Cell Reports, Volume 35

Supplemental information

Microglia provide structural resolution

to injured dendrites after severe seizures

Ukpong B. Eyo, Koichiro Haruwaka, Mingshu Mo, Antony Brayan Campos-Salazar, Lingxiao Wang, Xenophon S. Speros IV, Sruchika Sabu, Pingyi Xu, and Long-Jun Wu

Figure S1. Microglial process pouches occur independent of craniotomy surgeries. Related to Figure 1.

(A) Quantification of microglial process pouch numbers in specific fields of view at varying depths with sham control as well as 6h and 24hr of KA-induced seizures at 6h.

(**B**) Representative two-photon image of a live cortical brain slice freshly generated from a CX3CR1^{GFP/+} mouse at 6h of KA treatment showing microglial process pouch in superficial cortical regions (white arrows).

(**C**) Representative two-photon image of a fixed cortical brain slice from a CX3CR1^{GFP/+} mouse at 6h of KA treatment showing microglial process pouch in superficial cortical regions (white arrows). Scale bar: $20\mu m$

Figure S2. Formation and resolution of microglial process pouches. Related to Figure 2. (A) Representative two-photon *in vivo* images from a time-lapse movie generated from a CX3CR1^{GFP/+} mouse showing the temporal formation of a microglial process pouch after frisking activity (white arrow). Scale bar: 20µm.

(**B**) Representative two-photon *in vivo* images from a time-lapse movie generated from a CX3CR1^{GFP/+} mouse showing the failure to form a microglial process pouch during frisking activity (white arrow). Scale bar: 20μ m.

(**C**) Representative two-photon *in vivo* images from a time-lapse movie generated from a CX3CR1^{GFP/+} mouse showing dissociation of a microglial process pouch by gradual withdrawal (white arrow). Scale bar: 20µm.

(**D**) Representative two-photon *in vivo* images from a time-lapse movie generated from a CX3CR1^{GFP/+} mouse showing rapid collapse of a microglial process pouch by a rapid "crunch" (white arrow). Scale bar: 5µm.

Figure S3. Microglial process pouches remain stable independent of anesthesia or craniotomy surgery. Related to Figure 2.

(A) Representative two-photon *in vivo* image from a CX3CR1^{GFP/+} mouse showing microglial pouches and the vasculature (2mg/mL i.p. Rhodamine B) at 6h of KA treatment. Scale bar: $20\mu m$.

(**B**) Representative two-photon *in vivo* images from a CX3CR1^{GFP/+}:Thy1^{YFP} mouse showing microglial pouches identified with numbers at 6h and then re-imaged at 24h after KA. Scale bar: 20μm.

(C) Representative two-photon *in vivo* image from a CX3CR1^{GFP/+} mouse brain slice freshly prepared at 6h of KA. Scale bar: $10\mu m$.

(D-F) Representative time-lapse images from various fields of view in (C) showing pouches that are maintained from throughout the imaging period (white arrows). Scale bar: 5μ m.

Figure S4. Seizure-induced microglial process pouches often target non-nucleic material. Related to Figure 4.

(A) Representative images from fixed CX3CR1^{GFP/+} control and seizure mouse brain slices at 6h showing pouch numbers in the cortex.

(**B**) Quantification of the cortical pouches from fixed control and seizure mouse brain slices at 6h (n = 3 mice each).

(**C**) Representative images from fixed CX3CR1^{GFP/+} control and seizure mouse brain slices at 6h showing pouch numbers in the CA3 region of the hippocampus.

(**D**) Quantification of the CA3 pouches from control and seizure slices at 6h (n = 3 mice each).

(E) Representative images from fixed CX3CR1^{GFP/+} control and seizure mouse brain slices at 6h showing pouch numbers in the CA1 region of the hippocampus. Scale bar: 25μ m and 10μ m for the insert.

(F) Quantification of the CA1 pouches from control and seizure slices at 6h (n = 3 mice each). (G-J) Representative images from a fixed CX3CR1^{GFP/+} mouse brain slice at 6h showing several pouches (inserts) lacking DAPI. Scale bar: 25μ m and 5μ m for inseerts

(K) Representative two-photon *in vivo* images of pouches of different sizes. Scale bar: 5μ m. (L) Representative image from fixed CX3CR1^{GFP/+} mouse brain slices showing pouches in the CA3 region of the hippocampus. Scale bar: 25μ m.

(**M**-**Q**) Representative enlarged images of boxed regions in (**L**) showing microglial pouches with around DAPI-labelled nuclei (yellow arrows) and pouches without DAPI (white arrows). Scale bar: 5μ m.

(**R**) Representative image from fixed CX3CR1^{GFP/+} mouse brain slices showing pouches in the CA1 region of the hippocampus. Scale bar: 25μ m.

(S-U) Representative enlarged images of boxed regions in (K) showing microglial pouches with around DAPI-labelled nuclei (yellow arrows) and pouches without DAPI (white arrows). Data is presented as mean \pm SEM. Scale bar: 5 μ m.

Figure S5. Microglial pouch-bead interactions at 6hr. Related to Figure 4.

(**A**) Representative images from *in vivo* imaging in double transgenic CX3CR1^{GFP/+}: Thy1^{YFP} mice following seizures. z-projection images of varying depth showing pouch wrapping of dendritic beads (arrows). Scale bar: 5µm.

(B) Quantification of the microglial pouch-bead wrapping at various depths at 6h of seizures (n = 10 mice). Data is presented as mean ± SEM.