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S1. Analytical derivation of biophysical limit31

Here we derive the biophysical limit presented in Eq. 2 in the main text. The limit concerns the range of possible autoinducer
(AI) concentrations at the surface of bacterial cells. In our model, AI production is proportional to the uptake of a diffusible
nutrient (such as O2). We begin by considering for simplicity a single spherical cell of radius r0 centered at the origin (our
results hold even if the cell is not spherical provided no dimension of the cell is much larger than another). The nutrient
diffusion equation, ∂c

∂t
= DO2∇2c, becomes in steady state,

DO2

r2
∂

∂r

(
r2 ∂c

∂r

)
= 0,

where c is the O2 concentration (representing a generic diffusible nutrient) and DO2 is the diffusion coefficient of O2 in the32

medium. Solving this equation with appropriate boundary conditions yields33

c(r) = c∞ −
r0

r
(c∞ − c0), r ≥ r0, [S1]34

where we assume a constant O2 concentration far from the cell, given by c∞ = c(∞), and a fixed O2 concentration, c0, at the35

cell surface. r0 is the radius of the cell. To find c0, we use Fick’s Law: the total rate of uptake of O2 by the cell, JO2 , is36

JO2 = DO2

‹
S

∇c = 4πDO2r0(c∞ − c0), [S2]37

where S is the boundary of the cell.38

What does this mean for AI production and the distribution of AI around the cell? If we suppose that the cell takes up m39

molecules of O2 in the same time that it produces one molecule of AI, the cell’s rate of AI production, JAI, is40

JAI = 4πDO2r0(c∞ − c0)
m

= −DAI

‹
C

∇a(~r), [S3]41

where DAI is the diffusion constant for AI and a(~r) is the concentration of AI outside the cell.42

Assuming that the cell is the only source of AI, so that the concentration of AI is spherically symmetric and zero far from43

the cell, and that AI decays at a rate β, we obtain44

a(r) = DO2

m

(c∞ − c0) r0

r
exp

(
−
√

β

DAI
(r − r0)

)(
1

DAI +
√
βDAIr0

)
, r ≥ r0. [S4]45

Assuming that the radius of the cell is much smaller than the length-scale of decay of AI concentration (
√

DAI
β

), we can46

accurately approximate the AI concentration as:47

a(r) ≈ DO2

mDAI

(c∞ − c0) r0

r
exp

(
−
√

β

DAI
(r − r0)

)
, r ≥ r0. [S5]48
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For r & r0, we can further approximate the AI concentration as49

a(r) ≈ DO2

mDAI

(c∞ − c0) r0

r
, r ≥ r0. [S6]50

Thus, if only one cell is present, the concentration of AI at its boundary is51

a(r0) ≈ DO2

mDAI
(c∞ − c0). [S7]52

From Eqs. S1 and S6, we recover an approximate identity between the AI concentration and the O2 at any point:53

c(r) + mDAI

DO2

a(r) ≈ c∞, r & r0. [S8]54

This identity becomes exact for all r > r0 in the case β = 0, when there is no decay of AI.55

We now extend this result to a system of many cells. As the diffusion equations for AI and O2 are linear partial differential56

equations in the concentration, the total distribution of the concentration values in the system is the summation of the57

distribution of all the cells, centered at the locations of their respective cells. Thus, by using the same boundary conditions for58

all cells, and for the case of β → 0,59

c(~r) + mDAI

DO2

a(~r) ≈ c∞. [S9]60

Above, we only require that |~r − ~ri| ≥ r0 where ~ri is the center of any cell. Thus, the maximum AI concentration for a given61

set of environmental and physiological parameters is62

max(a(~r)) = DO2

mDAI
c∞, [S10]63

which occurs when c(~r) = 0. We can thus define the dynamic range, DR, as the ratio of this maximum to the minimum AI64

concentration at the boundary of a cell from Eq. S8:65

DR ≡ DO2c∞

mDAI

mDAI

DO2(c∞ − c0) = c∞

c∞ − c0
. [S11]66

What is the dynamic range typically obtained by bacterial cells in a biofilm? Assuming that the intake of O2 is proportional67

to the O2 concentration at the surface of the cell, the flux of O2, JO2 , at the boundary of the cell is given by68

JO2 = −c0γ, [S12]69

where γ is the per-cell rate of intake of O2 (with units of 1/(concentration · time).70

Equating Eq. S2 and Eq. S12, we have that71

4πDO2r0(c∞ − c0) = c0γ = (c∞ − (c∞ − c0)) γ [S13]72

73

=⇒ 4πDO2 =
(

c∞

c∞ − c0
− 1
)
γ

r0
[S14]74

75

=⇒ DR ≡ [AI]max

[AI]one cell
= c∞

c∞ − c0
= 4πDO2r0

γ
+ 1. [S15]76

A. Autoinduction and metabolic regulation of AI production. The results above presume that each bacterial cell always consumes77

m molecules of nutrient for every molecule of AI that it produces, where m has the same value in all conditions. However,78

bacterial cells may regulate their AI production so as to vary the amount of AI produced per amount of nutrient consumed. In79

particular, cells may increase the dynamic range of AI concentrations compared to the above limit (Eq. S15) in two ways:80

either by increasing the rate of AI production per molecule of nutrient when AI concentration is high, or by increasing the81

rate of AI production per molecule of nutrient when local nutrient availability is low. The former corresponds to the case of82

autoinduction, where the detection of AI results in activation of AI production, which is commonly observed among many83

bacterial species that engage in QS (1–3). The latter would require that AI production be prioritized even when nutrient84

availability is low and includes the case of constitutive AI production (where m would be an inverse function of the limiting85

nutrient concentration). In either case, AI production is not metabolically slaved, i.e., AI production is not necessarily low86

when nutrient consumption (and subsequently metabolic activity) is low. Generally, the interior of a biofilm has both a higher87

AI concentration (due to the higher density of cells) and a lower nutrient concentration than the exterior. Thus, regulation of88

AI production in either of the forms described above would counteract the lower nutrient concentration in the interior and thus89

help equalize AI production per cell between the interior and the exterior of the biofilm. The effective AI production rate90

would then resemble the case of constitutive AI production.91
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S2. Methods92

A. Agent-based modeling. The simulations for this project were performed using Agent-Based Modeling (ABM), a simulation93

framework that is used widely for academic research in ecology, epidemiology, and the social sciences. It is also used in94

commercial and governmental uses such as business analytics, supply chain management, and military planning (4).95

ABM involves representing the system of interest as a collection of autonomous actors (in our case, bacterial cells), which96

have well-defined behaviors and interact with one another or with the environment (4). The environment itself can be encoded97

as a set of variables for the simulation. The environment can also evolve with certain dynamics independent of the agents. For98

example, the environments in our simulations are chemicals such as nutrients used by the bacteria.99

The benefit of ABM is that global dynamics emerge from many small local interactions. Only local rules are determined100

and communicated to the program, but one can then study the emergent global interactions.101

One of the features of ABM is the representation of spatial structure. In our case, spatial structure is important as102

interactions among bacteria and interactions with the environment are often dictated by the spatial arrangement of cells. For103

example, one of the attributes we investigate is nutrient availability, where we incorporate a diffusing solute (to model nutrients104

such as oxygen) into the model. In such a case, spatial structure strongly influences the dynamics of the bacteria such as105

growth rate. For this project we used an ABM framework known as Nanoverse (4).106

B. Geometry of simulations. The simulations were performed on a square lattice geometry in two dimensions. The shape of107

the complete simulation domain is a rectangle with a width of 128 squares and a height of 256 squares. Each square in the108

lattice can either be empty, or be occupied by a bacterial cell, or by matrix. Each square has four neighbors. A zoomed-in109

region of the simulation domain (of width 7 and height 7) can be seen in Fig. 1A.110

C. Initial placement of bacteria. At the start of each simulated competition, bacterial cells of two different strategies were111

placed randomly at the bottom of the simulation domain. 64 cells of each strategy were placed randomly in the squares of the112

bottom row, thus filling the entire bottom row.113

As a test, we repeated our simulations with reduced numbers of cells at the beginning of the simulation, and found that the114

results did not vary substantially. Similarly, initially distributing the cells in an alternating ordered pattern did not lead to any115

substantial differences, and the random distribution was therefore chosen to better reflect natural conditions.116

D. Nutrient modeling.117

D.1. Reaction-diffusion equation. To obtain steady-state solutions for the diffusive nutrient, we employ a discrete forward-time118

central-space solver to the reaction-diffusion equation (5). Though this method is valid for all diffusive nutrients with a source119

far from the biofilm, we refer to the nutrient in our simulations as oxygen (O2). The bacterial cells are the sinks of O2 in the120

reaction-diffusion equation. In general, the concentration of oxygen [O2] at any site is described by the following differential121

equation (6):122

∂[O2]
∂t

= DO2∇
2[O2]− µ(~x)[O2]δ(~x), [S16]123

where DO2 is the diffusion constant for O2, µ describes the rate of consumption of oxygen, and δ(x) is a delta function which is124

nonzero at each bacterial cell. This reaction-diffusion process is solved for the 2D lattice. For simplicity, the discrete grid to125

solve the equation is taken to be the same as the 2D lattice, i.e., grid spacing equal to the edge-length of a cell. DO2 is taken126

to be constant everywhere because even at the densest parts of the biofilm, the volume fraction of cells has been experimentally127

found to be less than 50% (7) and thus the value of DO2 in the entire domain is approximately the value of DO2 observed in128

water.129

D.2. Boundary conditions. To avoid edge effects, we impose periodic boundary conditions at the horizontal edges of the simulation130

domain. Thus, a bacterial cell that passes through the right boundary will enter from the left boundary at the same height.131

Similarly, the concentration of oxygen at the right edge of the simulation domain is the same as the concentration at the left132

edge at the same height. By imposing this boundary condition, we aim to simulate a large horizontal domain in which the133

biofilm can grow. Periodic boundary conditions eliminate any exceptional behavior of the biofilm at the horizontal boundaries,134

as the sites at the boundary are equivalent to any other sites in the domain.135

D.3. Influx of nutrient. A constant, spatially uniform flux of O2 is introduced to the simulation domain from the top boundary. For136

a small simulation domain, a source of a limiting diffusible nutrient placed very far away may be approximated by a constant137

flux boundary condition since the amount of nutrient entering the system will be limited by diffusion and not be impacted by138

the details of the system (by contrast, a constant value boundary condition on the nutrient leads to a total nutrient flux that139

can vary with the location of the nutrient-consuming cells). The constant flux boundary condition on O2 is enforced in our140

system by designating the top row of the simulation domain as O2-producing squares that produce O2 at a constant rate.141

O2 diffuses in the simulation environment from the top boundary towards the bacterial cells. Each bacterial cell consumes142

O2 at a rate linearly proportional to the O2 concentration at its site and acts as a sink of O2. Thus, at steady state, the143

amount of O2 consumed globally by the cells (δconsumed) is the same as the constant flux of O2 into the whole system (δin).144

The complete simulation domain along with the influx of O2 represented by arrows (indicating the direction of flux of O2) can145

be seen in the snapshot of a simulation in Fig. 1B.146

4 of 9 Avaneesh V. Narla, David Borenstein, and Ned S. Wingreen



E. Reproduction and production of matrix. The modeled bacterial cells can perform two actions: reproduction and production147

of matrix. Both reproduction and the production of matrix are stochastic processes. At every time step, the probability of a148

cell dividing into two cells is calculated from the formula P (reproduction) = br · [O2]∆t, where br is the reproduction bias and149

∆t is the duration of each time step (if the calculated probability is greater than one, the simulation is immediately halted). A150

random real number from a uniform distribution between 0 and 1 is then generated, and if the random number is less than the151

probability value for reproduction, the cell produces a copy of itself.152

Similarly, the probability of matrix production is calculated from the formula 1
2 b · [O2]∆t where b is the matrix bias. Every153

time step, a random number is generated to decide if two squares of matrix will be produced. This algorithm better replicates154

the structure of biofilms observed in experiments than an algorithm in which squares of matrix are produced one at a time.155

The total biomass production rate per unit of O2 is constrained such that χbr + b = 1 where χ is the cost of reproduction156

relative to the cost of producing a square of matrix.157

The processes of reproduction and matrix production are assumed independent: in the same time step, a cell might reproduce158

and also produce two units of matrix. The probability of such a double event occurring is the product of the probabilities159

of either event occurring, that is 1
2 bbr[O2]2(∆t)2. We chose ∆t to be small enough such that the probability of both events160

occurring simultaneously is very small (<0.1%).161

F. Autoinducer. To incorporate quorum sensing, we introduce autoinducer (AI), the chemical signal produced and sensed by
bacteria, as a new continuum environmental layer in Nanoverse. The sources of AI are the cells, AI diffuses, and also decays at
a slow rate.. The boundary conditions for AI are periodic boundary conditions on the left and right boundaries, a reflecting
(zero-flux) boundary conditions at the bottom boundary, and an absorbing boundary condition at the top boundary. An
absorbing boundary condition holds the concentration at that boundary to always be 0. Thus the reaction-diffusion equation is
given by,

∂[AI]
∂t

= DAI∇2[AI] + δ(~x) · ΓAI(O2)− β[AI],

with the boundary condition that [AI]|top boundary = 0, ∀t; DAI is the diffusion constant for AI, δ(x) is a delta function which162

is nonzero at the center of each AI producing cell, ΓAI is the rate of production of AI by that cell, and β is the rate of decay163

of AI. We consider two cases: (1) constitutive AI production in which ΓAI is independent of local O2 concentration, and (2)164

nutrient-limited AI production for which ΓAI is proportional to local O2 concentration.165

We note that we must assume that AI decays for the geometry of our simulation domain. Since we have an absorbing166

boundary condition for the top boundary and total AI production is the same as the total O2 consumption (which is constant167

throughout the simulation), if we don’t include decay for AI, we end up with a fixed AI gradient in the region above the cells168

(which is equivalent to the case of a fixed flux of AI leaving the cells). Thus, when the cells line the bottom of the domain,169

local AI is maximal, and as the layer of actively-growing cells moves up the simulation domain, the local AI at those cells drops170

steadily. We include decay for AI to avoid this scenario.171

G. AI-dependent reproduction and matrix production. In the model, The reproduction bias, br, and the matrix production bias,172

b, may depend on the local AI concentration. Specifically, b is then given by the following expression:173

b([AI]) = bmin + (bmax − bmin) [AI]h

Kh + [AI]h . [S17]174

The terms in S17 are as follows:175

1. bmin is the minimum possible value of b;176

2. bmax is the maximum possible value of b;177

3. K is the AI concentration at which b attains the value 1
2 (bmin + bmax);178

4. h is the Hill coefficient, which characterizes cooperativity.179

The matrix production bias, b, is still related to br by the equation:

χbr([AI]) + b([AI]) = 1.

These forms for b and br reflect the relatively switch-like behavior exhibited by many quorum-sensing bacteria. The behavior is180

more switch-like for higher values of h.181

H. Shoving algorithm. Our simulation does not incorporate cell death, and no cells or matrix are removed from the simulation.182

With matrix production and reproduction, the volume of biomass strictly increases and new lattice sites become occupied. As183

the cells that reproduce or produce matrix may be in the interior of the biofilm, these cells must shove biomass towards the184

edge of the biofilm to make room for new cells/matrix. The algorithm for shoving is detailed below and the cumulative result185

of all steps is depicted in Figs. 1B and 1C. Steps 1-5 are common for both matrix production and reproduction. All distances186

are measured by L1 distance, also known as Manhattan distance.187

1. The closest vacant sites to the parent site (the site reproducing or producing matrix) are identified.188
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2. One of the closest vacant sites is chosen randomly.189

3. The shortest paths to the chosen vacant site are identified. Paths are sequences of distinct lattice sites. All lattice sites in190

a path must be cardinal neighbors (N, S, E, or W) to the lattice sites before or after them in the path. The last lattice191

site in the path to a vacant site is the vacant site itself.192

4. One of the shortest paths is chosen randomly.193

5. All of the occupants of the lattice sites in the path are “shoved” to occupy the next lattice site in the path. Thus, the194

second lattice site of the path, after the active site, is now empty. This lattice site will be called the daughter site.195

6. If the action is reproduction, a copy of the reproducing cell is placed in the daughter site (Fig. 1B).196

7. If the action is matrix production, half of the time the matrix will occupy the daughter site (and the cell will occupy the197

matrix site). The other half of the time, the cell will occupy the daughter site, and the matrix will occupy the parent site.198

The choice between these two alternatives is made randomly.199

The algorithm for shoving is extremely important as spatial structure is a crucial feature of biofilm growth. Our algorithm200

results in a compact biofilm as observed in nature (because the nearest vacant sites are occupied first). It also causes a201

homogeneous distribution of matrix and bacterial cells because the cells are pushed away from the parent site and towards the202

edge of the biofilm only half of the time. The other half of the time, the cells stay at the parent site.203

For the bacteria and the matrix, the bottom boundary acts as a hard boundary. Thus, neither bacteria nor matrix can be204

shoved past the bottom of the simulation domain.205

I. Pairwise competitions. In this investigation, we compare bacteria with different matrix production strategies and assess the206

competitive advantage that each strategy affords in a nutrient-limited environment. To evaluate the competitive advantage of207

strategies, we performed pairwise competitions between bacteria of different strategies. As noted above, we started simulations208

with an equal number of cells of each strategy, placed randomly along the bottom row of the simulation domain. We then209

allowed the simulation to run until either of three specified halt conditions occurred. The first halt condition was an occupancy210

of 50% of the sites (that is, if 50% of the sites were filled with matrix or with bacterial cells of either strategy, the simulation211

would stop). The other halt conditions were any one bacterial cell reaching the top boundary of the simulation domain or the212

probability of either reproduction or matrix production by a bacterial cell being greater than unity.213

To evaluate the competitive advantage of the strategies, we recorded the number of cells of each strategy at the end of the214

simulation.215

S3. Parameters216

There are two relevant timescales in our simulations: the timescale of biomass production (both through reproduction and217

matrix production), and the timescale for the reaction-diffusion processes to equilibrate. We assume that there is a separation218

of timescales, as the former (typically on the order of 30-60 minutes) is much much longer than the latter (on the order of 20219

seconds for a region of the size we consider). In practice, this means that we calculate the steady-state O2 and AI concentrations220

for each fixed arrangement of cells and matrix, and then update the latter. The parameters for the reaction-diffusion equations221

are given in Table S1. The value of the flux of O2 entering the system is essentially arbitrary, since the steady-state O2222

concentration simply scales with this flux, and the O2 concentration is absorbed into an arbitrary linear relation between O2223

consumption and biomass production. Each lattice site in the domain is taken to be 1 µm by 1 µm, and this sets the length224

scale for the reaction-diffusion equations at 1 µm. We take the timescale for reaction-diffusion to be 1s. The diffusion constant225

for O2 is taken to be 2000 µm2/s, the value for O2 diffusion in water at 20C at ambient pressure (8). For these parameters,226

the penetration depth of O2 for maximally dense simulated cells is 0.3 µm. The parameters used to generate the results for227

quorum-sensing cells are described in Table S2.228

S4. Invasion Analysis229

In principle, a particular matrix-production strategy might have a competitive advantage in a 1:1 competition with another,230

and yet lose that advantage when it initially constitutes a different fraction of the population. This would be an example231

of frequency-dependent selection. To investigate this possibility in a representative case, we performed simulations of a QS232

strategy versus a fixed strategy as shown in Fig. S1. We find that the constitutive QS strategy preserves its large competitive233

advantage when it is initially much more common than a competing fixed strategy down to when it is a few-fold lower than a234

competing fixed strategy. However, at very low initial fractions, the QS strategy has only a modest competitive advantage.235

This is because without the minimal number of cells to produce sufficient AI, the QS cells fail to switch from their initial high236

matrix bias to a low matrix bias that would allow them to capitalize on achieving a local monopoly on access to the diffusive237

nutrient.238

239

240
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Fig. S1. Ratio of the increase in population of the QS strain to the increase in population of the fixed strategy strain (with a matrix bias of 0.3) for different ratios of the starting
populations. The reference red line indicates ratio 1, i.e. equal performance of the two strains.

Property Value (in dimensionless units)

Total flux of O2 entering the system 128 × 10−5

O2 diffusion constant 2000

O2 consumption rate per bacterial cell 2 × 104

Cost of reproduction relative to matrix produc-
tion (for equal volumes)

14 (9)

Table S1. Non-dimensionalized parameters for the reaction-diffusion equations based on units of µm and seconds.
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Property Description Value

h Coefficient of cooperativity 10

bmin Minimum value of matrix bias obtained 0.1

bmax Maximum value of matrix bias obtained 0.9

K AI concentration at which b attains the value
1
2 (bmin + bmax)

0.5

ΓAI AI production rate for constitutive AI produc-
ers

10−7

DAI Diffusion constant of AI 160

β AI decay rate 10−4

Table S2. Parameters used to incorporate QS bacteria into the simulations in units of µm and seconds.
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Property Description Value

h Coefficient of cooperativity 10

bmin Minimum value of matrix bias obtained 0.1

bmax Maximum value of matrix bias obtained 0.9

K AI concentration at which b attains the value
1
2 (bmin + bmax)

3.5

ΓAI AI production rate per unit concentration of
oxygen per cell

10−4

DAI Diffusion constant of AI 160

β AI decay rate 10−2

Table S3. Parameters used to incorporate QS bacteria that produce AI at a rate proportional to O2 uptake in units of µm and seconds.
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