s
150	across all single-copy gene families together with μ were used to calculate the N_e . We used
151	the median π_S instead of the mean value, because loci showing unusually large d_S as a result
152	of allelic replacement via homologous recombination with divergent lineages are common in
153	marine prokaryotic species [20], which are expected to bias the mean value but have a limited
154	effect on the median value across gene loci. Given the small sample size of the available T.
155	eurythermalis genomes, bootstrap resampling (with replacement, 10,000 pseudoreplicates) of
156	the genomes were conducted to estimate standard deviation (Table S4) of π_S .
157	
158	Data synthesis
159	To enable a comparative analysis of <i>T. eurythermalis</i> relative to other prokaryotic

160 species, the available μ values of other 29 prokaryotic species determined with the MA/WGS

161 technique were collected from the literature (Table S4). Among these, 20 species each had

162	multiple isolates' genomes available from the NCBI Refseq database [21], and thus were
163	used for N_e calculation. The calculation of N_e for these species followed the abovementioned
164	procedure detailed for T. eurythermalis, which started with the identification of members
165	constituting a panmictic population by PopCOGenT, followed by the calculation of π_s . The
166	same bootstrap resampling analysis was performed to estimate the standard deviation of π_S
167	for another four species, each of which consists of less than 10 strains (Table S4). A few
168	species have thousands of isolates' genomes available in Refseq (Table S4), which are not
169	amenable for the PopCOGenT analysis. For these species, we started from the populations
170	previously identified by ConSpeciFix [22, 23] and used these genomes as the input of
171	PopCOGenT. The ConSpeciFix delineates populations based on homoplasious SNPs, which
172	retains historical recombination signal and blurs the boundary of the ecological populations
173	enriched with recent gene transfers [16]. In the case of the species Ruegeria pomeroyi DSS-3,
174	a model heterotrophic marine bacterium with its mutation rate available [14], since closely
175	related isolates has not been available, we turned to its closely related species Epibacterium
176	mobile (previously known as Ruegeria mobile) with multiple isolates' genomes available.
177	Next, the pairwise linear relationship between μ , N_e , and genome size across the
178	prokaryotic species was initially assessed with the generalized linear model (GLM)
179	implemented in stats package in R v4.0.2 [24]. The Bonferonni adjusted outlier test was
180	performed with <i>outlierTest</i> function in <i>car</i> package [25]. A data point with Bonferroni <i>p</i> -
181	value smaller than 0.05 would be identified as the outlier. For μ versus genome size, all 30
182	species were used. In the case of N_e versus μ and N_e versus genome size, only the 21 species

183	each containing multiple strains' genomes were used. To test whether there was a
184	phylogenetic signal of these traits, the Pagel's λ [26] was estimated using the <i>pgls</i> function of
185	the <i>caper</i> package [27] which took the phylogeny of 30 species or the phylogeny of 21
186	species as an input. The species phylogeny was approximated by the 16S rRNA gene tree
187	constructed using IQ-TREE 2.0 [28] with ModelFinder [29] which assigns the best
188	substitution model and with 1,000 ultrafast bootstrap replicates. The value of λ ranges from 0
189	to 1, with 0 indicating no phylogenetic signal and 1 indicating a strong phylogenetic signal
190	due to Brownian motion. The p values for the lower and upper bounds represent whether the
191	λ is significantly different from 0 and 1, respectively. The results of this test indicate that
192	there was an intermediate phylogenetic signal for the relationship of N_e versus μ ($\lambda = 0.81$,
193	lower bound $p = 0.29$, upper bound $p = 0.06$), but not for that of N_e versus genome size and μ
194	versus genome size (in both cases, $\lambda = 0$, lower bound $p = 1$, upper bound $p < 0.001$). To
195	control for the phylogenetic effect on the correlations of the traits, the pairwise linear
196	relationship between μ , N_e , and genome size was further assessed with the phylogenetic
197	generalized least square (PGLS) regression implemented in the caper package [27] in R
198	v4.0.2 [24]. The PGLS and GLM regression lines were largely overlapped for N_e versus
199	genome size and μ versus genome size (Fig. 2BC). This is because no phylogenetic signal
200	was detected in these relationships. A data point was identified as an outlier in the PGLS
201	result if the associated absolute value of studentized residual is greater than three [30, 31].

202 **References**

- 203 1. Liu L, Wang F, Xu J, Xiao X. Molecular diversity of *Thermococcales* isolated from
- 204 Guaymas Basin hydrothermal vents. *Acta Oceanol Sin* 2013; **32**: 75–81.
- 205 2. Zeng X, Birrien J-L, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, et al.
- 206 *Pyrococcus* CH1, an obligate piezophilic hyperthermophile: extending the upper
- 207 pressure-temperature limits for life. *ISME J* 2009; **3**: 873–876.
- 208 3. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. *Nucleic*
- 209 *Acids Res* 2007; **35**: D21–D25.
- 2104.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
- 211 sequence data. *Bioinformatics* 2014; **30**: 2114–2120.
- 5. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
- 213 SPAdes: a new genome assembly algorithm and its applications to single-cell
- 214 sequencing. *J Comput Biol* 2012; **19**: 455–477.
- 215 6. Matsumi R, Manabe K, Fukui T, Atomi H, Imanaka T. Disruption of a sugar transporter
- 216 gene cluster in a hyperthermophilic archaeon using a host-marker system based on
- antibiotic resistance. *J Bacteriol* 2007; **189**: 2683–2691.
- 218 7. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
- 219 transform. *Bioinformatics* 2009; **25**: 1754–1760.
- 220 8. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
- Alignment/Map format and SAMtools. *Bioinformatics* 2009; **25**: 2078–2079.

222	9.	McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
223		Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation
224		DNA sequencing data. Genome Res 2010; 20: 1297–1303.
225	10.	Long H, Behringer MG, Williams E, Te R, Lynch M. Similar mutation rates but highly
226		diverse mutation spectra in ascomycete and basidiomycete yeasts. Genome Biol Evol
227		2016; 8 : 3815–3821.
228	11.	DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
229		framework for variation discovery and genotyping using next-generation DNA
230		sequencing data. Nat Genet 2011; 43: 491-498.
231	12.	Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine
232		A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit
233		best practices pipeline. Curr Protoc Bioinformatics 2013; 43: 11.10.1-33.
234	13.	Singh VK, Mangalam AK, Dwivedi S, Naik S. Primer premier: program for design of
235		degenerate primers from a protein sequence. <i>BioTechniques</i> 1998; 24: 318–319.
236	14.	Sun Y, Powell KE, Sung W, Lynch M, Moran MA, Luo H. Spontaneous mutations of a
237		model heterotrophic marine bacterium. <i>ISME J</i> 2017; 11 : 1713–1718.
238	15.	Rocha EPC. Neutral theory, microbial practice: challenges in bacterial population
239		genetics. Mol Biol Evol 2018; 35 : 1338–1347.
240	16.	Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach
241		based on a biological definition of microbial populations. Cell 2019; 178: 820-834.

242	17.	Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome
243		comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015;
244		16 : 157.
245	18.	Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
246		Improvements in performance and usability. Mol Biol Evol 2013; 30: 772–780.
247	19.	Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007;
248		24 : 1586–1591.
249	20.	Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial
250		adaptation. Appl Environ Microbiol 2018; 84: e02545-17.
251	21.	O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference
252		sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and
253		functional annotation. Nucleic Acids Res 2016; 44: D733-745.
254	22.	Bobay L-M, Ellis BS-H, Ochman H. ConSpeciFix: classifying prokaryotic species
255		based on gene flow. Bioinformatics 2018; 34: 3738-3740.
256	23.	Bobay L-M, Ochman H. Biological species are universal across life's domains. Genome
257		<i>Biol Evol</i> 2017; 9 : 491–501.
258	24.	R Development Core Team. R: A language and environment for statistical computing. R
259		Foundation for Statistical Computing, Vienna, Vienna, Austria.
260	25.	Fox J, Weisberg S. An R Companion to Applied Regression, Third Edition. 2019. Sage,
261		Thousand Oaks CA.

262	26.	Pagel M. Inferring the historical patterns of biological evolution. <i>Nature</i> 1999; 401 :
263		877–884.
264	27.	Orme D. The caper package: comparative analysis of phylogenetics and evolution in R.
265		2013; 36.
266	28.	Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective
267		stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol
268		2015; 32 : 268–274.
269	29.	Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder:
270		fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14: 587-
271		589.
272	30.	Powell LE, Isler K, Barton RA. Re-evaluating the link between brain size and
273		behavioural ecology in primates. Philos Trans R Soc Lond, B, Biol Sci 2017; 284:
274		20171765.
275	31.	Harrison TL, Simonsen AK, Stinchcombe JR, Frederickson ME. More partners, more
276		ranges: generalist legumes spread more easily around the globe. <i>Biol Lett</i> 2018; 14:
277		20180616.
278		