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S1 Further Material Characterization

S1.1 Synthesis of different aspect ratio 4.5 ML CdSe Nanoplatelets

The synthesis of 4.5 ML NPLs with different aspect ratios was slightly adapted from reported

procedures. Briefly, in a 25 mL three-neck round-bottom flask, 0.30 mmol of Cd(myristate)2

and 0.30 mmol of Se powder were mixed with 12 mL of ODE. The suspension was degassed

for 1h at 100 ◦C then, under N2 atmosphere, the temperature was set to 240 ◦C and when

the suspension became deep orange (at 220 ◦C), 0.6 mmol of Cd(ac)2 or Cd(ac)2·2H2O were

swiftly injected. The reaction temperature was set at 240 ◦C, and the time was varied from

8 to 10 minutes to tune the lateral dimensions. Afterward, the suspension was cooled and

when the temperature reached 160 ◦C, 2 mL of OA were injected, followed by cooling to

80 ◦C. The crude synthesis product was mixed with 20 mL of n-hexane, and 15 mL of a

1:5(v/v) solution of IPA/EtOH was added. the suspension was centrifuged for 10 min at 4300

rpm. The NPLs precipitated under these conditions, while the byproducts (dots, clusters)

remained in the liquid phase. The supernatant was discarded, and the solid was redispersed

in n-hexane and centrifuged at 4200 rpm to remove the unreacted carboxylates. The solid

was discarded, and the supernatant, containing CdSe NPLs, was collected in and stored as

n-hexane dispersion. Sample AD93 was synthetized in a similar fashion, but without using

the Schlenk apparatus. Briefly, in a 20 mL vial, 0.30 mmol of 0.30 mmol of Cd(myristate)2

and 0.30 mmol of Se powder were mixed with 12 mL of ODE. Under vigorous stirring, on

a heating plate the temperature was to 240 ◦C and, at 220 ◦C (deep orange dispersion) 0.6

mmol of Cd(ac)2·2H2O were swiftly injected. The reaction time was 9 minutes at 240 ◦C

and then 2 mL of OA was injected. The purification procedure was exactly the same as the

one mentioned for the NPLs synthetized using the Schlenk apparatus.
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S1.2 Sizing of 4.5 ML CdSe Nanoplatelets

Transmission electron microscopy images of the 4.5 ML CdSe nanoplatelets used in this work

are shown in Figure 1 of the main paper. The main analysis was done on this sample with

average dimensions of 34×9.6nm2 (= 326 nm2). The histograms of this nanoplatelet’s length

and width are shown in Figure 1 below. Figure 2 shows TEM images of the other lateral

areas used in this work, varying from 65 (20 x 3.4 nm2) to 180 nm 2 (46.2 x 4.0 nm2).

Figure S1: Transmission electron microscopy analysis of the lateral dimensions of the largest
area 4.5 ML nanoplatelet sample used in this work.

Figure S2: TEM images of smaller 4.5 ML CdSe samples used in this work: (a) 68 nm2, (b)
106 nm2, (c) 125 nm2, (d) 180 nm2. All scale bars are 50 nm.
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S1.3 Characterization of CdSe Quantum Dots

Figure S3 displays a bright-field TEM image of the CdSe QDs used in this study, together

with an absorbance spectrum. The band-edge absorbance peaks at a photon energy of 1.93

eV, from which we estimate an average QD diameter of 6.25 nm using the sizing curve

published by Maes et al..1

Figure S3: CdSe quantum dots (a) Transmission electron microscopy imaging of the 6.25 nm
CdSe quantum dots used in this work. (b) Absorption spectrum normalized to represent µi.
Indicated are the band gap (1.93 eV) and the normalization point at 320 nm (3.87 eV) (c)
Sizing curve of Maes et al. used to determine the size of 6.25 nm.1

S1.4 Sample Treatment and Conditions

The samples were synthesized in air-free conditions and stored in a glovebox and in the dark.

For the measurements, fresh thin films were spincoated on glass substrates in ambient con-

ditions and the experiments were also carried out in ambient conditions. As is well-known,

experiments on nanoplatelets relying on generation of real charges (luminescence, gain, pho-

todetection, ...) will be affected by effects such as oxidation or charging. However, Stark

measurements explicitly do not produce any real charges in the material. By pumping below

the band gap transition, we merely rely on an electric-field induced shift of the absorption

line. As no real charges are generated, no effects as charging can occur. Finally, we should

note that the experiments at variable temperature (including room temperature), were car-

ried out under vacuum conditions in the cryostat chamber. We obtained similar values for
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Fstark and similar dynamics as under ambient conditions.
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S2 Linear Absorption and Oscillator strength

S2.1 Intrinsic Absorption Coefficient of CdSe Platelets

Experimentally, the intrinsic absorption coefficient µi of the platelets can be determined by

measuring the absorbance in a cuvette and elemental analysis. Indeed µi = ln (10)A
fV ·L

, where A

is the absorbance, fV is the volume fraction of the platelets and L is the length of the cuvette.

However, as was shown by Achtstein et al. , it is also valid to calculate µi experimentally,

especially in a region where there is no difference between the intrinsic absorption of platelets

and bulk material. Here, we choose to do this at 300 nm, similar to Achtstein et al..2

To do this calculation, Lorentz local field theory is used in combination with the Maxwell-

Garnett effective medium approach. If the platelets are considered as oblate ellipsoids and

assuming random orientation, the intrinsic absorption can be calculated as follows:

µi(λ) =
4π

3λns(λ)

(
|fx(λ)|2 + |fy(λ)|2 + |fz(λ)|2

)
· ns(λ) · ks(λ) (S1)

where the local field factors are defined as follows i = (x, y, z):

fi(λ) =
εs(λ)

εs(λ) + Li(εs(λ)− εCdSe(λ))
→ |fi(λ)|2 =

ε2s(λ)

(εs(λ) + Li · (εR,CdSe(λ)− εS(λ))2 + (Li · εI,CdSe)2
(S2)

where εs is the solvent permittivity and εCdSe is the (complex) permittivity of Cdse

nanoplatelets. Using the assumption of oblate ellipsoids, the depolarization factors Li can

be calculated evaluating the following integral

Lz =

∫ +∞

0

xyz

2(s+ z2)3/2(s+ x2)1/2(s+ y2)1/2
ds (S3)

with x, y, z the half-lengths of the ellipsoid. To calculate the other polarization factors Lx

and Ly, x, y and z need to be cyclically permuted.
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The intrinsic absorption µi can now be determined at 300 nm by using the platelet

dimensions (34 × 9.5 × 1.21 nm3), εCdSe = 7.4 + 8.2i, εs = 1.974 (n-hexane) and ns =

1.405. Note that we use the bulk dielectric function of CdSe, which at 300 nm is validated

previously.2 These numbers lead to (Lx, Ly, Lz) = (0.02, 0.12, 0.86) and (|fx|, |fy|, |fz|) =

(0.71, 0.95, 0.2). From these values, we find:

µi(300nm) = 5.9× 105cm−1 (S4)

Using this value, the whole experimental absorption spectrum can be rescaled since:

µi(λ) = A(λ) · µi(300)

A(300)
. (S5)

Figure S3a shows the full µi(λ) spectrum.
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S2.2 Quantum Well Absorption Spectrum

The following quantum-well absorption model is used to model the intrinsic absorption spec-

trum, see Figure 2):3,4

p(E) = pX(E) +
AC
2

[
erf

(
(E − E0)− Ex

b

γC

)
+ 1

]
(S6)

with pX is the absorption line shape of a quantum well exciton with asymmetric broadening

η:

pX(E) =
1

2η

[
erf

(
E − E0

γ
− γ

2η

)
+ 1

]
exp

(
γ2

4η2
− E − E0

η

)
(S7)

Here, E0 and Ex
b are the absolute exciton energy and exciton binding energy, respectively.

Further, γ is the linewidth of the absorption peak, and the continuum edge has a step height

of AC and a width of γC .

Figure S4: Decomposition of the linear absorption spectrum of the largest area 326 nm2

4.5ML CdSe sample. (a) Full fit using exicton p and single particle continuum C functions.
(b) Zoom on the pX,HH function and the small offset with the zero energy E0. (c) Definition
of the exciton binding energy as the energy seperation between E0 and the half max position
of the continuum step (dashed red).

The total absorption α therefore becomes, including both light (LH) and heavy-hole (HH)

contributions:

α(E) = AHH · pHH(E) + ALH · pLH(E) (S8)
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with AHH and ALH the weight of the heavy- and light bands, respectively. A best fit is

displayed in Table 1.

The binding energy of 193 meV can be translated into a Bohr radius as:

aB =
h̄√

2mrEx
b

(S9)

Using mr = 0.085, we find aB = 1.5 nm for the 4.5 ML CdSe nanoplatelets used here.4

HH LH

Ex
b (meV) 193± 2 277± 0.65

E0 (meV) 2408± 0.05 2568± 0.018

γ (meV) 15.94± 0.117 65.5± 0.001

AC (meV) 5722± 24 2598± 40

γC (meV) 66.6± 2 43.0± 1.2

η (meV) 51.3± 0.4 9.1± 0.001

A 21394± 77.3 20976± 336

S2.3 Oscillator Strength of Platelets

Knowing the intrinsic absorption of the heavy hole exciton, the oscillator strength of the

band gap can be calculated by integrating the heavy hole transition:5

µi,gap =

∫ +∞

0

pX,HH(E)dE (S10)

This integral can be directly used to calculate the oscillator strength:5

FAbs =
2ε0nscme

eπh̄

Vpl
|fLF |2

µi,gap (S11)
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Figure S5: (a) Linear absorption spectrum and (b) luminescence spectrum of smaller area
nanoplatelets used in this work.

where the local field factors are calculated in the same way as in section S2, but now around

the band gap.

Takingg the case of the largest area sample (326 nm2), we obtain local field factors

(fx, fy, fz) of (0.47,0.87,0.28), which leads to an average local field factor: |fLF |2 = 1/3 ×

(f 2
x + f 2

y + f 2
z ) = 0.328. The nanoplatelet volume is obtained from the TEM analysis as

1.37 × 34 × 9.5 nm3. The solvent refractive index is taken from hexane, ns = 1.5. Using

the fitting values as shown in Table 1, we can reconstruct the function pX,HH which is then

integrated on an energy scale. Finally, the oscillator strength FAbs of the heavy hole exciton

is obtained:

FAbs,HH = 165± 1.3 (S12)

The table below lists the calculations for all the nanoplatelet areas used in this work.

Note that Fabs,HH scales linearly with the nanoplatelet area.
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Area (nm2) f 2
x f 2

y f 2
z |fLF |2 FAbs,HH

326 0.75 0.22 0.09 0.35 165

180 0.96 0.30 0.08 0.45 82

125 0.84 0.42 0.08 0.44 48

106 0.76 0.47 0.07 0.43 42

68 0.87 0.28 0.09 0.41 34
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S3 Radiative Lifetime of CdSe Nanoplatelets

Figure S6 shows the fluorescence decay of the 4.5 ML CdSe nanoplatelets dispersed in n-

hexane after photo-excitation with a 400 nm pulsed laser diode at 2 MHz. We fit the decay

of the integrated PL intensity with a triple exponential decay, similar to Leemans et al.:6

A = A0 + A1e
− t
τ1 + A2e

− t
τ2 + A3e

− t
τ3 (S13)

Similar to their work, we assign the fast component τ1 to radiative decay, which amounts

to 65 percent of the total decay, a number line with the quantum yield of the sample indi-

cating a heterogeneous population of emitters. Given the more complex decay pattern in

our core-only nanoplatelets, we decided to assign an average lifetime as:

τav =
A1τ1 + A2τ2 + A3τ3
A1 + A2 + A3

= 6.6ns (S14)

Area 326 180 125 106 68

A1 0.65 0.9 0.83 0.7 0.68

τ1 (ns) 3.8 3.8 3.6 2.4 1.6

A2 0.43 0.13 0.18 0.28 0.27

τ2 (ns) 8.5 15 13 8.8 8.8

A3 0.04 0.01 0.02 0.03 0.06

τ3 (ns) 44 76 65 40 48.1

y0 0.0015 2.5e-4 4.5e-4 5.4e-4 2.1e-3

τPL 6.6 6 6.4 5.4 6.4
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Figure S6: Fluorescence decay after photo-excitation at 400 nm with a 2 MHz pulse train.

S4 Occurrence of Two-Photon Absorption

Upon strong sub-band gap excitation, also real carriers can be generated through 2-photon

absorption (2PA).7 After a 2PA event, a carrier pair is created with a large excess energy.

For example, 2PA from a 580 nm pump would create a carrier pair equivalent to a 4.3 eV

excitation. We observe such effects at higher pump power as evidenced in Figure S7 where

a clear long-lived bleach associated with the creation of real electron-hole pairs is obtained

at high pump fluence.

Figure S7: (a) Solvent artefacts by pumping hexane at 580 nm. (b) Effect of 2-photon
absorption. Inset shows the scaling of the induced long-lived bleach with pump power.
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S5 Polarization Analysis

If we assume a random orientation of the nano-platelets, we can write the absorbance of the

thin film A in general as:

A =
1

3
(f 2
x + f 2

y + f 2
z )A0 (S15)

where fi is here taken as the absolute value of the local field factor, as defined in section

S2. We note that it needs to be evaluated at the position where the OSE is evaluated (514

nm). The absorbance A0 is that of unscreened nanoplatelets.

Figure S8: Orientation effect on polarization analysis, overview of notation.

We measure an energy shift ∆E which is an average over all orientations of the nanoplatelets.

Given this random orientation of the platelets, we can write:

∆Axx =
1

3

∂f 2
xA0

E
f 2
x∆E +

1

3

∂f 2
yA0

E
f 2
y∆E +

1

3

∂f 2
zA0

E
f 2
z∆E (S16)

∆Axy =
1

3

∂f 2
xA0

E
f 2
y∆E +

1

3

∂f 2
xA0

E
f 2
z∆E +

1

3

∂f 2
yA0

E
f 2
z∆E (S17)

If we replace A0 for A using the expression above, we obtain:

∆Axx =
f 4
x + f 4

y + f 4
z

f 2
x + f 2

y + f 2
z

× ∂A

∂E
∆E

∆Axy =
f 2
xF

2
y + f 2

xf
2
z + f 2

y f
2
z

f 2
x + f 2

y + f 2
z

× ∂A

∂E
∆E

(S18)
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The equations above define the factors fxx and fyy as used in the manuscript:

fxx =
f 4
x + f 4

y + f 4
z

f 2
x + f 2

y + f 2
z

fxy =
f 2
xf

2
y + f 2

xf
2
z + f 2

y f
2
z

f 2
x + f 2

y + f 2
z

(S19)

Figure S9: Calculated fxx, fxy and their ratio for varying refractive index of the NPL en-
vironment. We obtain a correspondence with the experimental value of 1.7 for a refractive
index of 2.13, a reasonable number for a mixture of nano-platelets (n ≈ 3) and oleate ligands
(n ≈ 1.5).
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S6 Dipole Moment and Rabi Splitting from Stark Mea-

surements

Dipole Moment Within the dressed atom picture presented in equation (1) of the main

paper, the energy shift ∆E induced by a pump light field detuned by an energy amount

h̄∆ω, should be proportional to the light intensity, or square of the average electric field 〈F 〉,

and the dipole moment of the transition µ0→X :

∆E =
µ2
0→X〈E〉2

h̄∆ω
(S20)

The average electric field 〈F 〉 is linked to the average intensity I0 through: 〈E〉2 =

2I0/(nε0c), where n is the refractive index. ε0 c are the vacuum permittivity and speed of

light respectively.8 The intensity is calculated as Ep
A×tp where tp = 120 fs is the pulse width,

A is the beam area and Ep is the energy per pulse.

Rabi Splitting and Energy Shifts Apart from the dipole moment, several other quan-

tities are used literature to describe the light-matter coupling strength. These all scale

proportional to the dipole moment, but we report here the extracted values for the Rabi

splitting energy h̄Ω0 and the energy shift ∆E we obtained for the various NPL areas studied

under a fluence of 0.6 GW/cm2.

Area (nm2) h̄Ω0 (meV) ∆E (meV)

68 20.75 0.63

106 20.43 0.62

125 17.85 0.48

180 19.88 0.60
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S7 Exciton Localization and Oscillator Strength

S7.1 Electron-Hole Pair States as a Basis

To discuss exciton localization and the exciton oscillator strength, we take the approach

that states in a crystalline solid can be described as the product of a Bloch wavefunction

and an envelope wavefunction, the latter being a solution to the effective mass Schrödinger

equation. In that case, the unperturbed single-particle states in the conduction and valence

band correspond to free particle waves characterized by wavevectors ke and kh. In coordinate

representation, where re and rh are the coordinates of the electron and the hole, respectively,

the corresponding states can be written as:

〈 re |ke 〉 =
1

Ln/2
exp (ire · ke) (S21)

〈 rh |kh 〉 =
1

Ln/2
exp (irh · kh) (S22)

Here, n referst to the dimensionality of the material at hand.

To describe a general electron-hole pair state – such as a bound exciton or a localized

exciton – the free particle product states |ke,kh 〉 = |ke 〉|kh 〉 can be taken as a basis. In

that case, each electron-hole pair state |X 〉 can be expanded as:

|X 〉 =
∑
ke,kh

〈ke,kh |X 〉|ke,kh 〉 =
∑
ke,kh

ΦX(ke,kh)|ke,kh 〉 (S23)

Here, the expansion coefficient ΦX(ke,kh) is introduced as a mere representation of the

inner product 〈ke,kh |X 〉. A similar starting point was put forward by Dresselhaus and by

Elliott.9,10

To make Eq S23 more tangible, one can re-express the inner product 〈ke,kh |X 〉 by

means of the completeness relation in the electron and hole coordinates re and rh. We thus
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obtain:

|X 〉 =
∑
ke,kh

(∫
〈ke,kh | re, rh 〉〈 re, rh |X 〉dredrh

)
|ke,kh 〉 (S24)

Here, the inner product can be made explicit using Eqs S21 and S22, whereas 〈 re, rh |X 〉 is

the wavefunction Ψp(re, rh) of the electron-hole pair state |X 〉. Accordingly, we can rewrite

the expansion coefficient ΦX(ke,kh) as:

ΦX(ke,kh) =
1

Ln

∫
e−i(ke·re+kh·rh)ΨX(re, rh)dredrh (S25)

Hence, we retrieve the familiar result that the expansion coefficients of a quantum state |X 〉

in coordinate and wave vector representation are coupled by a Fourier transform; a result

that is well known from free particle quantum mechanics. Using the properties of Fourier

transform pairs, we also have:

ΨX(re, rh) =

(
L

4π2

)n ∫
ei(ke·re+kh·rh)ΦX(ke,kh)dkedkh (S26)

S7.2 The Exciton Wavefunction

The exciton state in a perfect crystal is characterized by an envelope wavefunction Ψ(re, rh)

that is an eigenfunction of a hydrogen-like Hamiltonian, which describes the electron-hole

pair bound by a screened Coulomb interaction:

(
− h̄2

2me

∇2
e −

h̄2

2mh

∇2
h −

e2

4πεε0|re − rh|

)
Ψ(re, rh) = EΨ(re, rh) (S27)

Here, all symbols have their usual meaning.

This Schrödinger equation is conveniently solved by a transformation from the electron

and hole coordinates re and rh to coordinates R and r that describe the center-of-mass of
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the electron-hole pair and the electron-hole interdistance:

R =
me

me +mh

re +
mh

me +mh

rh = γere + γhrh (S28)

r = re − rh (S29)

Importantly, the concomitant wavevectors K and k read:1

K = ke + kh (S30)

k = γhke − γekh (S31)

It is well known that with this transformation, the solutions Ψ(re, rh) to the Schrödinger

equation are obtained as:10

Ψ(re, rh) =
1

Ln/2
eiK·Rχν(r) (S32)

Here, the center-of-mass motion is described as a plane wave, whereas the internal motion

corresponds to a bound or unbound hydrogen-like wavefunction χν(r), as characterized by

the set of quantum numbers ν.2

S7.3 The Matrix Element for Interband Optical Transitions

Following Elliot,10 we use the expansion of a general electron-hole state | p 〉 as expressed

by Eq S23 to write the transition matrix element 〈X |H′ | 0 〉 of the light-matter interaction

operator H′ = E · µ as:3

〈X |H′ | 0 〉 =
∑
ke,kh

ΦX(ke,kh)〈ke,B |H′ | − kh,B 〉 (S33)

1Note that with these expressions, we have ke · re + kh · rh = K ·R + k · r
2Note that Eq S32 applies to the specific case of a semiconductor with non-degenerate, isotropic band-

edges for which electron and hole effective masses are unique scalars. Otherwise, a description of the envelope
in terms of the internal coordinate and the average position of the electron-hole pair is more appropriate.

3Here, E is the electric field, whereas µ = er is the dipole operator.
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This expression recognizes the fact that the actual transition from the ground state | 0 〉 to

the electron-hole pair state |X 〉 involves the promotion of an electron from the valence band

state | − kh 〉 to the conduction band state |ke 〉. Moreover, the subscript B indicates that

the Bloch states and not the envelopes must be used for the calculation of the matrix element

〈ke,B |H′ | − kh,B 〉.

In coordinate representation, the matrix element 〈ke,B |H′ | −kh,B 〉 becomes an integral

over the re coordinate:

〈ke,B |H′ | − kh,B 〉 =
1

Ln

∫
e−ikereukeH

′e−ikhreukh
dre (S34)

To evaluate this matrix element, we introduce the following ideas:

• For ke = kh = 0, the integrandum will have the full periodicity of the lattice. Hence,

the matrix element 〈0 |H′ |0 〉 can be calculated as an integral over a single unit cell,

normalized by the volume of a unit cell. Hence, it is a number independent of the

volume of the semiconductor.

• If either of both wavevectors differs from 0, the integrandum is the product of a part

with the full periodicity of the lattice, and a wavelike part with wavevector ke + kh.4

When the crystal is sufficiently large, the matrix element will therefore vanish unless

ke+kh = 0. This is the well-know rule that only interband transitions that are vertical

in reciprocal space are allowed.

In what follows, we will assume that the relevant wavevectors involved in the interband

transitions are all small, such that the matrix element 〈ke,B |H′ | − ke,B 〉, which is weakly

dependent on ke can be replaced by 〈 c0 |H′ | v0 〉. Here, | c0 〉 and | v0 〉 represent the con-

duction and valence-band states at k = 0. Using this substitution, Eq S33 can be rewritten

4In principle, the matrix element adds the wavevector of the electromagnetic field as an additional com-
ponent here, but this we neglect since electron wavevectors will be much larger than photon wavevectors.
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as:

〈X |H′ | 0 〉 = 〈 c0 |H′ | v0 〉

( ∑
ke,−ke

ΦX(ke,−ke)

)
(S35)

S7.4 Transitions to Delocalized, Bound Excitons

With the factorization of Ψ(re, rh) into a center-of-mass wavefunction and an internal wave-

function, the Fourier transform linking wavefunction and expansion coefficients Φ(ke,kh)

can be rewritten as:

Φ(ke,kh) =
1

Ln

∫
e−i(K·R+k·r)ψ(R)χν(r)dRdr (S36)

Here, ψ(R) represents a general center-of-mass wavefunction. For the case that K = 0, and

assuming free-particle motion for the center-of-mass, this yields:

Φ(ke,−ke) =
1

Ln/2

∫
e−ike·rχν(r)dr (S37)

Reversing this relation by using the properties of the Fourier integral, we also have:5

χν(r) =
Ln/2

(2π)n

∫
eike·rΦ(ke,−ke)dke (S38)

Evaluating χν at r = 0, we thus obtain:

χν(r = 0) =
Ln/2

(2π)n

∫
Φ(ke,−ke)dke (S39)

Referring to Eq S35, we can express the summation over ke as an integral by considering

that a wavevector range dke will contain (L/2π)n × dke different wavevectors. Hence:

∑
ke,−ke

Φ(ke,−ke) =

(
L

2π

)n ∫
Φ(ke,−ke)dke (S40)

5Note that when kh = −ke, k = ke.
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As a result, the transition matrix element to form a delocalized exciton in the bright |ΦK=0 〉

state is obtained as:

〈ΦK=0 |H′ | 0 〉 = Ln/2χν(0)〈 c0 |H′ | v0 〉 (S41)

Accordingly, we obtain the oscillator strength FK=0 for the formation of a 2D delocalized

exciton as:6

FK=0 =
2mω

h̄
|〈ΦK=0 |x | 0 〉|2 =

2mω

h̄
|χν(0)|2〈 c0 |x | v0 〉S (S42)

We thus conclude that the oscillator strength for the formation of delocalized excitons in the

|ΦK=0 〉 scales proportionally with the area S of the quantum well.

S7.5 Transitions to Localized, Bound Excitons

Assuming that the state |X 〉 of a localized, bound exciton can still be described as the direct

product of the center-of-mass part and the internal part, Eq S43 yields:

ΦX(ke,−ke) =
1

Ln

∫
ψ(R)dR

∫
e−ik·rχν(r)dr (S43)

In the case of a 2D system, the first integral has units of length, and its square is defined as

the coherence area Scoh of the exciton center-of-mass:

Scoh =

∣∣∣∣∫ ψ(R)dR

∣∣∣∣2 (S44)

Following the same arguments as used in the previous section, the matrix element to form

this more general electron-hole pair state | p 〉 is obtained as:

〈X |H′ | 0 〉 = S
1/2
cohχν(0)〈 c0 |H′ | v0 〉 (S45)

6Here, we take the direction of polarization of the light as x, m is the free electron mass and ω is the
transition energy.
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Accordingly, we obtain the oscillator strength for the formation of a 2D localized exciton in

the state | p 〉 as:

Fp =
2mω

h̄
|〈 p |x | 0 〉|2 =

2mω

h̄
|χν(0)|2〈 c0 |x | v0 〉Scoh (S46)

We thus conclude that the ratio between the oscillator strength to form a localized and a

delocalized amounts to the ratio Scoh/S between the coherence area and the total area of

the quantum well:

FX
FK=0

=
Scoh
S

(S47)

S7.6 The Coherence Area of a Gaussian Wavepacket

In the case of a two-dimensional Gaussian Wavepacket, the center-of-mass motion wavefunc-

tion ψ(R) can be written as:

ψ(R) =
1√
2πσ

exp

(
−R2

4σ2

)
(S48)

This yields the coherence area as:

Scoh =

∣∣∣∣∫ ψ(R)dR

∣∣∣∣2 = 8πσ2 (S49)

S25



S8 Low Temperature Measurements

For the low temperature experiments, samples were again spin-coated on transparent glass

slides and mounted in a liquid nitrogen cooled cryostat. Temperature was first ramped down

to 77K and gradually increased to room temperature. A pump at 700 nm, 600 meV detuning,

was used to initiate the OSE.

Figure S10: CdSe nanoplatelets at 77K (a) 2D map of ∆A using 700 nm pump. (b) Kinetic
traces of (a).
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S9 Nanoplatelets with Different Surface Area

Figure S11: Optical characterization of the investigated 4.5 ML CdSe NPLs. Normalized
(e) Absorbance and (d) PL spectra of all investigated samples in hexane solution. The PL
spectra were recorded by exciting the samples at 2.64 eV. g) PL-decay curves and multi-
exponential fit (red curves) of all investigated samples in hexane solution. The data were fit
by using equation (1). The PL-decay curves were recorded by exciting the samples at 2.64
eV with a repletion rate (RR) of 0.5 MHz.
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Figure S12: OSE analysis on smallest area nanoplatelets (65 nm2). (a) ∆A slices at zero
delay for increasing pump fluence. (b) Peak ∆A signal for increasing pump fluence for co
(xx)- and cross (xy) -polarized experiments.

S10 Stark Measurements on CdSe Quantum Dots

S10.1 Synthesis of Weakly Confined CdSe Quantum Dots.

For the synthesis of CdSe QDs, CdO (0.0128 g, 1 mmol), oleic acid (126 µL, 0.4 mmol) and

ODE (8 mL) were mixed and flushed under nitrogen atmosphere at 100 ◦C for 30 min. The

mixture was heated to 245◦C to form cadmium oleate and oleylamine (263 µL, 0.8 mmol)

was added. To start the reaction, 2 mL of TOPSe (1 M) was added to the mixture. The

mixture turns yellow due to the formation of CdSe QDs. After 3 minutes of reaction time,

cadmium oleate in ODE (0.1667 M) and TOPSe in ODE (0.1667 M) were continuously added

to the synthesis mixture at a rate of 12 mL/h to keep the reaction rate at a high level, which

enables to grow large CdSe. The reaction was stopped by thermal quenching using a water

bath after approximately 2 h. The dark red reaction mixture was purified by the addition

of toluene, isopropanol and methanol, in a 1:1:1 ratio relative to the volume of the reaction

mixture. The resulting turbid solution was centrifuged to obtain a precipitate of QDs that

was re-dispersed in toluene. Next, purification was repeated three times using toluene and

acetone as solvent and non-solvent, respectively, to remove all residual reaction products.
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S10.2 Intrinsic Absorption Coefficient of CdSe Quantum Dots

The intrinsic absorption coefficient of spherical zinc blence CdSe QDs can be calculated in

a similar manner as for nanoplatelets. The depolarization factors amount to 1/3 in case of

a sphere, hence simplifying the formula for µi to:

µi =
2π

λ

εI,s
nm
|f(λ)|2 (S50)

with f the local field factor for a spherical inclusion:

f(λ) =
3εs(λ)

εCdSe(λ) + 2εs(λ))
(S51)

We calculate µi at 320 nm, where |f(320)|2 = 0.228, using εCdSe = 8 + 6.6i. This amounts

to µi(320) = 1.65 × 105cm−1. Figure S2b shows the absorption spectrum normalized to

represent µi.

S10.3 Oscillator Strength

Using the same approach as for the CdSe platelets lined out in S2.3, we can calculate the

oscillator strength of the band edge transition in the 6.25 nm CdSe QDs using the integrated

intrinsic absorption spectrum:

Fabs =
2ε0nscme

eπh̄

Vpl
|fLF |2

µi,gap (S52)

The local field factor is calculated using the expression for spherical inclusions, i.e. Li =

1/3 in the framework of the depolarization factors lined out earlier. We obtain a value of:

|fLF |2 = 0.287 using bulk dielectric constants of c-CdSe at 1.93 eV, ε1.93eV = 8 + 1.6i, and a

solvent dielectric constant of 2.25 (toluene, ns = 1.5).11 µi,gap is calculated from the intrinsic

absorption spectrum, see Figure S2, by integrating from +∞ to 1.93 eV and doubling the

value. We obtain fabs = 11.9, in line with the values calculated by Moreels et al.12

S29



S10.4 OSE Spectroscopy

Figure S13a shows the 2D false colour map of ∆A after a 700 nm pulse (∆ =160 meV). Figure

S13b shows a kinetic slice taken at 650 nm. We fit a rising background to accomodate for the

creation of real carrier through 2PA (2-photon absorption). Note that this is not required

at lower densities where 2PA is negligible.

Figure S13: (a) 2D map of ∆A using 700 nm pump. (b) Kinetic trace at 650 nm for
extraction of the net Stark contribution.

Figure S14: Dressed atom picture for CdSe QDs (a) Sweep of the pump power at fixed
detuning (160 meV) and (b) detuning at fixed power (10I0) for the CdSe QD sample.
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