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Supplementary Information Text 

 

Methods.  

 

We used published abundance estimates from three sources: (1) the Partners in Flight 

Population Estimates Database1; (2) population estimates from the British Trust for 

Ornithology2; and (3) from BirdLife International datazone 

http://datazone.birdlife.org/home. 

 

Partners in flight population estimates database. We extracted data from the Partners in 

Flight Population Estimates Database1, downloaded from: 

http://pif.birdconservancy.org/PopEstimates/. This dataset provides population estimates 

for breeding North American landbirds at multiple geographic scales, following the 

‘Partners in Flight approach’3,4,5. This dataset represents the best-available population 

estimates for North American landbirds. It predominantly relies on data from the North 

American Breeding Bird Surveys scheme, based on the decade 2006—2015, but also 

complements these data with data from other schemes; e.g., Ontario atlas point count 

data6. Although the North American Breeding Bird Surveys were not designed to 

specifically estimate population sizes, the data are collected in a single standardized 

method which involves random start points and revisiting the same points each breeding 

season7 forming a fundamental component to the methodological approach5.  

 

In short, the ‘Partners in Flight approach’ takes a species count proportional to the area 

sampled, multiplies this value by the area of the region, and accounts for detection 

adjustments. In order to adjust for detection probability, the approach adjusts for: (1) time 

http://datazone.birdlife.org/home
http://pif.birdconservancy.org/PopEstimates/
http://pif.birdconservancy.org/PopEstimates/


 

 

 

 

of day, (2) detection distance, and (3) the likelihood of detecting both members of a 

breeding pair3,4,5. The approach then relies on a Monte Carlo simulation to estimate 

uncertainty in the population estimate for each species5, providing a distribution of 

population ranges for each species. Importantly, population estimates are initially derived 

within geo-political regions — based on state and Bird Conservation Region overlaps — 

and are then used as the building block for a continental-wide population estimate. The 

underlying sample sizes used to derive these estimates, which are proportional to the area 

of the geo-political region, is reflected in the population uncertainty5. This approach has 

received some thoughtful critiques8,9,10, and the latest version of this approach addresses 

these in more detail11. For full details on the methods used to derive the population 

estimates, see the Handbook to the Partners in Flight Population Estimate Database, 

Version 3.01. 

 

Population estimates of birds in Great Britain. We extracted population estimates from 

Musgrove et al. 20132 for the geographic region of Great Britain. Specifically, we 

extracted data from their Appendix 1. This dataset is a collection of many different 

sources and estimates of population size for both breeding and wintering populations — 

depending on the species. Ultimately, it presents the work of millions of hours of effort 

by the British ornithological community2. For many species, they rely on the British 

Breeding Bird surveys and distance sampling, because the British Breeding Bird surveys 

collect data in different distance bands. Because Musgrove et al.2 rely on a suite of 

different methods to estimate population size, they provide a ‘reliability score’, which 

‘take into account the derivation of original estimates and any methods used for 



 

 

 

 

extrapolation. As a general rule, estimates with reliability score 1 are based on direct 

counts with a minimum of extrapolation, those with reliability score 2 have been arrived 

at through extrapolation from reliable figures (or with a small amount of uncertainty 

around the estimate), while those with reliability score 3 were based on assumptions and 

opinion in place of actual fieldwork.’. For full details on the population estimates, see 

Musgrove et al.2. 

 

We filtered these data — extracted from Appendix 1 in Musgrove et al.2 — by only 

including population estimates which: (1) were for Great Britain; (2) were provided for 

individuals or pairs; and (3) had a reliability of ‘1’ or ‘2’ (see above). We multiplied pairs 

by 2, to represent the estimated population size. If only a population range was given, we 

used the midpoint of the range as the population estimate. 

 

BirdLife International population estimates. We extracted population estimates for 

species from BirdLife International datazone: http://datazone.birdlife.org/home in 

October 2019. These data are compiled by global experts for each species, generally 

representing the best estimate for each species’ global abundance, usually presented in 

standard bands of estimated ranges (e.g., 1-49, 50-249, 250-999, 1,000-2,499, 2,500-

10,000). Sometimes modelled estimates are provided for a species, where available. 

Because we needed to use these data as training inputs, we only used species’ estimates 

that had relatively small ranges (that were < 60,000 square miles), helping the 

computation restrictions of collating eBird data through spatial queries. By incorporating 

these BirdLife population estimates, we broadened our training pool of species to 

http://datazone.birdlife.org/home
http://datazone.birdlife.org/home


 

 

 

 

encompass more rare species as well. Where a standard band estimate was provided, we 

used the midpoint as the species abundance estimate in our modelling.  

 

Estimating relative abundance from eBird data. Initially, we extracted three different 

measures of relative abundance from the eBird dataset for each of the geopolitical 

boundaries (or range size for BirdLife international estimates) which had associated data 

on population abundances from an external source (see SI Methods). This approach 

ensured that the spatial scale of the aggregated eBird data matched those of the 

abundance estimates provided by external sources, and this spatial scale was not uniform 

across species and regions. The three measures of relative abundance we assessed were: 

(1) modelled abundance at a given effort of time and distance; (2) a mean abundance 

across all checklists, including zeros for checklists on which a species was not found; and 

(3) the total abundance summed divided by the total time spent across all eBird 

checklists. For each measure, we used the reported number of individuals for a species on 

an eBird checklist, excluding an observation if it did not provide an estimate of 

abundance. Each variable was calculated by month, for each geo-political boundary, and 

all eBird checklists within that stratification were used for the calculations (i.e., we used 

all complete eBird checklists, as outlined above, regardless of whether they recorded a 

species of interest). This process was repeated for each of the species for which we had 

initial training data (N=724). 

 

To model relative abundance, we used a Generalized Linear Model with a binomial logit 

link where the number of observations was the total number of eBird checklists in that 



 

 

 

 

geo-political region. The response variable was binomial presence/absence, and the 

predictor variables were distance travelled during the eBird checklist and the duration of 

the eBird checklist — two ways to account for the differential effort among eBird 

sampling. We then used this fitted model and predicted the estimated abundance for a 

given 60-minute eBird checklist which travelled 1 km in distance. Initial exploration of 

the three measures of relative abundance revealed relatively strong collinear 

relationships, after removing the small percentage of models that did not converge and 

that had excessive standard errors. After subsetting the data to the months which 

resembled breeding (i.e., May, June, July, and August) or wintering for winter estimates 

in Great Britain, and taking the mean of these variables across any multiple Bird 

Conservation Regions that existed within a state, we found strong collinearity among 

relative abundance estimates from eBird (SI Appendix, Fig. S7). And because fitting 

GLMs on many different datasets would be redundant, we used the simplest measure of 

abundance: the mean abundance across all checklists (#2 in the list above). 

 



 

 

 

 

 
 
 

 
Figure S1. The abundance distributions at the genus, family, and order levels, with their 

associated skewness. Abundances were calculated by adding the species-specific abundance 

estimates for every species belonging to each respective genus, family, and order. 

 



 

 

 

 

 
Figure S2. The results of our resampling approach showing the strong signal in the log left-

skewed abundance distributions from species to order taxonomic levels. Resampling was 

done by randomly sampling quantiles from 0.1 to 0.99 and then calculating the abundance for 

every species using this quantile (as opposed to the median which is used throughout). The 

black dot represents the mean for each taxonomic group. 

 

 



 

 

 

 

 
Figure S3. Results of a bootstrapping analysis (N=10,000) showing the consistent pattern in 

log-left skewness at species, genus, family, and order taxonomic levels. The red line 

represents the mean skewness family for the respective taxonomic level. These results 

confirm that of our resampling approach presented in Figure S2. 

 



 

 

 

 

 
Figure S4. The abundance of species within genera with both a top-10 most abundant species 

and a species richness of greater than 5, illustrating that even abundant clades can have 

exceptionally rare species (e.g., Turdus). 

 

 

 

 



 

 

 

 

 
Figure S5. Scatterplot showing the relationship between family-level (top) and order-level 

(bottom) abundance measures calculated in two different manners. First, on the x-axis, 

abundance is calculated by using the species-specific abundance estimate (i.e., the median of 

a species’ abundance distribution), and second, on the y-axis, abundance is calculated by 

summing the abundance distributions for each species within a category and taking the 

median of the summed abundance distribution. 

 

 

 



 

 

 

 

 
Figure S6. The relationship between global abundance, body mass, and range size, showing a 

slightly positive relationship. The black line represents a 2D density plot of the data. Data are 

shown for 7,717 species. 

 

 



 

 

 

 

 
Figure S7. The relationship between our three potential measures of relative abundance from 

eBird, taken as the mean for each species (N=724). For each measure, the average is taken 

over the time corresponding to the abundance measures (for Birdlife species, the relative 

abundance measures are averaged over the entire year; for Partners in Flight species, the 

relative abundance estimates are averaged over the breeding season; for British estimates the 

relative abundance was averaged over either the breeding season or the wintering season). 

For the modelled estimates, models which did not converge or were below the 0.1 and above 

the 0.99 quantile of model fit were excluded from comparisons. Because of the strong 

collinearity among all three measures, we used the mean abundance across all checklists as 

our relative abundance measure throughout our analysis. 

 

 



 

 

 

 

 
Figure S8. The distribution of areas used to calculate relative abundance for our 724 initial 

training species. 

 

 



 

 

 

 

 
Figure S9. The relationship between observed density and eBird relative abundance for 724 

training species used in our brms modelling process (see methods). The orange lines 

represent 20 posterior draws from the model fit representing the fixed effects. Note that for 

species with 0 relative abundance, we set these to the minimum log10 relative abundance in 

our dataset, at ~ -4.5. 

 



 

 

 

 

 
Figure S10. A histogram showing the number of data points, per species, used in the 

analysis. Most species had 1 observation in the brms model (see Figure S8), but some species 

(i.e., those from the United States) had relatively many data points in the model (see Figure 

S11). 

 

 

 



 

 

 

 

 
Figure S11. Four example species, showing the relationship between eBird relative 

abundance (i.e., the mean abundance across all checklists) and the observed density (i.e., 

extracted from the Partners in Flight database). Both variables are log10-transformed. 

 

 



 

 

 

 

 
Figure S12. The results of the brms model for intercepts, and slopes, extracted for all 724 

species used in our training dataset.  

 

 



 

 

 

 

 
Figure S13. The four example species previously highlighted in Figure S10, showing the 

relationship between predicted density and observed density, and the number of observations 

for each independent data point used in the brms modelling. We did this for every species, 

and calculated the total abundance, and these results are shown in Figure S14. 

 



 

 

 

 

Figure S14. The relationship between predicted population estimates, using our intercept and 

slope extracted from the brms model (see methods), and the observed population estimate. 

The orange line represents a linear model fit, whereas the blue line represents a line with 

slope=1 and intercept = 0. Overall, we found that our brms modelling strongly predicted the 

observed population estimate (R2=0.88). 

 



 

 

 

 

Figure S15. A) The 5-degree grid cells used in our analysis and all grids which have at least 

one eBird checklist, and B) the 5-degree grid cells used in our analysis, showing grids which 

have at least 50 eBird checklists within at least one month. Only grids in B) were used in 

analysis to calculate relative abundance. 

 



 

 

 

 

 
Figure S16. A) The number of eBird checklists per grid, including any grid that had at least 

one eBird checklist, and B) the number of eBird checklists per grid, for all grids with at least 

50 eBird checklists in at least one month (Figure S14), which were used in analyses. 

 

 



 

 

 

 

 
Figure S17. The number of 5x5 degree grids that our training species (A) were found in and 

all species included in our analysis were found in (B). 

 

 

 



 

 

 

 

 
Figure S18. The relationships for 684 species, between intercept and slope of the brms model 

and life history traits used in the imputation. From left to right across the top, the following 

categories are represented: mass_log10, flock_size_log10, IUCN_ordinal, intercept, slope, 

intercept_se, slope_se, max_distance_log10, max_brightness_log10. And from top to bottom 

across the right hand side the following are represented: mass_log10, flock_size_log10, 

IUCN_ordinal, intercept, slope, intercept_se, slope_se, max_distance_log10, 

max_brightness_log10. The figure was made using ggpairs from the GGally package in R. 

 

 



 

 

 

 

 
Figure S19. The pairwise relationships for the training data used in the imputation. Pairwise 

complete observations are shown. IUCN is an ordinal variable. 

 

 



 

 

 

 

 
Figure S20. Density histograms showing the density of observations for both the density 

estimate of birds (left) and the standard error of the density estimate of birds (right) for both 

the observed values used in imputation (blue dashed line) and imputed values for ten random 

imputations (red lines). The similarity in observed and imputed density histograms indicates 

that the imputation produced plausible values statistically. 

 

 



 

 

 

 

 
Figure S21. Twelve example species showing their observed density estimate per grid cell 

(red dot) and the range of imputed density estimates across 10 imputations (black line). 

 



 

 

 

 

 
Figure S22. The relationship between observed density and the mean imputed density among 

ten imputations for each unique species x grid combination (left panel) and for each species’ 

mean density across all grids (right panel). 

 

 



 

 

 

 

 
Figure S23. The relationship between density in a grid cell and the ‘weights’ used to 

calculate the weighted density. Weights were defined as the total number of checklists a 

species was found on divided by the total number of checklists in a grid cell. For a species 

found in more than one grid cell, the overall density of that species (Figure S17) was 

calculated by taking the weighted mean, providing more confidence to grid cells where the 

species is most frequently observed and grid cells that have more checklists in them. 

 



 

 

 

 

 
Figure S24. The distribution of weighted densities for 9,700 species (on a log10 scale). The 

weighted density was calculated by weighting the density estimates by the number of 

checklists a species was on divided by the number of total checklists in a grid cell (see Figure 

S23). 

 



 

 

 

 

 
Figure S25. The distribution of standard errors of our density estimates, where we set a ridge 

prior of 1, equating to a maximum of 91 individuals more per square mile. 

 

 



 

 

 

 

 
Figure S26. The range of the Red-bellied Myzomela, an endemic species to Malaita, 

Solomon Islands, and the corresponding grid cell that species belongs to. In this instance, the 

species’ range was clipped from the grid range to the species’ range size. 

 



 

 

 

 

 
Figure S27. Ten randomly chosen example species and their estimates of abundance 

distributions from our analysis for the full model when all 684 species were included as 

training species (red) and when that species was withheld as a training species. 

 

 



 

 

 

 

 
Figure S28. The relationship between predicted global abundance from our full model 

workflow (x-axis) and predicted global abundance when a species was not included as a 

training species (y-axis), for 684 species. 



 

 

 

 

Dataset S1 (separate file). Each of the 9,700 species included in our analysis, and their 

abundance estimate, with 95% upper and lower confidence intervals. We also note 

whether or not a species was a training species and whether or not the range of each 

species was adjusted (see methods for details). 
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