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Materials	and	Methods:	

1	Probability	flux	analysis	(PFA)	

Here	we	describe	how	we	analyze	experimental	time	traces	to	determine	probability	fluxes	in	a	
Coarse	Grained	Phase	Space	(CGPS).	In	general,	the	raw	time	traces	represent	highly	stochastic	
trajectories	 through	 phase	 space,	 in	 which	 case	 broken	 detailed	 balance	 only	 becomes	
apparent	when	 the	 statistics	 of	 transitions	 between	 configurations	 are	 analyzed	 over	 a	 long	
time	 window.	 Thus	 we	 infer	 a	 non-zero	 average	 flux	 or	 current	 in	 phase	 space	 when	 the	
probability	 for	 a	 particular	 transition	 in	 CGPS	 is	 unequal	 to	 the	 probability	 for	 the	 reverse	
transition.	 The	 statistical	 significance	 of	 this	 current	 is	 determined	 through	 the	 use	 of	 a	
bootstrapping	method	described	below.	

Such	statistically	non-reciprocal	dynamics	should	be	contrasted	with	the	case	of	deterministic	
non-reciprocal	motion.	An	example	for	the	latter	is	the	obviously	non-reciprocal	trajectories	of	
active	flagella	(37, 38)	(see	also	Figure	1),	or	active	swimmers	(39).	



1.1	Coarse	graining	procedure:	analyzing	continuous	time	trajectories	using	discretized	 low-
dimensional	 projections	 of	 phase	 space:	 We	 consider	 a	 stationary	 dynamic	 system	 that	
nevertheless	evolves	in	time	on	short	time	scales	due	to	thermal	or	non-thermal	fluctuations	or	
oscillations.	 Among	 the	 set	 of	 coordinates	 that	 constitute	 a	 full	 specification	 of	 the	
configuration	of	 the	system,	we	observe	or	 track	 in	our	analysis	𝐷	 coordinates	𝑥!,… , 𝑥!.	The	
remaining	 𝑀	 coordinates	 𝑥!,… , 𝑥!	 are	 not	 tracked.	 Since	 these	 coordinates	 can	 take	 on	
arbitrary	 values	 without	 our	 knowledge,	 they	 will	 be	 integrated	 out	 below.	 We,	 for	 the	
moment,	only	consider	spatial	or	conformational	degrees	of	freedom	because	momentum	in	a	
typical	overdamped	biological	soft-matter	system	relaxes	on	time-scales	that	are	much	shorter	
than	the	temporal	resolution	of	our	experiments.	For	convenience,	we	have	placed	a	tilde	on	
the	degrees	of	freedom	that	will	be	integrated	out	below.		

Our	choice	of	coordinates	to	describe	the	configuration	of	the	system	is	arbitrary,	and	does	not	
need	 to	correspond,	 for	 instance,	 to	 the	positions	of	all	particles.	 In	general,	we	can	use	any	
complete	 set	 of	 generalized	 coordinates.	 These	 generalized	 coordinates	 can	 be	 linear	 or	
nonlinear	functions	of	the	particle	positions,	via	a	coordinate	transformation.	In	the	main	text	
we	consider	three	cases:	(1)	where	𝑥!,… , 𝑥!	are	normal	mode	amplitudes	of	the	flagellum,	(2)	
coordinates	of	particles	coupled	through	a	spring,	and	(3)	the	angle	and	curvature	of	a	cilium.	In	
each	case,	these	can	be	considered	to	be	functions,	e.g.,	of	all	the	particles	in	the	system.	Since	
these	coarse-grained	coordinates	are	 independent,	 they	 can	also	be	considered	 to	 constitute	
part	of	a	full	set	of	generalized	coordinates	𝑥!,… , 𝑥!,	𝑥!,… , 𝑥!	describing	the	phase	space	of	
the	system.	We	note	that	other	variables	such	as	particle	concentration	or	pH	may	also	be	used	
as	generalized	coordinates	of	the	system.		

Since	the	system	is	stationary,	we	can	define	a	probability	density	that	describes	how	likely	it	is	
to	 find	 the	 system	 in	 a	 certain	 configuration.	 The	 dynamics	 of	 the	 system	 then	 satisfies	 the	
continuity	equation:	

∫!𝑑
!𝑥𝑑!𝑥 !"(!!,…,!!,!!,…,!!,!)

!"
= −∫!Ω𝚥 ⋅ 𝑑𝑠	 (S1)	

where	𝜌	is	the	probability	density	and	𝚥	is	the	current	density	describing	the	average	motion	of	
the	 system	 in	 the	 configurational	 phase	 space.	 Here,	 we	 consider	 a	 region	 of	 phase	 space	
corresponding	to	some	subset	Ω!	of	the	coordinates	that	we	track	(𝑥!,… , 𝑥!).	Since	we	do	not	
track	 the	 remaining	 coordinates	𝑥!,… , 𝑥!,	we	 thus	 consider	 a	 subset	 in	 the	 full	 phase	 space	
defined	by	Ω = Ω!×Ω!,	where	Ω!	 represents	 the	 space	 spanned	by	 the	 coordinates	𝑥!,… ,
𝑥!.		

Next,	we	 integrate	out	all	but	the	observed	D	degrees	of	 freedom.	The	system	is	then	
described	in	terms	of	the	remaining	variables	by:	

∫
Ω!
𝑑!𝑥 !"(!!,…,!!,!)

!"
= −∫!Ω!

𝚥 ⋅ 𝑑𝑠 = −∫
Ω!
𝑑!𝑥∇ ⋅ 𝚥.	 	 	 (S2)



Here,	we	have	assumed	vanishing	currents	on	the	boundary	∂Ω!	of	Ω!,	where	𝑥! = ±∞.	Thus,	
after	integrating	out	all	the	hidden	(untracked)	variables,	we	arrive	at	a	conservation	law	for	a	
subset	 Ω!	 in	 the	 reduced	 space	 of	 variables	 we	 track.	 In	 principle,	 since	 this	 subset	 Ω! is	
arbitrary,	we	obtain	the	following	continuity	equation	in	the	reduced	space	of	tracked	variables,	

!"(!!,…,!!,!)
!"

= −∇ ⋅ 𝚥.	 (S3)	

Note,	in	Eqs.	(S2)	and	(S3),	the	gradient	operator	and	current	have	dimensionality	𝐷,	whereas	in	
Eq.	(S1)	dimensionality	is	𝐷 +𝑀,	although	we	use	the	same	symbols.	An	important	implication	
of	this	equation	is	that	the	divergence	of	the	current	field	 in	CGPS	must	vanish	under	steady-
state	conditions	(see	section	3.9).			

A	time-trajectory	in	a	two-dimensional	(𝐷 = 2)	phase	space	is	depicted	schematically	in	
Figure	 S1.	We	 analyze	 these	 trajectories	 using	 a	 discretized	 coarse-grained	 representation	 of	
phase	space,	consisting	of	a	collection	of	𝑁!×𝑁!	equally	sized,	rectangular	boxes,	each	of	which	
represents	a	discrete	state	𝛼	(Figure	S1B).	Such	a	discrete	state	in	CGPS	describes	a	continuous	
set	 of	 microstates.	 The	 dynamics	 of	 the	 system	 in	 this	 two	 dimensional	 CGPS	 satisfies	 the	
continuity	equation:	

!!!
!"

= 𝑤!!,!
(!!) − 𝑤!,!!

!! + 𝑤!!,!
(!!) − 𝑤!,!!

(!!) , (S4)	

where	𝑝! 	is	the	probability	to	be	in	discrete	state	𝛼.	In	terms	of	the	probability	density	above,	
𝑝! 	 represents	 an	 integral	 of	 𝜌	 over	 the	 box	𝛼.	 State	𝛼	 has	 two	 neighboring	 states	 in	 each	
direction,	 resulting	 in	 four	 possible	 transitions.	 The	 rate	 𝑤!!,!

(!!) 	 describes	 the	 net	 rate	 of
transitions	 into	 state	𝛼	 from	 the	 adjacent	 state	𝛼!	 upstream	 from	𝛼,	 i.e.,	 smaller	𝑥!,	 while	
𝑤!,!!

!! 	denotes	the	rate	of	transitions	from	𝛼	downstream	to	𝛼!	(larger	𝑥!).	Similarly,	𝑤!!,!
(!!) 	and

𝑤!,!!
(!!) 	 denote	 the	 upstream	 and	 downstream	 transition	 rates,	 respectively,	 between	 boxes

arranged	along	the	𝑥!	direction.	Note,	that	these	rates	have	a	sign.	For	example,	𝑤!!,!
(!!) < 0	 if

there	are	more	transitions	per	unit	time	from	𝛼	to	𝛼!	(i.e.	in	the	decreasing	𝑥!direction)	than	
the	reverse.	

We	estimate	these	rates	from	recorded	finite-length	time	trajectories	in	CGPS	by	using	

𝑤!,!
(!!)  =

!!,!
(!!)!!!,!

(!!)

!!"!#$
.	 (S5)	

Here	 𝑡!"!#$ 	 is	 the	 total	 duration	 of	 the	 experimental	 trajectory	 and	𝑁!,!
(!!)	 is	 the	 number	 of

transitions	 from	 state	𝛼	 to	 state	𝛽	 along	 the	 direction	𝑥!.	 In	 a	 small	 fraction	 of	 cases	 in	 the	
measured	trajectories,	the	system	can	go	from	one	box	to	a	non-adjacent	box	in	a	single	time-



step	due	to	the	 limited	time	resolution.	For	 these	cases,	we	perform	a	 linear	 interpolation	of	
the	measured	trajectory	in	CGPS	to	capture	all	transition	between	adjacent	boxes.	

To	plot	the	current	that	describes	back-and-forth	transitions	through	all	four	boundaries	
of	the	box	associated	with	a	discrete	state,	we	define	the	following	current	field:		

𝚥 𝑥! = !
!

𝑤!!,!
(!!) + 𝑤!,!!

!!

𝑤!!,!
(!!) + 𝑤!,!!

(!!)
.	 (S6)	

This	 is	the	quantity	plotted	in	the	probability	flux	maps.	Here,	𝑥! 	 is	the	center	position	of	the	
box	 associated	 with	 state 𝛼.	 The	 probability	 that	 is	 plotted	 in	 the	 probability	 flux	 maps	 is	
estimated	from	finite-length	experimental	time	series	using:		

𝑝! =
!!

!!"!#$
,	 (S7)	

where	𝑡! 	is	the	accumulated	time	that	the	system	spends	in	state	𝛼	during	the	experiment.	

Figure	S1	Schematic	 illustrating	 the	 coarse-graining	procedure.	A	 Trajectory	 in	 a	phase	 space	
spanned	 by	 coordinates	 𝑥!	 and	 𝑥!.	 B	Grid	 illustrating	 the	 construction	 of	 discrete	 states	 in	
phase	space.	Transitions	between	neighboring	discrete	states	occur	when	the	system	trajectory	
crosses	 box	 boundaries	 in	 CGPS.	 C	 Arrows	 indicating	 currents	 across	 box	 boundaries	 are	
determined	by	counting	transitions	between	boxes.	In	this	schematic,	the	length	of	the	arrows	
is	a	measure	of	the	amplitude	of	the	fluxes.	Arrows	in	red	correspond	to	clockwise	fluxes	and	
arrows	 in	 blue	 correspond	 to	 counter-clockwise	 fluxes.	 In	 this	 example	 the	 arrows	 in	 black	
correspond	to	transitions	which	obey	detailed	balance.	

1.2	 Bootstrapping	 procedure	 to	 determine	 measurement	 error:	 The	 finite	 length	 of	
experimental	or	simulated	trajectories	 limits	 the	accuracy	by	which	we	can	estimate	 fluxes	 in	
phase	space.	The	error	bars	on	the	probability	flux	𝚥 𝑥! 	are	determined	by	counting	statistics	
of	 the	 number	 of	 transitions	 in	 Eq.	 S5.	 In	 general,	 however,	 these	 errors	 will	 not	 be	



independent,	 reflecting	 correlations	 between	 in-	 and	outward	 transitions	 for	 a	 given	box.	 To	
estimate	 the	 error	 bars	 on	 𝚥 𝑥! 	 more	 precisely,	 we	 bootstrapped	 trajectories	 using	 the	
experimentally	 measured	 or	 simulated	 trajectories.	 To	 perform	 this	 procedure,	 we	 first	
determine	the	transitions	between	states	from	the	data	and	defined	the	following	array	

𝐴!"#" =

𝛼! 𝛼! 𝑡!,!
𝛼! 𝛼! 𝑡!,!
… … …
𝛼! 𝛼!!! 𝑡!,!!!

.	 (S9)	

Here,	𝛼! 	 and	𝛼!!!	 are	 consecutively	 visited	 states,	 and	 𝑡!,!!!	 is	 the	 amount	 of	 time	 spent	 in	

state	𝛼! 	before	transitioning	to	state	𝛼!!!.	For	example,	one	can	estimate	the	rate	𝑤!!,!
(!!)  from

this	using:	

𝑤!!,!
(!!) = !

!!"!#$
𝛿!!,!!!!𝛿!,!! − 𝛿!,!!𝛿!!,!!!!! .	 (S10)	

The	statement	that	in-	and	outward	transitions	are	correlated	means	that	pairs	of	terms	in	this	
sum	 are	 not	 independent.	 For	 instance,	 if	 there	 is	 a	 transition	 𝛼! ⟶ 𝛼,	 contributing	 to	 a	
“count’’	 in	 the	 first	 term	 under	 the	 sum,	 then	 it	 is	 likely	 that	 this	 event	 is	 followed	 by	 a	
transition	𝛼 ⟶ 𝛼!,	contributing	to	a	“count”	in	the	second	term.	If	such	correlations	were	not	
present	 (i.e.,	 for	a	Markovian	system),	we	could	construct	bootstrap	trajectories	by	randomly	
picking	 rows	 from	 𝐴!"#"	 (Eq.	 s9).	 However,	 to	 capture	 the	 effects	 of	 pairwise	 correlations	
between	 transitions	 on	 the	 accuracy	 with	 which	 we	 can	 estimate	 the	 fluxes,	 we	 bootstrap	
trajectories	 (with	 duration	 𝑡!"!#$)	 by	 randomly	 picking	 consecutive	pairs	 of	 rows	 from	𝐴!"#".	
Empirically,	 we	 find	 that	 the	 estimated	 error	 bars	 reduce	 substantially	 by	 including	 pairwise	
correlations.	Interestingly,	this	indicates	that	our	systems	are	not	entirely	Markovian.	It	is	also	
possible	 to	 probe	 non-Markovian	 effects	 by	 the	 use	 of	 higher-order	 correlation	 functions	
involving	three	or	more	time	intervals	(40, 41).	

After	producing	many	bootstrapped	realizations	of	trajectories	in	CGPS,	we	can	estimate	error	
bars	for	the	currents	we	determined.	For	each	bootstrapped	trajectory	we	calculate	the	current	
field	 𝚥(!") 𝑥! .	 By	 averaging	 over	 bootstrap	 realizations,	 we	 estimate	 the	 covariance	 matrix	

Cov 𝑗!
(!") 𝑥! , 𝑗!

(!") 𝑥! .	To	visualize	the	errorbars	(standard	error	of	the	mean)	on	the	fluxes,

we	depict	an	ellipse	aligned	with	the	principle	components	of	this	covariance	matrix;	the	long	
and	 short	 radii	 of	 these	 error-ellipses	 are	 set	 by	 the	 square	 roots	 of	 the	 large	 and	 small	
eigenvalues,	respectively,	of	the	covariance	matrix	(Figure	S2).		



Figure	S2	Schematic	illustrating	the	definition	of	the	current	field	in	S6.	The	flux	(black	arrow)	
that	 we	 associate	 with	 a	 point	 at	 the	 center	 of	 a	 box	 is	 calculated	 by	 averaging	 the	
inward/outward	current	contributions	 from	the	four	boundaries	 (blue	and	red	arrows)	of	 this	
box.	The	confidence	 intervals	are	depicted	as	white,	elliptical	disks.	The	axes	of	these	ellipses	
are	aligned	with	the	principle	components	of	 this	covariance	matrix,	and	their	 long	and	short	
radii	 are	 set	 by	 the	 square	 roots	 of	 the	 large	 and	 small	 eigenvalues,	 respectively,	 of	 the	
covariance	matrix.	

1.3	 Contour	 integral	 bootstrapping:	 To	 quantify	 the	 statistical	 significance	 of	 a	 circulation	
pattern	in	phase	space,	we	compute	the	contour	integral	along	a	particular	current	loop	(Figure	
S3),		

Ω = 𝐽 ∙ 𝑑ℓ.	 (S11)	

This	is	a	measure	of	the	average	curl	of	the	current	within	the	contour.	It	may	be	possible	that	
errors	 in	 estimating	 the	 currents	 are	 spatially	 correlated,	 and	 this	 could	 give	 rise	 to	 spurious	
loops	in	CGPS.	To	investigate	the	robustness	of	current	loops,	we	calculate	the	contour	integral	
Ω	 for	 different	 bootstrap	 realizations.	 If	 the	 mean	 of	 Ω	 over	 bootstrap	 realizations	 is	 not	
significantly	different	from	zero,	then	the	current	loop	may	be	spurious.	



Figure	S3:	Schematic	of	contour	integral.	Red	arrows	correspond	to	probability	current	vectors,	
the	blue	 line	depicts	 the	contour	 integrated	around,	and	𝜃	a	 representative	angle	between	a	
current	vector	and	the	contour.	

1.4	Brownian	dynamics	simulations:	The	Brownian	dynamics	simulations	model	the	dynamics	
of	two	overdamped,	tethered	beads	with	positions	X1	and	X2	coupled	by	a	harmonic	spring	in	
1D.	The	two	beads	are	in	equilibrium	with	independent	heat	baths	at	temperatures	T1	and	T2,	
as	depicted	 in	 the	main	 text.	 	The	dynamics	of	 this	system	are	described	by	 the	equations	of	
motion:	

𝜁 !!!(!)
!"

= 𝑘 𝑥!(𝑡)− 2𝑥!(𝑡) + 𝜉!(𝑡)	and	 (S12)	

𝜁 !!!(!)
!"

= 𝑘 𝑥!(𝑡)− 2𝑥!(𝑡) + 𝜉!(𝑡),	 (S13)	

where	𝜁	is	the	drag	coefficient	on	the	bead,	𝑘	is	the	spring	constant	(which	we	chose	here	to	be	
identical	for	all	three	spings),	and	the	white-noise	source	𝜉! 	has	zero-mean	and	 𝜉! 𝑡 𝜉! 𝑡! =
2 𝜁𝑘!𝑇!𝛿!,!𝛿(𝑡 − 𝑡!).	 This	 system	 is	 only	 in	 equilibrium	 when	 𝑇! = 𝑇!.	 Table	 S1	 gives	 the	
numerical	values	of	parameters	used	in	the	simulations	

Table	S1	

Parameter	 𝜁	 𝑘!	 𝑘	 d𝑡	 𝑇!	

Value	 18.849	 1	 1	 0.1	 1	



Figure	S4	shows	the	results	of	our	PFA	analysis	for	two	additional	cases,	not	shown	in	the	main	
text:	 𝑇! = 𝑇!/2	 and	 𝑇! = 1.25𝑇!.	 In	 the	 former	 case	 (left-hand	 panel),	 we	 see	 strong	
circulation,	 as	 expected,	but	 in	 the	opposite	 (counter-clockwise)	direction	 to	 Figure	2C,	 since	
bead	1	now	has	become	the	“hotter”	bead	 instead	of	bead	2.	 In	 the	case	𝑇! = 1.25𝑇!	 (right-
hand	panel),	we	see	an	intermediate	case	between	those	presented	in	the	main	text	in	Figure	2.	
In	 this	 case	 coherent	 circulation	 can	 be	 seen	 by	 eye,	 but	 most	 of	 the	 currents	 are	 still	
insignificant,	as	indicated	by	their	large	error	discs.		

Figure	 S4:	 Probability	 and	 flux	 maps	 for	 the	 Brownian	 Dynamics	 simulations	 at	 different	
temperature	ratios.	A:	𝑇! = 𝑇!/2.	B:	𝑇! = 𝑇!	(shown	also	in	the	main	text).	C:	𝑇! = 1.25𝑇!.	D:	
𝑇! = 1.5𝑇!(shown	also	 in	the	main	text).	 In	all	cases	we	simulated	trajectories	with	a	total	of	
107	time	points	using	the	parameters	shown	in	Table	S1.

It	is	important	to	note	that	the	currents	appearing	in	the	non-equilibrium	cases	stem	from	the	
temperature	imbalance	between	the	beads,	and	do	not	arise	from	other	heterogeneities	in	the	
system,	 e.g.	 spring	 constants.	 To	 demonstrate	 that	 our	 results	 remain	 valid	 in	 heterogonous	



systems,	we	also	 investigated	 two-bead	model	 systems	 in	which	all	 three	 spring	 constants	 in	
the	model	 are	 different.	 For	 this	 heterogeneous	model	we	 confirmed	 that	 the	 system	obeys	
detailed	balance	using	PFA	when	the	temperature	of	 the	two	beads	are	equal	 (Figure	S5).	By	
contrast,	we	find	that	the	heterogeneous	model	violates	detailed	balance	when	the	two	beads	
are	 maintained	 at	 different	 temperatures.	 This	 illustrates	 that	 heterogeneities	 in	 cells	 or	
complex	materials,	such	as	heterogeneous	elastic	moduli,	do	not	bias	our	technique.	

Figure	S5:	Two-bead	spring	model	with	heterogeneity.	In	this	model	the	3	springs	were	chosen	
to	have	different	spring	constants	(k1=1,	k2=5,	k3=2.5,	referring	to	the	springs	in	Figure	2a.	The	
other	parameters	as	in	Figure	2).	The	left	panel	shows	results	from	our	probably	flux	analysis	on	
a	 system	where	 the	 two	 beads	were	maintained	 at	 the	 same	 temperature	 (T2=T1).	 The	 right	
panel	shows	the	results	for	simulations	where	T2=1.5T1.	

There	 has	 been	 some	 discussion	 in	 the	 literature	 of	 using	 the	 presence	 of	 non-Gaussian	
fluctuations	as	a	diagnostic	for	non-equilibrium	behavior	(42-44).	While	there	may	be	contexts	
in	 which	 such	 an	 approach	 could	 be	 insightful,	 it	 cannot	 constitute	 an	 unequivocal	 test	 of	
(non- )equilibrium.	On	the	one	hand,	equilibrium	systems	can	exhibit	non-Gaussian	fluctuations,	
e.g.,	in	the	presence	of	anharmonic	potentials.	On	the	other	hand,	non-equilibrium	systems	can	
exhibit	Gaussian	fluctuations.	An	example	of	this	scenario	 is	provided	by	the	simple	two-bead	
model	presented	in	Figure	2	of	the	manuscript.	Indeed,	the	distributions	of	fluctuations	for	𝑥!	
and	𝑥!	exhibit	Gaussian	shapes	in	this	non-equilibrium	model	(See	Figure	S6).	Thus,	despite	the	
fact	that	the	two-bead	system	with	differing	temperatures	(green	trace	 in	Figure	S6)	 is	out	of	
equilibrium,	its	fluctuations	are	Gaussian.	Testing	for	violations	of	detailed	balance,	then,	gives	
a	 conclusive	 demonstration	 of	 non-equilibrium	 behavior	 even	 in	 the	 presence	 of	 Gaussian	



fluctuations.	 It	 also	 avoids	 the	practical	 difficulties	of	measuring	enough	 rare	 “tail”	 events	 to	
conclude	non-Gaussianity,	and	rather	analyzes	the	entire	dynamics	of	the	system	of	interest.	

Figure	S6:	Distributions	of	fluctuations	for	the	two-bead	model	in	equilibrium	(blue)	and	out	of	
equilibrium	 (green).	 In	 both	 cases	 the	 numerical	 data	 are	 consistent	 with	 a	 Gaussian	
distribution.			

2	Isolated	Chlamydomonas	flagellum	

2.1	Flagellum	preparation:	All	methods	used	 for	 cell	 culture,	 purification	 and	 reactivation	of	
flagella	are	detailed	in	(45).	Reagents	were	purchased	from	Sigma-Aldrich,	St.	Louis,	MO	if	not	
stated	otherwise.		

In	brief,	wildtype	Chlamydomonas	reinhardtii	cells	(CC-125	wild-type	mt+	137c)	were	grown	in	
liquid	Tris-acetate-phosphate	(TAP)	medium	under	continuous	aeration	at	room	temperature	to	
a	final	density	of	approximately	5	x	106	cells/ml.		

Cells	 were	 harvested	 and	 deflagellated	 by	 the	 dibucaine	 procedure.	 Then	 the	 flagella	 were	
separated	from	the	cell	bodies	by	centrifugation	through	a	30%	sucrose	cushion.	Subsequently,	
the	 detached	 flagella	 were	 concentrated	 by	 centrifugation	 and	 demembranated	 using	 1%	
Igepal.		
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The	buffer	used	 for	demembranation	was	HMDEK	 (30	mM	HEPES,	5	mM	MgSO4,	1	mM	DTT,	
and	1	mM	EGTA,	50	mM	K-acetate,	titrated	to	pH	7.4	with	KOH).	During	the	demembranation	
and	for	all	subsequent	steps	0.2	mM	Pefabloc	was	added	to	all	solutions.		

The	demembranated	flagella	were	reactivated	 in	a	buffer	HMDEK	buffer	augmented	with,	1%	
PEG	(20k)	1	mM	ATP,	1	mM	DTT,	10	units/ml	creatine	kinase	and	6.4	mM	creatine	phosphate.	

2.2	Imaging	chambers:	Flow	chambers	were	made	from	double-stick	tape	and	cleaned	glass	
(easy-clean	procedure	(46))	resulting	in	a	chamber	with	a	height	of	~100	µm	and	a	width	of	3	
mm.	First,	surfaces	were	blocked	with	a	2	mg/ml	casein	solution	for	5	minutes,	then	the	
sample	was	placed	into	the	chambers.	Finally,	the	chambers	were	sealed	with	VALAP	(1:1:1	
vasoline:lanolin:parafin).	

2.3	Microscopy:	 Beating	 flagella	 were	 visualized	 using	 phase-contrast	 microscopy	 on	 a	 Zeiss	
Axiovert	200	inverted	microscope.	The	microscope	was	equipped	with	a	100x	Plan-Neofluar	NA	
1.3	PH3	oil	objective,	a	Zeiss	oil	phase-contrast	condenser	(NA	1.4).	Additionally	a	1.6x	Optovar	
lens	was	used	to	enhance	sample	magnification.	The	samples	were	illuminated	using	a	100-W	
tungsten	lamp.	Images	were	acquired	at	a	frame	rate	of	1000	fps	(frames	per	second)	using	a	
high-speed	CMOS	camera	 (Fastcam	SA3,	Photron)	with	an	effective	pixel	 size	of	106.25	nm	x	
106.25	nm.	

2.4	Flagellum	 tracking	and	normal	modes:	The	backbone	of	 the	 flagellum	was	 tracked	using	
Fluorescence	 Image	Evaluation	Software	 for	Tracking	and	Analysis	 (FIESTA)	 (47).	 The	 shape	of	

the	flagellum	was	parametrized	by	the	tangent	angle	θ (s) = du ds	at	every	point	s	along	the arc	
length	of	the	flagellum,	( 0 < s < L ),	where	L	is	the	contour	length	of	the	flagellum.	This	shape	
was	then	decomposed	into	the	appropriate	set	of	dynamic	normal	modes	for	an	elastic	filament	
with	unconstrained	ends	in	a	viscous	medium.	The	normal	modes	are	given	by	(48):	

ψ n s( ) = L
kn

sin kns L( )
cos kn 2( ) +

sinh kns L( )
cosh kn 2( )

⎛

⎝⎜
⎞

⎠⎟ (S14)

for	n	=	1,3,5,….	For	even	n,	the	modes	are	similar,	with	cos	replacing	sin	and	cosh	replacing	sinh	
in	 the	 numerator	 and	 sin	 replacing	 cos	 and	 sinh	 replacing	 cosh	 in	 the	 denominator.	 Here	
kn ≅ n +1 2( )π 	is	the	wave	vector.	The	mode	amplitudes	can	be	obtained	from:

an t( ) = − ψ n ′s( )θ ′s ,t( )d ′s∫ (S15)	

Supplementary	movie	

Movie	S1:	A	beating	flagellum	from	Chlamydomonas	reinhardtii,	acquired	at	1000	Hz.	



3	Cilium	

3.1	Cell	culture:	Madin-Darby	canine	kidney	(MDCK-II)	cells	(a	kind	gift	from	Andreas	Janshoff)	
were	 cultured	 in	 Minimum	 Essential	 Medium	 with	 2	 mM	 L-glutamine,	 1%	 penicillin-
streptomycin,	 and	10%	 fetal	bovine	 serum	added.	Cells	were	grown	 to	 confluence	on	poly-L-
lysine-coated	polycarbonate	membranes	(PCMs),	and	experiments	were	performed	1	-	2	days	
after	full	confluence	(5	-	7	days	after	seeding).		

3.2	Blebbistatin	treatment:	Blebbistatin	was	added	to	the	culture	medium	of	confluent	cells	to	
a	concentration	of	50	μM	of	the	active	(-)	enantiomer	(100	μM	of	racemic	solution,	CalBiochem,	
203389).	 The	 cells	 were	 incubated	 in	 the	 blebbistatin	 solution	 at	 37°C	 for	 30	minutes,	 after	
which	they	were	mounted	with	blebbistatin-containing	medium	in	viewing	chambers	for	video-
tracking	experiments.	

3.3	Imaging	chambers:	Imaging	chambers	for	the	cilium	experiments	were	constructed	out	of	a	
microscope	slide	and	a	coverslip	sealed	together	on	all	sides	with	extra-thin	double	stick	tape,	
creating	a	chamber	approximately	80	μm	 in	height.	Cells	on	PCMs	were	 folded	over	 for	side-
viewing	as	described	in	(49).	PCMs	were	mounted	in	the	chamber	with	approximately	50	μl	of	
medium.	Figure	S5	shows	a	schematic	of	the	experimental	geometry.	

Figure	S7:	Schematic	of	imaging	chamber	and	experimental	geometry.	



3.4	Microscopy:	Primary	cilium	experiments	were	performed	using	a	custom-built	DIC/optical-
trapping	 setup	 described	 elsewhere	 (50).	 Images	were	 acquired	with	 an	MTI	 VE1000	 analog	
camera	(DAGE-MTI,	Michigan	City,	IN)	at	a	rate	of	25	Hz	and	read	out	via	a	frame	grabber	card	
and	a	custom-written	LabView	VI.	

3.5	Tracking:	The	backbones	of	primary	cilia	were	extracted	from	the	differential	interference	
contrast	(DIC)	micrographs	using	a	custom	MATLAB	algorithm.	Backbones	were	tracked	using	a	
Canny	edge-filtering	scheme	combined	with	the	geometric	mean	filter	described	in	(49,	51)	to	
further	enhance	 the	 line	 signal.	 The	backbones	were	 then	 smoothed	by	 linearly	 interpolating	
after	rejecting	outliers.	Points	on	the	cilium	backbone	were	considered	to	be	outliers	when	the	
displacement	between	consecutive	frames	exceeded	a	maximal	interframe	distance	constraint	
(typically	~	500	nm).	Figure	S6B	shows	a	typical	example	of	such	a	backbone	fit.	

3.6	 Fitting:	 Angle	 and	 curvature	 coordinates	 were	 obtained	 by	 a	 two-step	 fitting	 process	 to	
enhance	 robustness	against	perturbations	due	 to	systematic	 tracking	 failure	at	 the	 tip	 (i)	and	
base	 of	 the	 cilium	 (ii);	 (i)	 is	 due	 to	 tip	 excursions	 out	 of	 the	 focal	 plane	 and	 (ii)	 is	 due	 to	
scattering	 from	 the	 cell	 monolayer/polycarbonate	 membrane.	 The	 angle	 at	 the	 base	 of	 the	
cilium	 was	 determined	 from	 the	 slope	 of	 a	 linear	 fit	 to	 the	 lower	 25%	 of	 the	 cilium.	 The	
curvature	of	the	cilium	was	determined	from	the	coefficient	of	the	quadratic	term	in	a	2nd	order	
polynomial	fit	to	as	much	of	the	cilium	contour	length	as	possible	(typically	70	-	80%).	Tracking	
errors	may	result	 in	spurious,	 large	 local	distortions	 in	 the	backbone	of	 the	cilium,	which	can	
introduce	errors	in	the	determination	of	slope	and	curvature.	To	correct	for	this,	the	residuals	
of	 the	 quadratic	 fit	 were	 calculated,	 as	 well	 as	 the	 standard	 deviation	 of	 the	 residual	
distribution.	The	linear	and	quadratic	fits	were	then	recalculated,	ignoring	points	with	residuals	
greater	 than	 three	 standard	 deviations	 away	 from	 the	 residual	mean.	 Empirically,	 we	 found	
that	 this	 corrects	 for	most	 spurious	 local	 distortions	 in	 the	 cilium	 backbone	 due	 to	 tracking	
errors.	Figure	S6	shows	an	example	of	a	typical	fit.	



	
Figure	 S8:	Cilium	micrograph	with	 fitted	backbone,	 curvature,	 and	 angle.	A:	Micrograph	of	 a	
cilium.	 B:	 Backbone	 determined	 by	 the	 tracking	 algorithm	 (black)	 overlaid	 on	 the	 cilium.	 C:	
Curvature	(red)	and	basal	angle	(blue)	fits	overlaid	on	B.	

	
In	most	 cases,	 the	 final	 angle	 and	 curvature	 time	 series	were	 not	 uninterrupted	 trajectories.	
This	 is	 due	 to	 the	 fact	 that	 in	 the	 course	 of	 an	 entire	movie	 (~1 hr),	 the	 cilium	 sometimes	
moved	out	of	focus.	We	were	left	then	with	a	series	of	shorter	trajectories	of	varying	lengths.	
Not-a-number	 (NaN)	 values	 were	 inserted	 in	 these	 breaks	 in	 the	 time	 series.	 When	 PFA	 is	
performed	on	a	 time	series	with	NaN	values,	a	box	containing	 the	end	of	a	 trajectory	has	an	
incoming	transition	counted,	but	no	transition	out,	and	a	box	containing	the	start	of	a	trajectory	
has	a	 transition	out	 counted,	with	no	corresponding	 transition	 in.	They	were	 typically	on	 the	
order	of	20	individual	trajectories	that	make	up	the	time	series	reported	here.	
	
3.7	Angle/curvature	histograms:	Figure	S7	shows	angle/curvature	histograms	for	the	untreated	
and	blebbistatin-treated	cilia	shown	in	the	main	text	(Fig	3C,	E,	respectively).	Distributions	have	
their	means	subtracted,	as	they	have	for	the	analysis	 in	the	main	text.	Blebbistatin	treatment	
induced	 a	 significant	 narrowing	 of	 the	 distributions	 of	 both	 curvature	 and	 angle,	 though	 the	
effect	is	more	pronounced	for	the	angle.	



Figure	 S9:	Angle	 and	 curvature	 histograms	 for	 the	 untreated	 and	blebbistatin-treated	 cilia	 in	
the	main	text	(Fig	3C,	E,	respectively).	The	left-hand	panel	shows	the	distribution	of	angles	for	
the	untreated	(blue)	and	blebbistatin-treated	(light	blue)	cilia.	The	right-hand	panel	shows	the	
distribution	of	curvatures	for	the	untreated	(red)	and	blebbistatin-treated	(light	red)	cilia.	

3.8	 Flow	 tests:	To	 control	 for	 flow	 in	 the	 sample	 chamber,	we	 tracked	 diffusing	 background	
particles	 at	 various	 points	 in	 the	 movie	 recorded	 with	 the	 untreated	 cilium.	 Tracking	 was	
performed	 using	 the	 SpotTracker	 plugin	 (52)	 for	 ImageJ,	 after	 edge	 filtering	 and	 Gaussian	
smoothing	(5	pixel	width)	the	images	in	ImageJ.	We	only	tracked	particles	with	trajectories	of	at	
least	100	frames	(4	s)	that	were	easily	visible	 in	DIC.	The	 inset	 in	Figure	S10	depicts	one	such	
particle.	 These	 particles	 had	 a	 diameter	 between	 1	 and	 1.5	microns,	 as	 estimated	 from	 the	
images	with	a	calibrated	pixel	scale,	and	12	particles	were	tracked	for	a	total	of	13	trajectories	
(one	that	diffused	out-of-frame	then	back	in,	making	it	possible	to	track	its	trajectory	starting	at	
two	different	 times).	Figure	S10	shows	histograms	of	diffusion	coefficients	 for	 the	particles’	x	
(parallel	to	cilium	axis,	blue)	and	y	(perpendicular	to	cilium	axis,	red)	trajectories.	The	blue	and	
red	lines	mark	the	means	of	the	x	and	y	distributions,	respectively.	The	distributions	of	the	two	
coordinates’	diffusion	coefficients	have	comparable	means,	as	expected	in	the	case	of	no	flow	
in	the	chamber.	The	chamber	is	asymmetric	(~	60	x	20	mm),	with	the	long	axis	corresponding	
to	the	y	coordinate.	Flows	along	this	direction	would	be	expected	to	have	the	most	influence	on	
cilium	motion.	The	theoretical	diffusion	coefficient	for	a	sphere	in	an	aqueous	solution	is	given	
by:	

	 (S16)	aTkD B πη6/=



where	D	is	the	sphere’s	diffusion	coefficient,	 	is	Boltzmann’s	constant,	T	is	temperature,	 	is	
the	viscosity	of	the	solvent,	and	a	is	the	sphere’s	radius.	The	black	line	in	Figure	S10	shows	D	for	
a	 1.25	 µm	 diameter	 sphere	 at	 20°C.	 This	 corresponds	 to	 the	 average	 size	 of	 the	 tracked	
particles	and	may	represent	a	systematic	underestimate	of	the	diffusion	constant	because	of	a	
systematic	overestimation	of	 the	 size	of	 the	particles,	due	 to	diffraction	and	distortions	 from	
the	DIC	imaging.	

Figure	 S10:	 Histograms	 of	 diffusion	 coefficients	 for	 the	 tracked	 particles	 in	 the	 x-	 and	 y-	
directions.	Distributions	of	diffusion	coefficients	in	x	(blue)	and	diffusion	coefficients	in	y	(red)	
are	comparable.		The	blue	line	shows	the	mean	of	the	diffusion	coefficients	in	x	and	the	red	line	
the	 mean	 of	 the	 diffusion	 coefficients	 in	 y.	 The	 black	 line	 shows	 the	 expected	 diffusion	
coefficient	for	a	sphere	1.25	µm	in	diameter	in	water	at	20°	C.	Inset:	Micrograph	of	one	of	the	
tracked	particles.	

To	 set	 an	 upper	 bound	 on	 background	 flow	 in	 the	 sample,	 we	 performed	 Brownian	
dynamics	simulations	on	ensembles	of	beads	with	the	same	trajectory	lengths	and	diameters	as	
the	particles	measured.	Figure	S11	shows	histograms	of	the	mean	displacement	for	a	lag	time	
of	1	s	of	the	trajectories	obtained	for	simulations	with	no	background	flow	(blue)	and	200	nm/s	
background	 flow	 (red).	 The	black	 line	 indicates	 the	mean	y-displacement	of	 the	 ensemble	of	
particles	that	we	measured.	Comparing	data	to	simulations,	we	can	exclude	background	flows	
of	200	nm/s	or	greater	in	our	sample	with	a	95%	confidence	level	given	the	mean	of	our	data	

Bk η



and	the	simulated	data.	The	drag	force	on	a	cylinder	of	the	cilium’s	dimensions	from	200	nm/s	
flow	would	be	0.2	fN/µm.	A	transverse	point	force	of	0.2	fN	on	the	tip	of	a	fixed	elastic	rod	with	
the	 cilium’s	bending	 stiffness	 (3	 x	10-23	Nm2)	 (49,	53,	54)	 and	 length	 (14	µm)	would	 result	 in	
nanometer	 displacements,	 well	 below	 the	 excursions	 that	 we	 can	 resolve.	 Thus,	 we	 do	 not	
expect	that	the	measured	dynamics	of	the	cilium	resulted	from	background	flows	in	the	sample	
chambers.	

Figure	S11:	Histograms	of	means	of	 simulated	mean	displacements	at	a	 lagtime	of	1	 second.	
The	blue	distribution	corresponds	to	simulated	particles	without	flow	while	the	red	distribution	
corresponds	 to	 simulated	particles	 in	 200	nm/s	 flow.	 The	black	 line	 depicts	 the	mean	of	 the	
distribution	of	mean	displacement	at	a	1	s	lagtime	of	the	experimental	data.	

Finally,	 to	 control	 for	 possible	 stochastically	 varying	 background	 currents	 in	 the	 sample,	 we	
performed	a	cross-correlation	analysis	on	the	y-position	of	the	cilium	and	the	tracked	particles’	
y-positions.	Since	the	particle	trajectories	are	relatively	short	(100-500	time	steps),	it	is	possible	
that	 individual	 trajectories	exhibit	high	cross-correlations	by	chance.	However,	 the	average	of	
the	cross-correlation	 functions	 should	 lie	 close	 to	 zero,	unless	 the	motion	of	 the	particle	and	
cilium	 are	 both	 driven	 by	 the	 same	 flow.	 Figure	 S12	 depicts	 the	 various	 individual	 cross	
correlation	 functions	 (gray)	and	the	average	 (red).	We	 find	 that	 the	average	cross-correlation	
lies	 close	 to	 zero,	 as	 expected	 for	 uncorrelated	motions.	 Additionally,	 the	 x-	 and	 y-diffusion	
coefficients	have	similar	means,	which	also	indicates	that	there	are	no	significant	stochastically	
varying	fluid	flows	along	the	y-direction.	



Figure	 S12:	 Cross-correlation	 functions	 of	 cilium	 and	 particle	 y-trajectories.	 The	 gray	 traces	
show	 the	 cross-correlation	 functions	 of	 the	 cilium	and	 individual	 particles,	while	 the	 red	 line	
shows	their	average.	

3.9	Steady	state	test:	Our	definition	of	steady	state	is	a	relative	one,	based	on	a	separation	of	
time	scales.	In	a	strict	sense,	no	cell	or	part	of	a	cell	such	as	the	cilia	of	MDCK	cells,	will	remain	
in	a	 true	steady	state	 indefinitely.	Eventually,	 the	cells	will	deconstruct	 their	cilia	when	going	
through	mitosis,	 go	 into	 a	 dormant	 state,	 or	 die.	Our	 analysis	 focuses	 on	 dynamic	 processes	
that	happen	on	time	scales	much	shorter	than	those	slow	changes	in	cell	fate.	We	verified	that	
the	 systems	 we	 studied	 remained	 in	 an	 approximate	 steady	 state	 during	 our	 selected	 time	
windows.	To	this	end	we	inspected	the	divergence	of	the	fluxes	in	phase	space,	inferred	from	
the	experimental	 trajectories.	The	continuity	equation	 (Eq.	S3)	 implies	 that	 the	divergence	of	
the	 fluxes	 should	 vanish	 in	 steady	 state.	 Thus,	 to	 demonstrate	 that	 our	 experimental	 time	
trajectories	 correspond	 to	 steady-state	 conditions,	 we	 computed	 the	 divergence	 of	 the	
divergence	of	the	fluxes	for	the	primary	cilia	of	MDCK	cells	that	we	analyzed	in	this	paper,	and	
confirmed	that	these	divergences	are	zero	(within	error	bars).	As	an	example,	we	show	in	Fig.	
S13	the	divergence	of	the	flux	field	of	the	primary	cilia	data	shown	in	Fig.	3C	of	the	main	text.	



Figure	S13:	A)	Fluxes	in	a	configurational	phase	space	of	angle	and	curvature	of	a	primary	cilium	
(from	Fig.	3C),	B)	map	of	the	divergence	of	the	fluxes	in	A)	and	C)	the	divergence	of	the	fluxes	
normalized	by	the	corresponding	standard	error.	The	small	values	(less	than	one)	of	the	ratio	of	
the	divergence	of	the	current	to	its	standard	error	serve	as	a	consistency	check	on	our	analysis	
together	with	the	absence	of	significant	drift	of	the	system	over	the	observed	time	window.	

3.10	Additional	untreated	cilia:	 In	addition	to	the	two	untreated	cilia	shown	in	the	main	text	
(Fig.	3C,D),	we	here	analyzed	the	dynamics	of	two	more	untreated	cilia	to	illustrate	sample-to-
sample	variations.	Figures	S14A	and	S15A	show	the	angle	distributions	for	these	cilia.	Both	of	
the	 distributions	 are	 multi-modal,	 reflecting	 additional	 slow	 dynamics	 in	 the	 mean	 cilium	
position.	 Since	 acquiring	 adequate	 statistics	 on	 such	 dynamics	 would	 require	 measuring	 for	
prohibitively	long	times,	we	high-pass	filtered	the	angle	and	curvature	trajectories	of	both	cilia	
by	 subtracting	a	 running	average	over	a	 symmetric	 time	window	 (of	 size	64	and	80	 seconds)	
from	 the	measured	 signal,	 respectively.	 Figures	 S14B	 and	 S15B	 shows	 the	 results	 of	 PFA	 on	
these	cilia.	As	in	the	case	of	the	cilia	presented	in	the	main	text,	significant	currents	are	present	
in	each	case.	Clockwise	currents	are	apparent	in	both	of	the	flux	maps.	To	test	the	significance	
of	 these	 patterns,	 we	 bootstrapped	 the	 contour	 integrals	 of	 the	 currents	 around	 the	 paths	
along	 the	 dashed	 white	 lines,	 obtaining	 the	 histograms	 shown	 in	 Figs.	 S14C	 and	 S15C.	 The	
histograms	 show	 a	 signal-to-noise	 ratio	 Ω/σ!	 (see	 Fig.	 S3)	 of	 1.73	 and	 1.83	 respectively,	
indicating	a	non-zero	mean	of	the	current	contour	integral	with	a	normal	confidence	interval	of	
>	95%	(	p	=	0.042	and	0.034,	respectively).	

.	



Figure	S14:	Analysis	of	an	additional	untreated	cilium	#1.	A:	Angle	distribution.	B:	Probability	
distributions	 (color	map)	 and	 probability	 flux	map	 (white	 arrows)	 from	 PFA.	 The	 translucent	
discs	represent	the	2-sigma	confidence	interval	of	the	probability	current	distribution	obtained	
from	bootstrapping.	Data	were	high-pass	filtered	with	a	window	size	of	64	seconds.	The	dashed	
white	 box	 indicates	 the	 contour	 integrated	 around	 in	 C.	 C:	 Normalized	 contour	 integral	
distribution,	with	a	mean	centered	on	1.73.			



Figure	 S15:	 Analysis	 of	 additional	 untreated	 cilium	 #2.	 A:	 Angle	 distribution.	 B:	 Probability	
distributions	 (color	map)	 and	 probability	 flux	map	 (white	 arrows)	 from	 PFA.	 The	 translucent	
discs	represent	the	2-sigma	confidence	interval	of	the	probability	current	distribution	obtained	
from	bootstrapping.	Data	were	high-pass	filtered	with	a	window	size	of	80	seconds.	The	dashed	
white	 box	 indicates	 the	 contour	 integrated	 around	 in	 C.	 C:	 Normalized	 contour	 integral	
distribution,	with	a	mean	centered	on	1.83.			

3.11	 ATP-depleted	 cilium:	 To	 explore	 the	 effects	 on	 the	 breaking	 of	 detailed	 balance	 of	
suppressing	 cellular	 activity,	 we	 recorded	 cilium	 dynamics	 on	 cells	 depleted	 of	 adenosine	
triphosphate	 (ATP).	 To	 deplete	 ATP,	 cells	 were	 incubated	 in	 glucose-free	 Dulbecco’s	 MEM	
solution	 for	3	hours	at	37°C	prior	 to	 the	experiment.	After	 the	 initial	glucose-free	 incubation,	
Antimycin	A	and	2-Deoxy-D-glucose	were	added	to	the	cells’	culture	medium	to	a	concentration	
of	10	μM	and	10	mM,	respectively.	The	cells	were	then	incubated	for	10	-	15	minutes	at	37°C.	
After	the	final	incubation	step,	the	cells	were	mounted	in	the	glucose-free,	Antimycin	A	and	2-
Deoxy-D-glucose	containing	solution	for	the	experiments.	Figure	S16A	depicts	the	angle	(blue)	
and	curvature	 trajectories	 (red)	 for	a	cilium	on	a	cell	depleted	of	ATP.	The	amplitudes	of	 the	
angle	 and	 curvature	 fluctuations	 were	 sharply	 curtailed	 in	 comparison	 to	 the	 non-depleted	
cells,	similar	 to	the	blebbistatin-treated	case	described	 in	the	main	text.	 In	addition,	 the	slow	
dynamics	 in	 the	 angle	 leading	 to	 multi-modal	 distributions	 were	 not	 present	 in	 the	 ATP-
depleted	cells.	Figure	S16B	shows	the	results	of	PFA	on	these	trajectories.	Almost	all	the	arrows	
have	magnitudes	 smaller	 than	 the	 radius	 of	 their	 error	 discs,	 indicating	 a	 lack	 of	 significant	
currents.	Despite	 this	 fact,	a	counter-clockwise	current,	enclosed	by	 the	dashed	white	box,	 is	
still	apparent	in	the	flux	map.	To	test	whether	this	pattern	was	statistically	significant	or	not,	we	
bootstrapped	the	contour	integral	around	it,	obtaining	the	histogram	shown	in	Figure	S16C.	The	



bootstrapped	 contour	 integral	 distribution	 is	 centered	 at	 0.98,	 indicating	marginal	 (p	 =	 0.16)	
significance	(Note:	Positive	values	here	are	defined	as	counter-clockwise	circulation,	in	contrast	
to	the	preceding	section).		

Figure	S16:	Analysis	of	an	ATP-depleted	cilium.	A:	Angle	(blue)	and	curvature	(red)	trajectories.	
B:	Probability	distributions	(color	map)	and	probability	flux	map	(white	arrows)	from	PFA.	The	
translucent	discs	represent	a	2-sigma	confidence	interval	of	the	probability	current	distribution,	
obtained	by	bootstrapping.	The	dashed	white	box	indicates	the	contour	integrated	around	in	C.	
C:	Normalized	contour	integral	distribution,	with	a	mean	at	0.98.			

Supplementary	Movie:	

Movie	S2:	DIC	video	recording	of	primary	cilium	fluctuations	acquired	at	25	Hz.	Movie	down-
sampled	to	0.2	Hz,	with	playback	frame	rate	of	50	Hz	(sped	up	250x).	



4	Microtubule	fluctuations,	equilibrium	control	

4.1	Microtubule	 preparation:	Microtubules	 were	 polymerized	 at	 37°C	 in	 BRB80	 buffer	 (80	
mM	K-Pipes,	 pH	 6.8,	 1	mM	EGTA,	 1	mM	MgCl2)	 augmented	with	 5	mM	MgCl2,	 1	mM	GTP	,	
20	µM	unlabeled	Tubulin	and	5%	DMSO	for	40	min.	Microtubules	were	then	spun	into	a	pellet	
in	an	Beckmann	tabletop	airfuge	for	5	min	at	25	psi.	The	pellet	was	resuspended	 in	100	µl	of	
BRB80	buffer	containing	10	µM	taxol,	that	was	filtered	using	a	0.22	µm	filter.		All	reagents	were	
purchased	from	Sigma	Aldrich.	

4.2	Sample	chambers:	For	imaging,	freshly	resuspended	microtubules	were	diluted	40x	in	taxol	
containing	BRB80	buffer	augmented	with	0.1	mg/ml	Casein.	7	µl	of	this	solution	were	pipetted	
onto	a	microscopy	slide	and	covered	with	a	22x22	mm	cover	glass.	 	The	chamber	height	was	
between	 1-3	 µm	 and	 it	 was	sealed	 using	 Valap,	 a	 1:1:1	 mixture	 of	 lanolin,	 paraffin,	 and	
petroleum	 jelly,	 heated	 to	 70°C.	 The	 glass	was	pre-cleaned	by	 15	min	 sonication	 steps	 in	 5%	
Mucasol	 solution	 and	 ethanol	followed	 by	 an	 extensive	 washing	 step	 using	 filtered	 double-
distilled	water	and	a	drying	step	using	pressurized	nitrogen.		

4.3	 Microscopy:	 Microtubules	 were	 visualized	 by	 darkfield	 microscopy	 in	 a	Nikon	 Eclipse	
Ti		microscope	 using	 a	Nikon	 Plan	 Fluor	 100x,	 NA	 0.5-1.3	 lens	 and	 a	 Nikon	 oil	 darkfield	
condenser	 NA	 1.43-1.20.	 The	 sample	 was	 illuminated	 with	 a	 Sola	 light	 engine	
(lumencor).	 	Fluctuating	microtubules	were	 imaged	 for	10	min	using	a	Andor	Zyla	4.2	 camera	
(2x2	binning).	The	exposure	time	was	5	ms,	the	effective	pixel-size	128	nm/pixel.		

4.4	Analysis	of	microtubule	fluctuations:	As	a	negative	control	of	our	method	when	applied	to	
an	 equilibrium	 system,	we	 tracked	 the	 transverse	 thermal	 bending	 fluctuations	 of	 an	 85	 µm	
long	microtubule	over	5.5	minutes.	Figure	S18A	and	B	show	time	traces	of	the	first	two	bending	
modes,	while	Fig.	 S18C	depicts	 the	 results	of	PFA	on	 these	 trajectories.	As	 in	 the	case	of	 the	
ATP-depleted	 and	 blebbistatin-treated	 cilia,	 the	majority	 of	 arrows	 have	magnitudes	 smaller	
than	 the	 radius	 of	 their	 error	 discs,	 indicating	 a	 lack	 of	 significant	 currents.	 Additionally,	 we	
tested	whether	the	noisy	clockwise	current	enclosed	by	the	dashed	white	box	was	significant	by	
bootstrapping	 its	 contour	 integral	 as	previously	described.	 The	 resulting	histogram,	 shown	 in	
Fig.	 S17D,	 is	 centered	 at	 0.64,	 indicating	 a	marginal	 (p	 =	 0.26)	 significance	 of	 the	 circulation	
pattern.	



Figure	 S17	 Taxol-stabilized	 microtubule	 imaged	 using	 dark	 field	 microscopy.	 The	 exposure	
time	was	5	ms,	the	length	of	the	microtubule	85	µm.	The	movie	of	1000	frames	acquired	at	3	Hz	
was	analyzed.	

Figure	S18:	Thermal	microtubule	fluctuations.	A-B)	Time	series	of	1st	mode	(A)	and	2nd	mode	(B)	
microtubule	 fluctuations	 at	 room	 temperature.	 C)	 Probability	 distributions	 (color	 map)	 and	
probability	 flux	 map	 (white	 arrows)	 from	 PFA.	 The	 translucent	 discs	 represent	 a	 2-sigma	
confidence	 interval	 of	 the	 probability	 current	 distribution	 obtained	 from	 bootstrapping.	 The	
dashed	white	box	indicates	the	contour	integrated	around	in	D.	D)	Normalized	contour	integral	
distribution,	with	a	mean	at	0.64.	
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