TranscriptomeReconstructoR

Maxim Ivanov

December 04, 2020

Introduction

The TranscriptomeReconstructoR package implements a pipeline which allows for de novo assembly of
transcriptomes by combining data from a few mutually orthogonal datasets:

1. Stranded full-length RNA sequencing (e.g. ONT Direct RNA-seq or PacBio Iso-Seq);
2. 5'-tag RNA sequencing (e.g. CAGE-seq or TSS-seq);

3. 3'-tag sequencing (e.g. PAT-seq or 3’READS);

4. (optionally) Nascent RNA-seq (e.g. NET-seq, GRO-seq or chrRNA-seq).

Observe that all input datasets are expected to be stranded, i.e. strand orientation of a read must correspond
to strand orientation of the original RNA molecule. This means that certain library preparation protocols for
Third generation RNA sequencing may be not compatible with the pipeline (or may require an additional pre-
processing step to recover the strand information). For more details on the various full-length RNA-seq
methods, see Appendix 1.

The full-length RNA-seq provides information on exon-intron structure of the original RNA transcripts.
However, the long reads from Third generation sequencing platforms (both ONT and PacBio) suffer from
certain biases, in particular high error rate and truncated 5’-ends. The high error rate inevitably results in lower
accuracy of alignments. Therefore, a long read cannot be interpreted as a bona fide transcript isoform.

TranscriptomeReconstructoR aims to compensate for sequencing and alignment errors of long reads by:

o Extracting common features from multiple long reads originating from the same isoform;
o Correcting truncated 5’- and 3’-end of long reads by TSS and PAS coordinates which are derived from
independent 5’- and 3’-tag sequencing datasets, respectively;

The pipeline returns gene and transcript models which are called from experimental data and thus are
agnostic to any existing annotation. However, the resultant de novo transcriptome assembly may be refined by
an existing annotation, if desired (see Appendix 2). In addition, TranscriptomeReconstructoR can supplement
the transcriptome assembly by transient and/or non-polyadenylated transcripts (given that a nascent RNA-seq
dataset was included).

TranscriptomeReconstructoR can be used to assemble draft transcriptomes of newly sequenced organisms,
as well as to validate the existing gene annotations.

Installation

The easiest way to install TranscriptomeReconstructoR is to use the devtools::install_github() function:

if (!"devtools" %in% rownames(installed.packages())) {
install.packages("devtools")
}
devtools: :install_github("Maxim-Ivanov/TranscriptomeReconstructoR",
build_vignettes = TRUE)

Then attach the installed package:

library(TranscriptomeReconstructoR)

Input files

TranscriptomeReconstructoR uses BAM files as input. In this tutorial, we will use example BAM files obtained
from the following published datasets of 2 weeks old Arabidopsis thaliana seedlings:

o Direct RNA-seq by ONT from Parker et al. (2020);

o CAGE-seq from Thieffry et al. (2020);

o PAT-seq from Yu, Lin, and Li (2019);

o plaNET-seq from Kindgren, Ivanov, and Marquardt (2020).

Details on downloading, pre-processing and alignment of the raw sequencing data can be found here. The
BAM files were subsetted to a 300Kb interval on chromosome 1 (1:10,000,000-10,300,000). To retrieve the
filenames, run the following code:

pkg <- "TranscriptomeReconstructoR"
drs_bamfiles <- system.file("extdata",
paste@("ont_rep", 1:4, " _filt.bam"),
package = pkg)
tss_bamfiles <- system.file("extdata",
pasteo("cage rep", 1:3, " filt.bam"),
package = pkg)
pas_bamfiles <- system.file("extdata",
pasteo("pat_rep", 1:3, " filt.bam"),
package = pkg)
nascent_bamfiles <- system.file("extdata",
paste@("planet_rep", 1:2, " _filt.bam"),
package = pkg)

When running the pipeline on other datasets, use the 1ist.files(full.names = TRUE) function instead.

The pipeline consists of a few steps which have to be executed sequentially. For a more detailed explanation
of the underlying algorithm, see Appendix 3.

First of all, attach the libraries which are used at the top level of the example pipeline:

library(rtracklayer)
library(magrittr)

Load BAM files:

The 1load_BAM_files() function takes a vector of BAM filenames as input and imports BAM data into R session
as GRanges or GRangesList objects. The most important argument is mode:

https://github.com/Maxim-Ivanov/Ivanov_et_al_2021/blob/main/01-Download_and_remap_published_data.sh

o Ifmode == "long_reads", then the BAM file(s) are expected to contain aligned full-length RNA-seq reads
(e.g. ONT Direct RNA-seq reads or HQ consensus reads from PacBio Iso-Seq);

o Ifmode %in% c("tss", "pas), then aligned 5- or 3'-tags (sequenced on the lllumina platform in single-
end mode) are imported;

o Ifmode == "nascent", then the BAM file(s) are expected to contain short reads originating from RNA
enriched for the nascent fraction. Depending on the method used, the reads may be sequenced in
single-end (NET-seq, GRO-seq, TT-seq) or paired-end (pNET-seq, plaNET-seq) mode. In the latter
case, the additional ngs_mode = "PE" argument has to be specified:

long_reads <- load_BAM_files(drs_bamfiles, mode = "long_read")
tss_data <- load_BAM_files(tss_bamfiles, mode = "tss")

pas_data <- load_BAM_files(pas_bamfiles, mode = "pas")
nascent_data <- load_BAM_files(nascent_bamfiles,
mode = "nascent", ngs_mode = "PE")

Optionally, one may wish to export the loaded NGS data as bedGraph/BED12 tracks for visualization in a
genome browser:

write_grl_as_bed12(long_reads, "Long_reads.bed")
tss_data %>% merge_GRanges() %>%
save_GRanges_as_bedGraph("TSS_data_merged.bedgraph.gz")
pas_data %>% merge_GRanges() %>%
save_GRanges_as_bedGraph("PAS_data_merged.bedgraph.gz")
save_GRanges_as_bedGraph(nascent_data,
"Nascent_data_merged.bedgraph.gz")

The bedGraph files produced by the save_GRanges_as_bedGraph() function are stranded, i.e. encode coverage
on the forward (Watson) and reverse (Crick) strands as positive and negative values, respectively. It is
important to ensure that the strand information of the input data was processed correctly. If the sequencing
coverage is observed always on the opposite strand with respect to known genes, then the strand orientation
of such GRanges or GRangesList object is probably wrong and has to be flipped by the fl1ip_strand_info()
function.

For faster access to the large BED12 file produced by the write_grl_as_bed12() function, we recommend to
compress and index it (outside of the R session):

file="Long reads.bed"; bgzip $file && tabix -p bed ${file}.gz & & rm $file

If using IGV browser, consider to convert the large bedGraph files produced by the save_GRanges_as_bedGraph()
function to the TDF format:

nascent_data %>% seqlengths() %>% as_tibble(rownames = "chr") %>%
write_tsv("chrom_sizes", col_names = FALSE)

igvtools totdf Nascent_data_merged.bedgraph.gz Nascent_data_merged.tdf chrom_sizes

Call TSS and PAS

The call_1cs() function finds genomic coordinates of transcription start sites (TSS) and polyadenylation sites
(PAS) from the 5’- and 3’-tag sequencing data, respectively. It returns a GRanges object with numeric score

metadata column which shows the “strength” of TSS or PAS:

tss <- call_TCs(tss_data)
pas <- call_TCs(pas_data)

We recommend to visualize the coordinates of called TSS and PAS in a genome browser in parallel with the
bedGraph files produced from the input 5’- and 3’-tag sequencing data:

rtracklayer::export(tss, "TSS.bed", format = "BED")
rtracklayer: :export(pas, "PAS.bed", format = "BED")

If by any reason you are not satisfied with the results of peak calling, then changing the default values of
call_TCs arguments is recommended. In particular, if the input data are noisy (i.e. have high non-specific
background), then the results may be improved by using higher min_tpm, q_trim and min_score values.
Alternatively, any other peak calling software can be used instead of call_tvcs (e.g. CAGEr or CAGEfightR),
given that the output is converted to GRanges with a valid score column.

Extend long reads towards nearby TSS and PAS

The key idea of the pipeline is to validate and correct full-length RNA-seq reads by orthogonal datasets which
detect TSS and PAS with higher accuracy. This idea was implemented in the
extend_long_reads_to_TSS_and_PAS() function:

long reads_2 <- extend_long_reads_to_TSS_and_PAS(long reads, tss, pas)

Adjust exon borders

Since long reads from Third generation sequencing platforms in general have higher error rates than the short
lllumina reads, the alignments may be relatively inaccurate. In particular, borders of exonic subalignments in
long reads are often “fuzzy”. To decrease the number of artifactual alternative exons differing by only a few
basepairs, we suggest to use the adjust_exons_of_long_reads() function:

long reads_3 <- adjust_exons_of_long_reads(long_reads_2)

This step is optional and can be omitted.

Detect alignment errors

Minimap2, the most popular aligner for Third generation sequencing data, is prone to under-split the full-length
RNA-seq reads. Two adjacent exons may appear as a single subalignments in certain reads, whereas as
individual subalignments in other reads in the same locus. This effect is most probably due to the relatively low
cost for a mismatch between query and template in the long read aligners (as a result, the cost for opening an
intronic gap may exceed the cost for erroneously extending the previous exon). This specific kind of alignment
artifacts can be found by the detect_alignment_errors() function:

long_reads_4 <- detect_alignment_errors(long_reads_3)

If any exonic subalignment was marked as potential alignment error, then the whole long reads is omitted from
the transcript calling procedure. If you trust your aligner, then you can skip the call to
detect_alignment_errors().

Call transcripts and genes

The corrected and validated long reads are used to call the most probable transcript and gene models by the
call_transcripts_and_genes() function:

out <- call_transcripts_and_genes(long_reads_4)
hml_genes <- out[[1]]

hml_tx <- out[[2]]

fusion_genes <- out[[3]]

fusion_tx <- out[[4]]

reads_free <- out[[5]]

The transcripts are classified into High Confidence (HC), Medium Confidence (MC) or Low Confidence (LC)
sets, depending on the level of mutual support from the orthogonal methods:

o HC transcripts start in TSS and end in PAS (i.e. are supported by all three datasets);
o MC transcripts either start in TSS, or end in PAS (supported by two datasets, but not by the third one);
o LC transcripts lack both TSS and PAS (supported by the full-length RNA-seq dataset only).

Transcripts with sufficiently strong overlap are combined into genes. Transcripts overlapping two or more
called genes are considered fusion transcripts. The function returns a List which contains the following
elements:

1. HC, MC and LC genes;

2. HC, MC and LC transcripts;

3. Fusion genes;

4. Fusion transcripts;

5. Unused reads which do not overlap with any called gene.

Add intervals of nascent transcription

Both the full-length RNA-seq and the 5’- and 3’-tag sequencing methods can only detect mature RNA
transcripts. Moreover, they often depend on the poly(A) tail. However, eukaryotic genomes are pervasively
transcribed, thus producing many non-coding RNA species which are often transient and/or non-
polyadenylated. Such ncRNA species may avoid detection by the conventional RNA sequencing methods,
however they become visible in nascent RNA sequencing datasets (NET-seq, GRO-seq, TT-seq, chrRNA-seq
etc). In this tutorial we will use plaNET-seq (“plant NET-seq”) dataset from Kindgren, Ilvanov, and Marquardt
(2020), as described above.

The first step is to call continuous intervals of nascent transcription from the imported nascent RNA-seq data
by the call_transcribed_intervals() function:

trans <- call_transcribed_intervals(nascent_data)
transcribed <- trans[[1]]
gaps <- trans[[2]]

Alternatively, you can use any other dedicated software instead (e.g. groHMM) and coerce its output to a
GRanges object.

The second step is to interleave the intervals of nascent transcription with the called genes using the
process_nascent_intervals() function:

results <- process_nascent_intervals(hml_genes, transcribed,
tss, pas, reads_free, gaps)

hml_genes_v2 <- results[[1]]

hml_genes_v2_RT <- results[[2]]

Incrna <- results[[3]]

The returned GRanges object are as follows:

1. The hml_genes_v2 is almost identical to the input hm1_genes, except that some MC and LC genes could
have found their missing TSS and/or PAS by extension of the gene borders along the adjacent intervals
of nascent transcription;

2. The thick coordinates of genes in hm1_genes_v2_RT are identical to the granges in hml_genes_v2 described
above. However the granges in hml_genes_v2_RT represent the union of called genes with their
readthrough (RT) tails of nascent transcription;

3. The 1ncrna object contains antisense and intergenic nascent transcripts which are considered as
transient and/or non-polyadenylated IncRNAs.

Export the results

The results of the pipeline can be exported as BED files for visualization in genome browsers:

rtracklayer: :export(hml_genes_v2, "Called genes.bed", format = "BED")

rtracklayer::export(hml_genes_v2_RT,
"Called_genes_with_RT_tails.bed", format = "BED")

write_grl_as_bed12(hml_tx, "Called transcripts.bed")

rtracklayer: :export(fusion_genes, "Fusion_genes.bed", format = "BED")

write_grl_as_bed12(fusion_tx, "Fusion_transcripts.bed")
rtracklayer::export(lncrna, "Called_lncRNAs.bed", format = "BED")

Observe that the thick parts of genes in the “Called_genes_with_RT _tails.bed” track correspond to the mature
transcripts (from TSS to PAS), whereas the thin 3’ extensions denote RT tails. This is different from the
traditional visualization scheme (where thick parts are coding exonic intervals between start and stop codons,
and thin flanks are 5’ and 3’-UTRs).

Appendix 1. Strandedness of full-length
RNA-seq methods

Full-length RNA-seq on the Oxford Nanopore platform comes in two flavors:

o Direct RNA sequencing:
o ONT Direct RNA Sequencing kit;
o cDNA sequencing:
o ONT cDNA-PCR Sequencing kit;
o ONT Direct cDNA Sequencing kit;
o A third party cDNA synthesis kit (e.g. Takara SMARTer PCR cDNA synthesis kit) + ONT Ligation
Sequencing kit.

In the case of Direct RNA-seq, ONT sequencing adapters are ligated only to the 3’-end of the original RNA
molecule. Sequencing always occurs in the 3’ -> 5’ direction. Therefore, the long reads retain the strand
orientation of the original RNA molecules.

In the case of full-length cDNA sequencing, ONT sequencing adapters are ligated to both ends of the double-
stranded cDNA. It is impossible to predict direction of the sequencing (the first or the second strand of cDNA
can be sequenced with equal probabilities). In other words, the strand orientation of the original RNA molecule
is lost. The TranscriptomeReconstructoR assumes that the input long reads are properly stranded, thus it
cannot be used with unstranded cDNA sequencing data.

Theoretically, it might be possible to recover the strand orientation of a full-length cDNA dataset, given that the
cDNA synthesis method produces asymmetric cDNA flanks (i.e. the oligo-dT primer and the template
switching oligo have different 5’ sequences). Unfortunately, it is not the case of the commonly used Takara
(Clontech) SMARTer cDNA synthesis kit (where both the 3 SMART CDS Primer Il A and the SMARTer Il A
Oligonucleotide begin with the same 5-AAGCAGTGGTATCAACGCAGAGTAC-3’ sequence). However, if a
custom oligo-dT primer were used instead of the 3 SMART CDS Primer Il A, then the strandedness of long
reads could be guessed from the adapter sequences by a custom script.

Luckily, the PacBio Iso-Seq pipeline automatically detects the strand orientation of HQ consensus reads (even
despite the fact they are obtained from double-stranded cDNA).

In conclusion, long reads from ONT Direct RNA-seq and PacBio Iso-Seq are stranded and thus can be used
as input for the TranscriptomeReconstructoR. Long reads from ONT cDNA-seq are unstranded and thus are
not compatible with TranscriptomeReconstructoR (unless the strand orientation was recovered by a custom
approach).

Appendix 2. Annotation-guided mode

The pipeline described above was designed for de novo calling of gene and transcript models from the
experimental data only. However, in some cases an existing annotation may help to refine the called models.
For example, MC and LC transcripts lack TSS and/or PAS. One possible reason is that all long reads in given
locus were obtained from RNA fragments, not from full-length RNA molecules. Thus, the distance between the
borders of long reads and the relevant TSS or PAS exceeds the reasonable limits (which are controlled by
read_flanks_up and read_flanks_down arguments of the extend_long_reads_to_TSS_and_PAS() function). In this
case, the existing annotation may help to connect the TSS/PAS with the called gene. The truncated called
transcript will be extended along its best mate among the annotated transcripts towards the called TSS and/or
PAS.

TSS PAS

Called MC or LC [\
transcript —

F 3

— S — . . —

v

esies Annotated transcript lesles

tx_flanks _up tx_flanks_down

Another possible scenario is that a low expressed gene has both TSS and PAS, however zero coverage in the
full-length RNA-seq dataset (due to relatively low throughput of Third generation sequencing). If these TSS
and PAS are connected by an annotated gene, then such gene and its transcripts can be imported into the
called gene and transcript models.

Finally, the data-driven correction of exon borders by the adjust_exons_of_long_reads() function does not
guarantee that the coordinates of splice sites were detected precisely (the majority vote does not always
provide the right decision). On the other hand, the existing annotations are usually based on short read RNA-
seq data which are characterized by low error rate and thus high precision split alignments. Therefore, the de
novo detected exon borders can be further corrected by the annotated splice sites.

The refine_transcripts_by_annotation() function implements these three ideas. It should be used after calling
de novo models by the call_transcripts_and_genes() function, but before running the
process_nascent_intervals() function. It needs the following input objects:

o HC, MC and LC transcripts (GRangesList returned by the call_transcripts_and_genes() function);

o Annotated exons grouped by transcript (GRangesList object, e.g. returned by the exonsBy (by = "tx")
function);

o TSS and PAS (GRanges objects returned by the call_tcs() function);

o Fusion transcripts (GRangesList object returned by the call_transcripts_and_genes() function).

library(TxDb.Athaliana.BioMart.plantsmart28)
txdb <- TxDb.Athaliana.BioMart.plantsmart28
annot_exons <- exonsBy(txdb, by = "tx")

ref <- refine_transcripts_by_annotation(hml_tx, annot_exons,
tss, pas, fusion_tx)

hml_genes <- ref[[1]]

hml_tx <- ref[[2]]

fusion_genes <- ref[[3]]

fusion_tx <- ref[[4]]

The refine_transcripts_by annotation() function returns a List with the following elements:

1. Updated HC, MC and LC genes (GRanges object);

2. Updated HC, MC and LC transcripts (GRangesList object);
3. Updated fusion genes (GRanges object);

4. Updated fusion transcripts (GRangesList object).

If nascent RNA-seq dataset is used in the study, then the updated HC, MC and LC genes are used as input for
the process_nascent_intervals() function. If not, then the objects returned by the
refine_transcripts_by_annotation() function are the final gene and transcript model to be exported into BED

files.

Appendix 3. The algorithm

call_TCs()

The input for this function is GRangesList object, where each element is GRanges with stranded 5’- or 3’-tag
counts in a biological replicate sample. By default, only genomic positions with non-zero tag count in all
replicate samples are considered. This condition can be relaxed by setting min_support argument to a value
smaller than the number of input BAM files. After filtering by minimal support, the replicates are pooled, the
signal is normalized to tags per million (TPM), and the tag clusters (TCs) are called as continuous intervals
with the signal above the min_tpm threshold. Adjacent TCs are merged together, if the distance between them
does not exceed max_gap bp.

min_tpm

Tag count
(pooled, TPM-norm.)

max_gap

Then TCs are quantile trimmed to skip the trailing tails of weak signal which often surround the TC summit.
The amount of trimming is controlled by the q_trim argument.

g_trim

/

TC

Tag count
(pooled, TPM-norm.)

\

chr

U

Quantile trimmed TC

After trimming, the TCs are merged again (with the same max_gap parameter). Finally, each TC gets a score
which is the TPM-normalized signal averaged between the replicates. TCs with scores less than min_score are
skipped. The remaining TCs are returned as GRanges object with score metadata column.

extend_long _reads_to_TSS_and_PAS()

This function takes GRangesList with long reads as input. For each long read, two genomic windows are
generated:

o Upstream window: read_flanks_up bp around 5’ end of the long read;
o Downstream window: read_flanks_down bp around 3’ end of the long read.

The functions searches for called TSS overlapping with the upstream window, and for called PAS overlapping
with the downstream window. If multiple TSS or PAS were found, then the “strongest” of them (the one with

the highest score) is chosen. Then the long reads are extended towards the summits of the found TSS and
PAS.

TSS PAS

e sles RS PEEN

read flanks up read_flanks _down

Extended long reads which start in a TSS and end in a PAS are classified as “complete”, otherwise as
“truncated”. If a locus (defined as an overlapping group of reads) does not contain any complete read, then the
longest truncated read is re-classified as “complete”, and its free end is considered as the best estimate of the
transcript border. In addition, other truncated reads in this locus which can be safely extended along the “guide
exon”, are also re-classified as “complete”.

TSS

j\ Guide exon

Complete
reads

Truncated

]
| B reads

The function returns GRangesList object containing extended long reads with additional metadata columns.
Only reads marked as “complete” are used for the transcript calling procedure (see below).

adjust_exons_of _long_reads()

This function extracts all splice sites from the input long reads, clusters them within max_exon_diff bp distance
and then unifies the borders of exonic subalignments to the most frequently observed coordinate within each
cluster.

max_exon_diff

. . : :
: : : :

|
|

ﬁ
a

Both input and output for this function are GRangesList objects containing long reads with identical metadata
columns but different coordinates of subalignments. Observe that this “majority vote” procedure does not
guarantee to find the true splice sites. However, the number of artifactual transcript isoforms with alternative
5'- or 3’-splice sites differing by only a few basepairs is expected to decrease significantly.

detect_alignment_errors()

Probably the most common type of alignment errors in full-length RNA-seq reads in under-splitting,

i.e. erroneous extension of an exon over the adjacent intronic region. As a result, the next exon appears as
missing from such read (although present in other reads aligned within the same locus). Assuming that the
majority of reads still align correctly, we suggest to detect such alignment errors by comparing each
subalignment to the set of constitutive exons.

The constitutive exons are defined here as exonic intervals supported by more than 50% of reads in given
locus (but not less than reads). Subalignment with an alternative 5’- and/or 3-border (relative to a constitutive
exon) are considered valid alternative exons, only if the next constitutive exon is also present in the read.
Otherwise, the alignment is marked as a possible alignment error.

Constitutive exons

| | |
Alternative
- Y ey M -
exon
— - -
— I I -

Alignment error

Both input and output for this function are GRangesList objects containing long reads with identical
coordinates of subalignments. The output object has a new metadata column which determines if the
subalignment is a suspected alignment error.

call_transcripts_and_genes()

The input for call_transcripts_and_genes() function is GRangesList object containing long reads. The long
reads are expected to be already processed by the upstream functions in the pipeline
(extend_long_reads_to_TSS_and_PAS(), adjust_exons_of_long_reads() and detect_alignment_errors()). These
upstream steps serve two purposes: i) attenuate the alignment “noise” associated with Third generation
sequencing data; ii) detect reads which are not informative of the original transcripts (i.e. reads truncated at
one or both ends and/or containing suspected alignment errors). Such reads are skipped from consideration
when calling the transcripts and genes. Only “complete” reads without misaligned exons are used. Observe
that some reads marked as “complete” may still miss TSS and/or PAS (see the description of
extend_long_reads_to_TSS_and_PAS() function above).

Transcript calling is a multi-step procedure:

1. At the first step, we use only reads which start in a TSS and end in a PAS. Identical reads are collapsed
into isoforms of High Confidence (HC) transcripts. An HC transcript is supported by all three methods
(full-length RNA-seq + 5’ tag sequencing + 3’ tag sequencing) and therefore has reliable outer borders;

2. Strongly overlapping HC transcripts (intersection/union >= clust_threshold) are combined into HC
genes;

3. Transcripts which overlap two or more adjacent genes by at least min_overlap_fusion fraction if their
lengths, are considered fusion transcripts and separated from the transcript pool. Fusion transcripts
result from inefficient transcription termination at PAS sites;

4. Find “free” reads which satisfy the following conditions:

o Were not used for calling HC transcripts;

o Do not overlap with any called HC transcript by more than max_overlap_called fraction of either
transcript length or read length;

o Are not shorter than min_read_width bp;

5. Among the “free” reads, find those which either startin a TSS, or end in a PAS (but not both). There
reads are used to call Medium Confidence (MC) transcripts. An MC transcript is supported by only two
methods (full-length RNA-seq + either 5- or 3’ tag sequencing). Thus, only one outer border of an MC
transcript is reliable, whereas the other may be truncated,;

. Repeat steps 2-4 (gene calling, fusion transcript detection, updating “free” reads) for the MC transcripts;

7. Similarly, call Low Confidence (LC) transcripts from “free” reads which lack both TSS and PAS. An LC

transcript is supported by full-length RNA-seq only and thus may be truncated from both ends;

8. Within each HC, MC or LC gene, we skip the minor isoforms (which collectively represent not more than

skip_minor_tx fraction of all supporting reads in this locus);

9. Finally, the HC, MC, LC and fusion genes are recalculated and enumerated.

[«2)

4 L 4

1SS PAS | TSS
1 s - '
HC transcripts MC transcripts LC transcripts
— | | : i > chr
HC gene MC gene LC gene

The MC and LC transcripts are called because some loci may have full-length RNA-seq reads, however lack
sufficiently strong TSS and/or PAS tag clusters in close proximity to outer borders of the long reads. The
mismatch between different methods can happen due to various reasons, e.g.:

o Library preparation, sequencing or alignment biases of 5’- or 3’-tag sequencing methods which result in
low sensitivity of TSS or PAS detection in given locus;

o Fragmentation of the original RNA molecules (either in vivo or during the full-length RNA-seq library
preparation) which results in the excess of truncated long reads;

o Using datasets obtained from different biological samples.

The latter possibility can be easily avoided by properly planning the experimental workflow (one should always
prepare libraries for the different sequencing methods from the same biological sample). However, the former
two sources of unwanted variability cannot be fully excluded. Thus, the MC and LC transcripts, although
having potentially inaccurate outer borders, serve as the best estimates for the transcriptional activity in such
loci. The iterative transcript calling procedure ensures that the MC transcripts can be called only outside of the
HC loci, and LC transcripts can be called only outside of both HC and MC loci.

Long reads either marked as truncated by , or containing a misaligned exon (as revealed by), are skipped
from the transcript calling procedure. The remaining long reads are collapsed into transcripts. The transcripts
are classified into high confidence (HC), medium confidence (MC) and low confidence (LC) groups: This
iterative procedure of transcript calling ensures that highly expressed HC loci are not contaminated with less
reliable MC or LC transcripts. The MC and LC transcripts can be called only in those loci where the full-length
reads are lacking. To decrease the risk of picking up products of partial RNA degradation, MC and LC

transcripts can be called only from reads longer than bp. The called HC, MC and LC transcripts are clustered
into HC, MC and LC genes, respectively. A pair of transcripts of the same type having overlap (intersect/union)
above the are considered belonging to the same gene. Within each gene, the minor transcripts (collectively
representing up to fraction of the supporting reads) are skipped. This is done to decrease the risk of calling
artifact alternative transcripts in highly expressed genes (assuming that undetected alignment errors are
relatively rare events). This behavior can be suppressed by setting . Finally, transcripts which overlap at least
two other disjoint transcripts by at least fraction of their lengths, are considered fusion transcripts.

The call_transcripts_and_genes() function returns a List of GRanges and GRangesList objects which contain
the called HC, MC and LC genes and transcripts, fusion genes and transcripts, as well as the “free” reads.

call_transcribed_intervals()

This function takes input GRanges object with score metadata column which represents the stranded
coverage in a nascent RNA sequencing experiment. The function simply finds intervals with sequencing
coverage not less than min_signal. Adjacent intervals (separated by low coverage gaps not exceeding
max_gapwidth bp) are merged. Intervals shorter than min_width are skipped.

min_signal

Nascent RNA-seq
coverage

Transcribed
intervals

.%I
max_gap

The return value is a List of two GRanges objects which contain the continuous transcribed intervals and the
low coverage gaps, respectively.

process_nascent_intervals()

This function takes a few inputs GenomicRanges objects:

o HC, MC and LC genes (GRanges returned by the call_transcripts_and_genes() function);

Intervals of nascent transcription (GRanges returned by the call_transcribed_intervals() function);
TSS and PAS (GRanges returned by the call_tcs function);

(optionally) Unused reads (GRangesList returned by the call_transcripts_and_genes());
(optionally) Low coverage gaps (GRanges returned by the call_transcribed_intervals()).

[}

[o]

[o]

[}

All called genes overlap with intervals of nascent transcription, at that the transcribed intervals are usually
wider than the genes. In particular, many genes have trailing “tails” of nascent transcription (known as
readthrough, or RT, tails) immediately downstream from their PAS. The process_nascent_intervals() function
combines the called genes with their RT tails. The outer borders of HC, MC and LC genes are extended to
cover the whole transcription unit (at that, the original gene coordinates which correspond to the area of
productive elongation are moved to the thick metadata column of the GRanges object).

Called transcripts

> Called gene

Antisense IncRNA Intergenic IncRNA
| I |
[>>5>5>55>>>>>>>> > >33 5357 2 20 20 2 20 200 20 2|
Gene RT tail

In addition, the area of productive elongation in MC and LC genes can be expanded along the up- and/or
downstream intervals of nascent transcription, if they connect the gene to a sufficiently strong TSS and/or PAS
(this behavior is controlled by the extend_along_nascent, the extension_flanks and the min_score_2 arguments).

& Transcripts A

TSS | | PAS
i Iy — o ey — i

— ———

L — T

>3>5555555555555>5h s s s
| MC or LC gene RT tail

o

[SSS5S5555555555555555 F—==x

Finally, intervals of nascent transcription which do not overlap with any called gene on the same strand and
are longer than min_lncrna_width, are considered long non-coding RNAs (IncRNAs). If they overlap with strong
TSS and/or PAS (the minimal TC score is controlled by the min_score_2 argument), they are further refined
(extended or split) to match the transcription initiation and termination landscape.

The process_nascent_intervals() function returns a List with the following elements:

1. HC, MC and LC genes (GRanges almost identical to the input hml_genes object, except that some genes

might have found their missing TSS and/or PAS);
2. HC, MC and LC genes decorated with the RT tails (GRanges object with the thick metadata column);

3. Antisense and intergenic IncRNAs (GRanges object).

References

Kindgren, P., M. lvanov, and S. Marquardt. 2020. “Native elongation transcript sequencing reveals temperature
dependent dynamics of nascent RNAPII transcription in Arabidopsis.” Nucleic Acids Res 48 (5): 2332-47.

Parker, M. T., K. Knop, A. V. Sherwood, N. J. Schurch, K. Mackinnon, P. D. Gould, A. J. Hall, G. J. Barton, and
G. G. Simpson. 2020. “Nanopore direct RNA sequencing maps the complexity of Arabidopsis mMRNA
processing and m6A modification.” Elife 9 (January).

Thieffry, A., M. L. Vigh, J. Bornholdt, M. lvanov, P. Brodersen, and A. Sandelin. 2020. “Characterization of
Arabidopsis thaliana Promoter Bidirectionality and Antisense RNAs by Inactivation of Nuclear RNA Decay
Pathways.” Plant Cell 32 (6): 1845-67.

Yu, Z., J. Lin, and Q. Q. Li. 2019. “Transcriptome Analyses of FY Mutants Reveal Its Role in mRNA Alternative
Polyadenylation.” Plant Cell 31 (10): 2332-52.

