
Supplementary Information for

Nonparametric coalescent inference of mutation spectrum history and demography

William S. DeWitt, Kameron Decker Harris, Aaron P. Ragsdale, Kelley Harris

wsdewitt@uw.edu (WSD)
harriske@uw.edu (KH)

This PDF file includes:

Supplementary text
Figs. S1 to S10 (not allowed for Brief Reports)
SI References

William S. DeWitt, Kameron Decker Harris, Aaron P. Ragsdale, Kelley Harris 1 of 17

mailto:wsdewitt@uw.edu
mailto:harriske@uw.edu


Supporting Information Text

1. SI Appendix

A. Proof of Theorem : the expected SFS given demographic and mutation intensity histories. Suppose n haplotypes are
sampled in the present, and let random vector T = [T2, . . . , Tn]ᵀ denote the coalescent times measured retrospectively from the
present, i.e. Tn is the most recent coalescent time, and T2 is the TMRCA of the sample.

As in Section 3 of (1), we consider a marked Poisson process in which every mutation is assigned a random label drawn iid
from the uniform distribution on (0, 1). This is tantamount to the infinite sites assumption, with the unit interval representing
the genome, and the random variate labels representing mutant sites. Further suppose that mutation intensity at time t
(measured retrospectively from the present in units of Wright-Fisher generations) is a function of time 0 ≤ µ(t) <∞ (measured
in mutations per genome per generation) applying equally to all lines in the coalescent tree. A given line in the coalescent tree
then acquires mutations on a genomic subinterval (p, p+ dp) ⊆ (0, 1) at rate µ(t)dp.

Let Edp,b denote the event that a mutation present in b ∈ {1, 2, . . . , n− 1} haplotypes in the sample occurred within a given
genomic interval (p, p + dp). Given the uniform labeling assumption, the probability of this event is independent of p, but
the following argument can be generalized to allow the labelling distribution to be nonuniform over the unit interval without
changing the result. Let Ik denote the kth intercoalescent time interval, i.e. In = (0, Tn), In−1 = (Tn, Tn−1), . . . , I2 = (T3, T2).
Let Edp,b,k denote the event that the mutation Edp,b occurred during interval Ik (index k here is not to be confused for the
k-mer size in the main text). For small dp and finite µ(t) we have

P(Edp,b | T) =
n∑
k=2

P(Edp,b,k | T)

=
n∑
k=2

pn,k(b)
(
k dp

∫
t∈Ik

µ(t)dt+O
(
(dp)2)) ,

where

pn,k(b) ≡
(
n−b−1
k−2

)(
n−1
k−1

) [1]

is the probability that a mutant that arose when there were k ancestral lines of n sampled haplotypes will be present in b of
them (see (1), eqn. 1.9). The quantity in parentheses is the probability that a mutation arose during the kth intercoalescent
interval in a genomic interval of size dp. Marginalizing T gives

P(Edp,b) = dp

n∑
k=2

kpn,k(b)ET

[∫
t∈Ik

µ(t)dt
]

+O
(
(dp)2) .

For small dp, each genomic interval (p, p + dp) contains zero or one mutations. Therefore, taking the limit dp → 0 and
integrating over the genome, the expected number of mutations subtending b haplotypes (i.e. the bth component of the SFS) is

ξb =
∫ 1

0
P(Edp,b) =

n∑
k=2

kpn,k(b)ET

[∫
t∈Ik

µ(t)dt
]

We now substitute in the bounds of every intercoalescent interval Ik = (Tk+1, Tk), giving

ξb =
n∑
k=2

kpn,k(b)ETk

[∫ Tk

0
µ(t)dt

]
−
n−1∑
k=2

kpn,k(b)ETk+1

[∫ Tk+1

0
µ(t)dt

]
=

n∑
k=2

kpn,k(b)ETk

[∫ Tk

0
µ(t)dt

]
−

n∑
k=3

(k − 1)pn,k−1(b)ETk

[∫ Tk

0
µ(t)dt

]
=

n∑
k=2

Bb,kETk

[∫ Tk

0
µ(t)dt

]
, [2]

where

Bb,k ≡
{
kpn,k(b), k = 2
kpn,k(b)− (k − 1)pn,k−1(b), k > 2

[3]

are combinatorial terms.
Polanski et al. (2), eqns. 5-8, give the marginal density for the coalescent time Tk as

πk(tk) =
n∑
j=k

Ak,jqj(tk), [4]
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for k = 2, . . . , n, where A is an (n− 1)× (n− 1) matrix indexed from 2, . . . , n with

Ak,j ≡


1, k = j = n

0, j < k,∏n

l=k 6=j
(l

2)∏n

l=k 6=j
((l

2)−(j
2))
, otherwise

and

qj(t) ≡
(
j
2

)
η(t) exp

[
−
(
j

2

)∫ t

0

dt′

η(t′)

]
,

for j = 2, . . . , n, and η(t) is the haploid effective population size history. We assume that 0 < η(t) < ∞. Note that qj(t)
is the probability density of the time to the first coalescent event among any subset of j individuals in the present, with
inhomogeneous Poisson intensity function

(
j
2

)
/η(t).

The expectations in Eq. (2) can be expressed using Eq. (4) as

ETk

[∫ Tk

0
µ(t)dt

]
=
∫ ∞

0
πk(tk)

∫ tk

0
µ(t)dt dtk

=
n∑
j=k

Ak,j

∫ ∞
0

qj(tk)
∫ tk

0
µ(t)dt dtk

=
n∑
j=k

Ak,j

∫ ∞
0

qj(tk)
∫ ∞

0
1[0<t<tk]µ(t)dt dtk

=
n∑
j=k

Ak,j

∫ ∞
0

rj(t)µ(t)dt [5]

where in the last line we exchange integration order (by Fubini’s theorem) and define the inhomogeneous Poisson survival
function

rj(t) ≡
∫ ∞

0
qj(t′)1[0<t<t′]dt

′ = exp
[
−
(
j

2

)∫ t

0

dt′

η(t′)

]
[6]

corresponding to density qj(t).
Using Eq. (5) in Eq. (2) gives

ξb =
n∑
k=2

Bb,k

n∑
j=k

Ak,j

∫ ∞
0

rj(t)µ(t)dt

=
n∑
j=2

(
j∑

k=2

Bb,kAk,j

)∫ ∞
0

rj(t)µ(t)dt, [7]

exchanging summation order in the last line. We then have a linear expression for the expected SFS as a function of the
mutation intensity history µ(t):

ξ = C d(η, µ), [8]

where the (n− 1)× (n− 1) matrix C = BA is constant in µ and η, and

dj(η, µ) ≡
∫ ∞

0
rj(t)µ(t)dt =

∫ ∞
0

exp
[
−
(
j

2

)∫ t

0

dt′

η(t′)

]
µ(t)dt, [9]

for j = 1, . . . , n− 1, is a linear functional of µ and a nonlinear functional of η.
Given the boundedness assumptions that we have on η and µ, we now prove boundedness of the map from joint history

functions (η, µ) to expected SFS vectors ξ. The vector d(η, µ) may be viewed as a nonlinear operator d : L∞(R≥0)×L∞(R≥0)→
`∞n−1 of rank n − 1, and is bounded element-wise. In the diffusion timescale (equation 3 of main text) , dj is the Laplace
transform of the bounded function η̃µ̃ evaluated at

(
j
2

)
, and is thus bounded. In particular,

0 ≤ dj ≤
ηmaxµmax(

j
2

) , for j = 1, . . . , n− 1, [10]

where ηmax and µmax are the respective bounds on η and µ. Boundedness of the full operator mapping (η, µ) to the expected
SFS ξ follows from the fact that C is a matrix with bounded norm. This completes the proof of emphTheorem .
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B. Computing the elements of C. We next develop an efficient recursive procedure for computing the matrix C. Using Eq. (3)

Cb,j =
j∑

k=2

kpn,k(b)Ak,j −
j∑

k=3

(k − 1)pn,k−1(b)Ak,j

= W
(1)
b,j −W

(2)
b,j ,

where

W
(1)
b,j ≡

j∑
k=2

kpn,k(b)Ak,j [11]

W
(2)
b,j ≡

j∑
k=3

(k − 1)pn,k−1(b)Ak,j . [12]

Polanski et al. (3), eqn. 11, show that the nonzero entries of A can be expressed as

Ak,j = n!(n− 1)!
(j + n− 1)!(n− j)! ·

(2j − 1)
j(j − 1) ·

(j + k − 2)!
(k − 1)!(k − 2)!(j − k)! · (−1)j−k.

Given the form of pn,k(b) in Eq. (1), we see that Eq. (11) and Eq. (12) are definite sums over hypergeometric terms. We used
Zeilberger’s algorithm (4, 5), which finds polynomial recurrences for definite sums of hypergeometric terms, to procedurally
generate the following second-order recursions in j:

W
(1)
b,2 = 6

(n+ 1)

W
(1)
b,3 =10(5n− 6b− 4)

(n+ 2)(n+ 1)

W
(1)
b,j+2 =−

[
(2j + 3)

(
− (2j − 1)W (1)

b,j+1

(
2j(j + 1)

(
b2(j2 + j − 2

)
− 6b− j(j + 1)− 2

)
− j(j + 1)n

(
3b
(
j2 + j + 2

)
+ j2 + j − 2

)
+
(
j(j + 1)

(
j2 + j + 6

)
+ 4
)
n2 + 4n

)
− (j − 1)(j + 1)2(j − n)W (1)

b,j (4(n+ 1)− j(j + 2)(b− n− 1))
)]

/[
j2(j + 2)(2j − 1)(j + n+ 1)

(
−bj2 + b+

(
j2 + 3

)
(n+ 1)

) ]
and

W
(2)
b,2 = 0

W
(2)
b,3 = 20(n− 2)

(n+ 1)(n+ 2)

W
(2)
b,j+2 = (2j + 3)(j − n+ 1)

j

(
(j + 1)

(2j − 1)(j + n)W
(2)
b,j −

(j(j + 1)(2b− n+ 1)− 2(n+ 1))
(j − 1)(j + 2)(j − n)(j + n+ 1) W

(2)
b,j+1

)
.

These formulae are used to numerically compute the entries in C.

C. Discretization of history functions and computation of d(η, µ). We represent histories as piecewise constant functions of
time on m pieces [t0, t1), [t1, t2), . . . , [tm−1, tm), where 0 = t0 < t1 < · · · < tm−1 < tm =∞. The grid is common to η(t) and
µ(t). We take the boundaries of the pieces as fixed parameters and in practice use a logarithmically-spaced dense grid of
hundreds of pieces to approximate infinite-dimensional histories. Let column vector y = [y1, . . . , ym]ᵀ denote the constant
population size η(t) during each piece, and let w = [w1, . . . , wm]ᵀ denote the constant mutation rate µ(t) during each piece.

With this we can follow the proof of Proposition 1 in (6), mutatis mutandis, with our Eq. (9) to arrive at

d = M(y)w [13]

where

M(y) ≡


1

1
3

. . .
1

(n
2)




1 u1 . . .
∏m−1
i=1 ui

1 u3
1 . . .

∏m−1
i=1 u3

i

...
...

. . .
...

1 u
(n

2)
1 . . .

∏m−1
i=1 u

(n
2)
i




1
−1 1

−1 1
. . . . . .

−1 1

diag(y), [14]
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and ul ≡ exp(−(tl − tl−1)/yl) for l = 1, . . . ,m. Note that the (n − 1) × m matrix M(y) is a nonlinear function of the
demographic history y because the ul are nonlinear functions of y. This reflects the fact that it is a discretization of the
nonlinear operator d(·, µ). Combining Eq. (13) with Eq. (8) gives the discretized forward model

ξ = L(y)w, [15]

where L(y) ≡ CM(y).

D. Proof of Proposition . The distribution of independent Poisson random variables factorizes into an aggregate Poisson random
variable and a multinomial, a well-known result often called “Poissonization” (7). Poissonization over the mutation type index
j gives

P(X | Ξ) =
n−1∏
i=1

K∏
j=1

P(Xi,j | Ξi,j)︸ ︷︷ ︸
Poisson

=
n−1∏
i=1

P(xi | ξi)︸ ︷︷ ︸
Poisson

P
(

[Xi,1, . . . , Xi,K ] | xi,
[

Ξi,1
ξi

, . . . ,
Ξi,K
ξi

])
︸ ︷︷ ︸

multinomial

= P(x | ξ)︸ ︷︷ ︸
PRF

P(X | x, Ξ̂)︸ ︷︷ ︸
multinomial random

field over i

. [16]

This completes the proof of Proposition .

E. Proof of Lemma . Fix the mutation type i, and consider the multinomial over j

P
(

[Xi,1, . . . , Xi,K ] | xi,
[

Ξi,1
ξi

, . . . ,
Ξi,K
ξi

])
.

We must show that any element of the multinomial vector

Ξ̂i,j ≡
Ξi,j
ξi

can be formulated without reference to η. From elementary properties of the multinomial, the conditional expection value of
Xi,j given xi is

E[Xi,j | xi] = xi Ξ̂i,j .

Now, since mutation events are independent we perform a thinning operation on each of the xi mutation events

E[Xi,j | xi] = xi P (a mutation of sample frequency i is of type j) [17]

= xi

∫ ∞
0

µ̃j(τ)
µ0

ai(τ)dτ, [18]

where ai(τ) is the pdf of a mutation’s age τ measured in expected coalescent events (diffusion time) conditioned on its sample
frequency i. So

Ξ̂i,j =
∫ ∞

0

µ̃j(τ)
µ0

ai(τ)dτ.

This is independent of η by definition of the diffusion time scale as the intensity measure of the coalescent process. This
completes the proof of Lemma .

F. Tempora incognita: observability toward the coalescent horizon. The time-domain singular vectors of L(η) form an eigenbasis
for solutions µ(t) that are possible, in principle, to reconstruct from the SFS. However, sampling noise about the expected SFS
will corrupt information from singular vectors that are associated to smaller singular values. These corrupted components
will be the directions in solution space associated with higher frequency and less smooth dynamics. Since the singular values
of L(η) have a very large dynamic range (the condition number is large), the presence of noise will limit reconstruction to
smoother, more slowly varying components that are least corrupted and erase information about more sudden events.

Figure S9 depicts the observability of mutation rate history via spectral analysis of L(η) for a case with η(t) a simple
bottleneck history. From Eq. (4) and Eq. (6) in Appendix A, the CDF of the TMRCA can be computed given η(t). We
see only the top few components (ranked by singular value) persist at times older than the bottleneck, and all components
vanish beyond the TMRCA of the sample. Higher frequency behavior becomes more difficult to observe if it is older than the
bottleneck, concretely illustrating how demographic events erase information about population history.
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G. Modeling ancestral state misidentification. Computing the SFS and the k-SFS from variant data requires polarizing reference
and alternative alleles to ancestral and derived alleles. Ancestral states are themselves inferred (usually by invoking parsimony
criteria in a comparison to an outgroup reference genome, or a larger multi-species alignment), so ancestral state misidentification
is expected at some fraction of sites. Misidentification results in allele frequency complementation: a variant at sample frequency
i out of n sampled haplotypes will appear to have frequency n− i. Misidentification also results in mutation type reversion:
e.g. a variant of triplet mutation type TCC→TTC will appear of mutation type GAA→GGA.

Under very general conditions, the expected SFS ξ is a non-increasing vector: ξi ≥ ξj ∀i < j (8). This result covers all
demographic histories η(t). Given the pointwise nonidentifiability of η and µ (equation 3 of main text) , it also covers all
mutation rate histories µ(t), so all columns of the expected k-SFS are non-increasing row-wise.

Ancestral state misidentification violates this non-increasing expectation result. The SFS for the subset of misidentified
sites is reflected in frequency, so the SFS ξ becomes a sum of a non-increasing vector (for the correctly identified sites) and a
non-decreasing vector (for the misidentified sites). This contributes to the so-called “smile” in empirical SFS data. Because
this smile can’t be explained by η and µ with a model that produces a non-increasing SFS, the misidentification rate r is
identifiable as an additional parameter. Let ξ′ denote the expected SFS with misidentification, so

ξ′i = (1− r)ξi + rξn−i, i = 1, . . . , n− 1.

In matrix form this is
ξ′ = (1− r)ξ + rJξ,

where J denotes the (n− 1)× (n− 1) exchange matrix (with 1s on the anti-diagonal and 0s elsewhere).
For the k-SFS, misidentified sites contribute to counts in the reflected frequency row, and also in a different mutation type

column, corresponding to the revertant mutation type. Let π(j) denote the revertant partner of mutation type index j (π is a
permutation of the mutation type columns). Let rj denote the misidentification rate of mutation type j. Then the expected
k-SFS with misidentification is

Ξ′i,j = (1− rj)Ξi,j + rjΞn−i,π(j), i = 1, . . . , n− 1, j = 1, . . . ,K.

In matrix form this is
Ξ′ = Ξ (I − diag(r)) + J Ξ P ᵀ

π diag(r),

where Pπ is the permutation matrix corresponding to π.
We infer the total misidentification rate r jointly with η inference, then infer the rates for each mutation type r jointly

with µ, constraining compositionally such that
∑K

j=1 fjrj = r via the isometric log ratio transform, where fj is the fraction of
variants from each mutation type (the column sums of the k-SFS normalized by its total). These additional parameters allow
us to obtain very good fits to empirical SFS and k-SFS data that include prominent high frequency “smiles”.
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Fig. S1. The effect of demographic model selection on MuSH inference in our simulation study. Left panel shows change in loss (goodness of
fit) as a function of 0-th order and 1st order trend penalties. Middle panel shows the inferred demography at each indicated penalty value (colors corresponding to points in left
panel). Right panel shows the two variable components of subsequent MuSH inference for each demographic model, indicating they are very weakly effected by demographic
model selection.
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Fig. S2. The effect of MuSH regularization on MuSH inference in our simulation study. Left panel shows change in loss (goodness of fit) as a
function of 0-th order and 1st order trend penalties. Middle panel shows the inferred demography (which is independent of the MuSH hyperparameters). Right panel shows the
two variable components of the subsequent MuSH inference for each hyperparameter choice (colors corresponding to points in left panel).
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Fig. S3. Comparison of demographic inference using the folded Vs unfolded SFS in our simulation study. Using the same parameters as in
Figure 1 , we fit the SFS (left), the folded SFS (middle), and show the resulting demographic histories are similar (right).
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mushi from high coverage data using the folded SFS, and the fit to the folded SFS, with no ancestral state polarization. Bottom panels show demographic histories inferred with
Relate, as reported by Speidel et al. (9) (Fig S6 there), with the SFS fit displayed.
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TCC pulse inferred with Relate (Speidel et al.) demographies

TCC pulse inferred with Tennessen et al. demography
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Fig. S5. Timing of TCC→TTC pulse in European populations conditioned on different demographies. Top panels show the SFS fit for each
European population under the demographic history of Tennessen et al. (10), which was used by Harris and Pritchard to time the TCC→TTC pulse (11) (similar to Figure 2g),
and the subsequent mushi fit to the TCC→TTC component of the k-SFS (similar to Figure 3). Dotted lines use a rescaled demography that accounts for the mutation rate
difference between the Tennessen demographic inference and more recent de novo rate, resulting in TCC→TTC pulse that is shifted older, and better SFS fit. Bottom panels
are similar, but use the European demographic histories inferred by Speidel et al. (9) using the Relate method.
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as trend penalties of various order increase. Middle panel shows the inferred demography at each penalty value (colors corresponding to trend orders in left panel). Right panel
shows the TCC→TTC component of subsequent MuSH inference for each demographic model.
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Fig. S7. The effect of MuSH regularization on TCC→TTC pulse inference for CEU. Left panel shows change in loss (goodness of fit) as the κ-th
order trend penalty increases, for κ = 0, 1, 2, 3. Middle panel shows the inferred demography (which is independent of the MuSH hyperparameters). Right panel shows the
TCC→TTC component of subsequent MuSH inference, with color corresponding to points in left panel.
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Fig. S8. Bootstrap for CEU demography and TCC→TTC pulse inference. This indicates the stability of inference under replicate data. Note that,
because the penalized likelihood inference is strongly biased, this cannot be interpreted as providing confidence bounds of the histories.
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Fig. S9. Observability of mutation rate history via spectral analysis of L(η) for the case of a bottleneck history. The top panel plots
demographic history with a bottleneck from about 3000 to 1000 generations ago (blue, left ordinate), and TMRCA CDF (orange, right ordinate). The bottom panel plots the top
20 time domain singular vectors, with the inset showing the corresponding ranked singular values. Time was discretized with a logarithmic grid of 1000 points, and n = 200
sampled haplotypes were assumed.
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Fig. S10. Mutation signature history for each 1000 Genome Projection super-population. Same results as in main text, but plotted here separately
for each super-population.
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