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Section S1: Analytical solutions for MSCRs with a uniform particle concentration 

Consider a distal portion with a uniform particle volume fraction (𝜙) lying along the x-axis in the 

reference configuration. The magnetization vector can be represented as 𝐌 = 𝑀0𝜙𝐞𝑥 where 𝑀0 denotes 
the magnetization strength. The shear modulus of the distal portion is 𝐺 = 𝐺0𝑓(𝜙)  where 𝑓(𝜙) =
exp[2.5𝜙/(1 − 1.35𝜙)].  When a uniform actuation magnetic field is applied at an angle 𝜑 with respect to 

the reference configuration (i.e.,𝐁 = 𝐵cos𝜑𝐞𝑥 + 𝐵sin𝜑𝐞𝑦), the governing equation in Eq. 1 can be written 

as 

𝐸𝐼𝜅(𝑠) = ∫ 𝜏magnetic
𝐿

𝑠

𝐴𝑑𝑠 = ∫ 𝑀0𝐵𝐴
𝐿

𝑠

𝜙 sin(𝜑 − 𝜃) 𝑑𝑠 [S1] 

Differentiating both sides of Eq. S1 and rearranging gives  

𝑑2𝜃

𝑑𝑠2
+ 𝑄 sin(𝜑 − 𝜃) = 0 [S2] 

where the coefficient 𝑄 =
16

3

𝑀0𝐵

𝐺0 𝐷2

𝜙

𝑓(𝜙)
 in which 𝐷 is the cross-sectional diameter. With the help of chain rule, 

Eq. S2 can be expressed in the following integral form:  

∫
𝑑2𝜃

𝑑𝑠2

𝑑𝜃

𝑑𝑠
𝑑𝑠 = − ∫ 𝑄 sin(𝜑 − 𝜃) 𝑑𝑠 [S3] 

which upon integration yields  

1

2
(

𝑑𝜃

𝑑𝑠
)

2

= −𝑄 cos(𝜑 − 𝜃) + 𝐶 [S4] 

The constant C can be determined from the boundary condition that there is no bending moment at the free 

tip, i.e.,𝜃′(𝐿) = 0, which leads to  

𝐶 = 𝑄 cos(𝜑 − 𝜃𝐿) [S5] 

where 𝜃𝐿 denotes the bending angle of the free tip in the deformed configuration. Then Eq. S4 can be 

rearranged as  

𝑑𝑠 = √
1

2𝑄

𝑑𝜃

√cos(𝜑 − 𝜃𝐿) − cos(𝜑 − 𝜃)
[S6] 

Integrating Eq. S6 produces the expression for the total length of the elastica, 

𝐿 = √
1

2𝑄
∫

𝑑𝜃

√cos(𝜑 − 𝜃𝐿) − cos(𝜑 − 𝜃)

𝜃𝐿

0

= √
1

2𝑄
Φ(𝜑, 𝜃𝐿) [S7] 

where nondimensional function Φ(𝜙, 𝜃𝐿) is defined as 

Φ(𝜑, 𝜃𝐿) = ∫
𝑑𝜃

√cos(𝜑 − 𝜃𝐿) − cos(𝜑 − 𝜃)

𝜃𝐿

0

=

2

√cos(𝜑 − 𝜃𝐿) − 1 
[𝐹 (

𝜑 − 𝜃𝐿

2
, csc

𝜑 − 𝜃𝐿

2
) − 𝐹 (

𝜑

2
, csc

𝜑 − 𝜃𝐿

2
) ] [S8]

 

with the function 𝐹 denoting the incomplete elliptic integral of the first kind defined as 

𝐹(𝛼, 𝑘) = ∫
𝑑𝜃

√1 − 𝑘2 sin2 𝜃

𝛼

0

[S9] 



Then, Eq. S7 can be rewritten as 

16

3

𝑀0𝐵

𝐺0 

𝐿2

𝐷2

𝜙

𝑓(𝜙)
=

1

2
Φ2(𝜑, 𝜃𝐿) [S10] 

Therefore, 𝜃𝐿 can be solved from Eq. S10. The kinematic relation of the infinitesimal arc length 𝑑𝑠 reads as 

  

𝑑𝑥 = 𝑑𝑠 cos 𝜃 = √
1

2𝑄

cos 𝜃 𝑑𝜃

√cos(𝜑 − 𝜃𝐿) − cos(𝜑 − 𝜃)

𝑑𝑦 = 𝑑𝑠 sin 𝜃 = √
1

2𝑄

sin 𝜃 𝑑𝜃

√cos(𝜑 − 𝜃𝐿) − cos(𝜑 − 𝜃)
[S11]

 

By plugging 𝜃𝐿 into Eq. S11, one can solve the Cartesian coordinates of the tip by integrating from 0 to L, 

i.e., 

𝑥𝐿 = ∫ 𝑑𝑥
𝐿

0

= ∫ √
1

2𝑄

cos 𝜃 𝑑𝜃

√cos(𝜑 − 𝜃𝐿) − cos(𝜑 − 𝜃)

𝜃𝐿

0

𝑦𝐿 = ∫ 𝑑𝑦
𝐿

0

= ∫ √
1

2𝑄

sin 𝜃 𝑑𝜃

√cos(𝜑 − 𝜃𝐿) − cos(𝜑 − 𝜃)

𝜃𝐿

0

[S12]

 

 

 

Section S2: Optimization of MSCRs using the genetic algorithm 

The optimization of MSCR with the genetic algorithm was performed using Matlab 2020a. We 
randomly generated the first generation of 100 MSCRs by assigning a random 𝜙 between 0 and 0.4 to each 
voxel of each MSCR. Then we calculated the workspaces of the 100 MSCRs in the first generation using 
the developed finite difference method. Thereafter, we selected 100 MSCRs from the first generation based 
on the stochastic universal sampling method (1). In the stochastic universal sampling,  we first ranked the 
workspaces of 100 MSCRs from high to low and mapped them to contiguous segments of a line in which 
each segment is equal in size to its workspace. Then the total length of the line equals the sum of all 
workspaces, denoted as W. Next, we randomly generated 100 evenly-spaced points with an interval of 
W/100 on the line and select 100 MSCRs in whose segment the point lies (Fig. S4). MSCRs with a larger 
workspace can be selected multiple times while MSCRs with a lower workspace may not be selected. Then 
the second generation of 100 MSCRs was generated by 5% elitism, 85% crossover, and 10% mutation. In 
the 5% elitism, 5 MSCRs with the largest workspaces propagated to the second generation without 
changing their polarity patterns. In the 85% crossover, we randomly swapped some voxels of two selected 
MSCRs. In the 10% mutation, we randomly altered some voxels of the MSCR to a different value between 
0 and 0.4. This evolutionary process was repeated over multiple generations until the difference between 
the largest workspace and the mean value of all workspaces in a certain generation of MSCRs is smaller 
than the tolerance (10-3). 

 

Section S3: Analytical solutions for MSCRs with a permanent-magnet tip 

Schematic of the distal portion with a permanent magnet at the tip is given in Fig. S7 in which the 

length of the magnet is denoted as 𝐿1. The non-magnetized part, i.e., the polymer in 0 ≤ 𝑠 ≤ 𝐿1, has shear 

modulus 𝐺 = 𝐺0. As the modulus of the magnet (~GPa) is much larger than the polymer, it can be treated 

as a rigid body. The magnetization of the magnet is constant 𝐌 = 𝑀0𝐞𝑥 in the reference configuration. In 



the deformed configuration, the bending angle of the tip is denoted as 𝜃𝐿. Then for the non-magnetized 

portion from 0 to 𝐿 − 𝐿1, it is subject to a constant bending moment 𝛤(𝑠) at equilibrium,  

𝛤(𝑠) = ∫ 𝜏magnetic
𝐿

𝐿1

𝐴𝑑𝑠 = 𝑀0𝐵𝐴𝐿1 sin(𝜑 − 𝜃𝐿) [S13] 

Then the governing equation Eq. 1 can be written as 

𝐸𝐼𝜅(𝑠) = 𝑀0𝐵𝐴𝐿1 sin(𝜑 − 𝜃𝐿) [S14] 

Eq. S14 suggests that the deformed elastica of the non-magnetized part 0 ≤ 𝑠 < 𝐿 − 𝐿1has a constant 

curvature  

𝜅(𝑠) ≡
𝑑𝜃

𝑑𝑠
=

𝑀0𝐵𝐴𝐿1

𝐸𝐼
sin(𝜑 − 𝜃𝐿) [S15] 

from which we can find 𝜃𝐿 

𝜃𝐿 =
𝑀0𝐵𝐴𝐿1(𝐿 − 𝐿1)

𝐸𝐼
sin(𝜑 − 𝜃𝐿) [S16] 

Therefore, Eq. S15 can be simplified as  

𝑑𝑠 =
𝐿 − 𝐿1

𝜃𝐿

𝑑𝜃 [S17] 

Then the kinematic relation reads as  

𝑑𝑥 = 𝑑𝑠 cos 𝜃 =
𝐿 − 𝐿1

𝜃𝐿

cos 𝜃 𝑑𝜃

𝑑𝑦 = 𝑑𝑠 sin 𝜃 =
𝐿 − 𝐿1

𝜃𝐿

sin 𝜃 𝑑𝜃 [S18]

 

The Cartesian coordinates of the magnet tip are given  

𝑥𝐿 = ∫ 𝑑𝑥
𝐿−𝐿1

0

+ 𝐿1 cos 𝜃𝐿 = (𝐿 − 𝐿1)
sin 𝜃𝐿

𝜃𝐿

+ 𝐿1 cos 𝜃𝐿

𝑦𝐿 = ∫ 𝑑𝑦
𝐿−𝐿1

0

+ 𝐿1 sin 𝜃𝐿 = (𝐿 − 𝐿1)
(1 − cos 𝜃𝐿)

𝜃𝐿

+ 𝐿1 sin 𝜃𝐿 [S19]

 

Eq. S19 shows that, for a specific magnet length 𝐿1, the tip deflection depends only on the tip bending angle 

𝜃𝐿. By tuning the actuation magnetic field, the tip bending angle can be achieved from 0 to 180°, thus all 

the tip trajectories fall on a master curve rather than enveloping an area. Therefore, the half workspace is 

a curve with a zero area. The theoretical solutions, in comparison with FEM results, has been validated by 

experiments (Fig. S11). 

 

  



 

Table S1. Comparison between the optimized magnetic soft continuum robot and  five commercial 

catheters with embedded magnets 

 

  



 

 

Fig S1. The 2D workspace of the MSCR is achieved under uniform magnetic fields up to 40 mT applied 

along various directions in a plane. The workspace is symmetric about the undeformed axis of the MSCR 

(i.e., x-axis). 

  



 

 

 

Fig. S2. (A) Magnetization curve and hysteresis loops of hard-magnetic materials. The curves show the 

magnetization (M) as a function of the applied magnetic field strength (H). Hard-magnetic materials maintain 

the remanent magnetization (𝑀0) when the actuation field strength is much smaller than the coercivity (𝐻𝑐). 

(B) Schematic illustration of the MSCR with programmed remanent magnetization resulting from the aligned 

hard-magnetic particles with intrinsic dipoles in the polymer matrix. Adopted from ref (2) 

  



 

Fig S3. The 2D workspace of the MSCR is achieved under uniform magnetic fields up to 40 mT applied 

along various directions in a plane. Rotating the actuation magnetic field around the axis of the undeformed 

MSCR will give a 3D workspace which is a revolution of the 2D workspace. 

 



 

 

Fig. S4. Schematic illustration of the stochastic universal sampling. 100 MSCRs, labeled as R1, R2, .., R100, 

are ranked by their workspaces, denoted as W1, W2,…, W100, from high to low and are mapped to a line in 

which each segment is equal in size to its workspace. 100 evenly-spaced points are used to select 100 

MSCRs in whose segment the point lies.  



 

Fig S5. The hard-magnetic particle distribution (markers) and its fitted function (red line) of the optimized 

MSCR. Genetic algorithm optimizations with different initializations yield the same fitted results. 



 

Fig. S6 The normalized half workspace of MSCRs by dispersing hard-magnetic particles in polymer 

matrices. Magnetic particle distribution: (A) constant 𝜙 = 0.2; (B) constant 𝜙 = 0.4; (C) linearly increasing 

from 0 to 0.4; (D) linearly decreasing from 0.4 to 0; (E) parabolically increasing form 0 to 0.4; (F) 

parabolically decreasing from 0.4 to 0.  

 

 

 

 



 

Fig. S7. Schematic illustration of the distal portion with a permanent magnet at the tip. The permanent 

magnet is treated as a rigid body with length and rotation angle denoted 𝐿1 and 𝜃𝐿, respectively.  

  



 

Fig. S8 The normalized half workspace of MSCRs by embedding permanent magnets into elastomer. (A) 

A representative MSCR with a permanent magnet at the distal tip. Towards the distal tip of the MSCR, the 

polarity pattern is 𝜙 = [0,0,0,0,0,0,0,0,0,1]; (B) A MSCR with two permanent magnets with polarity pattern 

𝜙 = [0,0,0,0,1,1,0,0,1,1]. (C) A MSCR by changing the voxels with 𝜙 = 0.4 and 𝜙 = 0.25 in the optimized 

design into permanent magnets (𝜙 = 1) and elastomer (𝜙 = 0), respectively. The polarity pattern is 𝜙 =

[0,1,1,1,0,0,0,1,1,1] ; (D) A MSCR by changing the voxels with 𝜙 = 0.4 and 𝜙 = 0.25 in the optimized design 

into permanent magnets (𝜙 = 1). The polarity pattern is 𝜙 = [1,1,1,1,0,0,0,1,1,1]. 

 



 

Fig. S9 The normalized half workspace of commercial magnetically-controllable catheters using 3 magnets. 

(A) Helios II catheter (Stereotaxis, USA); (B) Celsius RMT (Biosense Webster, USA); (C) Navistar RMT 

(Biosense Webster,USA); (D) Trignum Flux G (Biotronik, Germany).  

 

 

  



 

Fig. S10. Experimental validation of the optimized MSCR. (A)-(B) Comparison between the results from 

the finite difference method, finite element simulation, and experiments on the deformed distal portion. (A) 

Fixing the magnetic field angle 𝜑 = 180° while increasing the field strength up to 40 mT. (B) Fixing the 

magnetic field strength 𝐵 = 40  mT while changing the field direction up to 180°. (C) Comparison of the 

results from the finite difference method and experiments on the normalized half workspace of the optimized 

MSCR.  

  



 

 

Fig. S11.  Experimental validation of the workspace of a MSCR with a permanent magnet at the distal tip.  

The length of the permanent magnet and the distal portion is 𝐿1 = 4 mm and 𝐿 = 40 mm, respectively.  

  



Legend for Supplementary Movie 

Movie S1. Finite element simulation of the deformation of the MSCR with the optimized hard-

magnetic particle distribution under actuation magnetic fields. 
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