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Supporting Information Text12

Model reformulation and analysis13

The stage-structured model in terms of the juvenile and adult densities Ji and Ai, respectively, can be reformulated into a14

model in terms of the total number of individuals of species i and the fraction of juveniles in the population of species i. Define15

Ci as the total density, Ci = Ji + Ai, and Zi as the fraction of juveniles of species i, Zi = Ji/Ci. Using these alternative16

model variables the functional response value for the basal species can be written as:17

F1 = P

δ + α1 (qZ1 + (2− q)(1− Z1))C1
[1]18

and the encounter rate of all non-basal species with their prey as19

Ei =
∑
k<i

ψik (φZk + (2− φ)(1− Zk))Ck [2]20

From the ordinary differential equations (ODEs) for the juvenile and adult densities Ji and Ai presented in the Materials21

and Methods section, the following system of ODEs for the alternative model variables Ci and Zi can then be derived through22

analytical manipulation:23

dCi
dt

= bi(Fi)(1− Zi)Ci − µiCi24

− (φZi + (2− φ)(1− Zi))Ci
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
[3]25

dZi
dt

= bi(Fi)(1− Zi)2 −mi(Fi)Zi26

−2(φ− 1)(1− Zi)Zi
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
[4]27

Model simplification in case of ontogenetic symmetry. Assuming ontogenetic symmetry in ingestion and per-capita predation28

risk between juveniles and adults is equivalent to setting both q and φ equal to 1, which simplifies the per-capita reproduction29

and maturation rate to:30

bi(Fi) = mi(Fi) = max (γiFi − Ti, 0)31

while the expressions for the encounter rate of non-basal species with their prey, Ei, equals:32

Ei =
∑
k<i

ψikCk [5]33

The functional response for species i is hence given by:34

Fi =


P

δ + α1C1
i = 1∑

k<i
ψikCk

Hi +
∑

k<i
ψikCk

otherwise
[6]35

The equations describing the dynamics of total species densities Ci and fractions of juveniles Zi therefore simplify to:36

dCi
dt

= max (γiFi − Ti, 0) (1− Zi)Ci − µi Ci −
∑
k>i

αkψki
Ck

Hk + Ek
Ci [7]37

dZi
dt

= max (γiFi − Ti, 0)
(
1− 3Zi + Z2

i

)
[8]38

For all populations (basal and non-basal) the dynamics of the fraction of juveniles Zi hence follows a separable function,39

consisting of a factor max (γiFi − Ti, 0) that only depends on the total species densities Ci and a factor
(
1− 3Zi + Z2

i

)
that only40

depends on the fraction of juveniles Zi. Irrespective of the fluctuations in the total species densities Ci, the fraction of juveniles41

in each population will therefore approach the unique root in the interval [0,1] of the quadratic condition
(
1− 3Zi + Z2

i

)
= 042

for t→∞, i.e. approach the constant value:43

Z = 3
2 −

1
2
√

5 ≈ 0.38 [9]44

In the long run the dynamics of this juvenile-adult abundance model are therefore captured by a model that only considers45

total species abundances:46

dCi
dt

= max (γiFi − Ti, 0) (1− Z)Ci − µi Ci −
∑
k>i

αkψki
Ck

Hk + Ek
Ci [10]47

with Ei and Fi given by Eq. (5) and Eq. (6), respectively.48
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Computing eigenvalues of the stage-structured model. To verify the local stability of the community states that appear to be49

stable based on numerical simulations I compute the eigenvalues characterising the dynamics in the neighbourhood of the50

equilibrium using the Jacobian matrix. In the neighbourhood of an equilibrium of the stage-structured model persistence51

of a species in the community guarantees that starvation does not occur for the juveniles nor the adults. In such a close52

neighbourhood of an equilibrium state the reproduction and maturation rate of adult and juvenile consumers are therefore53

necessarily positive, such that54

bi(Fi) = max ((2− q)γiFi − Ti, 0) = (2− q)γiFi − Ti [11]55

mi(Fi) = max (qγiFi − Ti, 0) = qγiFi − Ti [12]56

The dynamics of the total species densities Ci and the fraction of juveniles in the populations Zi can then be described by57

simplified versions of the ODEs. (3) and (4):58

dCi
dt

= ((2− q)γiFi − Ti) (1− Zi)Ci − µiCi59

− (φZi + (2− φ)(1− Zi))Ci
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
[13]60

dZi
dt

= ((2− q)γiFi − Ti) (1− Zi)2 − (qγiFi − Ti)Zi61

−2(φ− 1)(1− Zi)Zi
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
[14]62

The whole system of differential equations can be summarised as:63

dC
dt

= K (C,Z) [15]64

dZ
dt

= L (C,Z) [16]65

in which C and Z are the vectors of total species abundances and fractions of juveniles in all populations, respectively. The66

vector-valued functions K(C,Z) and L(C,Z) contain the right-hand side of the ODEs dCi/dt (13) and dZi/dt (14) for the67

species-density subsystem, respectively.68

For a community with m species the Jacobian matrix of this model is a 2m× 2m matrix J of the form:69

J =

 ∂K
∂C

∂K
∂Z

∂L
∂C

∂L
∂Z

 =

 V1 + W1 V2 + W2

V3 + W3 V4 + W4

 [17]70

Each of the 4 parts of J is a m ×m matrix containing the partial derivatives of the functions K(C,Z) and L(C,Z) with71

respect to the total species densities (C1, . . . , Cm) and fractions of juveniles (Z1, . . . , Zm). V1, V2, V3 and V4 are 4 m×m72

matrices that capture the direct effects of two species in the community on each other, while W1, W2, W3 and W4 are 473

m×m matrices that capture the indirect effects between two species that operates through a third species. More specifically,74

indirect effects occur between species because changes in the total density Cj and the fraction of juveniles Zj influence the75

encounter rate Ek of a consumer species k, which in turn affects the predation rate of species k on species i (last summation76

terms in ODEs above). Indirect effects hence involve interactions between a predator species k and two of its prey species with77

indices i and j.78

The elements of the matrices V1, V2, V3 and V4 are defined as:79

V 1
i,j = d

dCj
(dCi/dt) , V 2

i,j = d

dZj
(dCi/dt) , V 3

i,j = d

dCj
(dZi/dt) , V 4

i,j = d

dZj
(dZi/dt)80

Notice however that the derivatives with respect to Cj and Zj in these expressions are evaluated while ignoring the indirect81

effects that will be captured by the matrices W1, W2, W3 and W4, that is, while treating the quantities Ek in the predation82

mortality terms (last summation terms in ODEs (13) and (14)) as constants.83
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The entries V 1
ij are given by:84

V 1
ij =



(
(2− q)γ1

δF 2
1

P
− T1

)
(1− Z1)− µ1

− (φZ1 + (2− φ)(1− Z1))
∑
k>1

αkψk1
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
i = j = 1

((2− q)γiFi − Ti) (1− Zi)− µi

− (φZi + (2− φ)(1− Zi))
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
i = j 6= 1

−αjψji
(qZj + (2− q)(1− Zj))

Hj + Ej
(φZi + (2− φ)(1− Zi))Ci i < j

(2− q)γi
Hi

(Hi + Ei)2ψij (φZj + (2− φ)(1− Zj)) (1− Zi)Ci i > j

[18]85

In the above expressions for the matrix elements V 1
ij with i > j I have used the identities86

dFi
dCj

= dFi
dEi

dEi
dCj

= Hi
(Hi + Ei)2

dEi
dCj

= Hi
(Hi + Ei)2ψij (φZj + (2− φ)(1− Zj))87

and88

d(F1C1)
dC1

= d

dC1

PC1

δ + α1 (qZ1 + (2− q)(1− Z1))C1
89

= δP

(δ + α1 (qZ1 + (2− q)(1− Z1))C1)290

= δF 2
1

P
91

In an equilibrium state all per-capita growth rates (dCi/dt)/Ci vanish such that the entries of the matrix V1 simplify to:92

V 1
ij =



(2− q)γ1

(
δF1

P
− 1
)
F1(1− Z1) i = j = 1

0 i = j 6= 1

−αjψji
(qZj + (2− q)(1− Zj))

Hj + Ej
(φZi + (2− φ)(1− Zi))Ci i < j

(2− q)γi
Hi

(Hi + Ei)2ψij (φZj + (2− φ)(1− Zj)) (1− Zi)Ci i > j

[19]93

The entries V 2
ij are given by:94

V 2
ij =



−
(

(2− q)γ1
(δ + α1qC1)F 2

1

P
− T1

)
C1

−2(φ− 1)C1
∑
k>1

αkψk1
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
i = j = 1

− ((2− q)γiFi − Ti)Ci

−2(φ− 1)Ci
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
i = j 6= 1

−αjψji
2 (q − 1)Cj
Hj + Ej

(φZi + (2− φ)(1− Zi))Ci i < j

(2− q)γi
Hi

(Hi + Ei)2ψij2 (φ− 1)Cj(1− Zi)Ci i > j

[20]95

To derive the expressions for the matrix elements V 2
ij with i > j I have used the identities96

dFi
dZj

= dFi
dEi

dEi
dZj

= Hi
(Hi + Ei)2

dEi
dZj

= Hi
(Hi + Ei)2ψij2 (φ− 1)Cj97

4 of 21 André M. de Roos



and98

d(F1(1− Z1))
dZ1

= d

dZ1

P (1− Z1)
δ + α1 (qZ1 + (2− q)(1− Z1))C1

99

= − (δ + α1qC1)P
(δ + α1 (qZ1 + (2− q)(1− Z1))C1)2100

= − (δ + α1qC1)F 2
1

P
101

The entries V 3
ij are given by:102

V 3
ij =



−γ1
α1 (qZ1 + (2− q)(1− Z1))F 2

1

P

(
(2− q)(1− Z1)2 − qZ1

)
i = j = 1

0 i = j 6= 1

−αjψji
(qZj + (2− q)(1− Zj))

Hj + Ej
2(φ− 1)(1− Zi)Zi i < j

γi
Hi

(Hi + Ei)2ψij (φZj + (2− φ)(1− Zj))
(
(2− q)(1− Zi)2 − qZi

)
i > j

[21]103

To derive the expressions for the matrix elements V 3
ij with i = j = 1 I have used the identity104

dF1

dC1
= d

dC1

P

δ + α1 (qZ1 + (2− q)(1− Z1))C1
105

= − α1 (qZ1 + (2− q)(1− Z1))P
(δ + α1 (qZ1 + (2− q)(1− Z1))C1)2106

= −α1 (qZ1 + (2− q)(1− Z1))F 2
1

P
107

Finally, the entries V 4
ij are given by:108

V 4
ij =



−γ1
2α1 (q − 1)C1F

2
1

P

(
(2− q)(1− Z1)2 − qZ1

)
−2 ((2− q)γ1F1 − T1) (1− Z1)− (qγ1F1 − T1)

−2(φ− 1)(1− 2Z1)
∑
k>1

αkψk1
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
i = j = 1

−2 ((2− q)γiFi − Ti) (1− Zi)− (qγiFi − Ti)

−2(φ− 1)(1− 2Zi)
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
i = j 6= 1

−αjψji
2 (q − 1)Cj
Hj + Ej

2(φ− 1)(1− Zi)Zi i < j

γi
Hiψij2 (φ− 1)Cj

(Hi + Ei)2

(
(2− q)(1− Zi)2 − qZi

)
i > j

[22]109

The derivation of the expressions for the matrix elements V 4
ij with i = j = 1 is based on the identity110

dF1

dZ1
= d

dZ1

P

δ + α1 (qZ1 + (2− q)(1− Z1))C1
111

= − 2α1 (q − 1)C1P

(δ + α1 (qZ1 + (2− q)(1− Z1))C1)2112

= −2α1 (q − 1)C1F
2
1

P
113

As explained above, indirect effects occur between species because changes in the total density Cj and fraction of juveniles114

Zj influence the encounter rate Ek of a consumer species k, which in turn affects the predation rate of species k on species i.115
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These indirect effects therefore always arise because of the summation terms representing predation mortality in eqs. (13) and116

(14). In the predation rate of species k only the term 1/(Hk +Ek) depends on the total density Cj and the fraction of juveniles117

Zj of species j and the derivatives of this term with respect to Cj and Zj equal118

− 1
(Hk + Ek)2ψkj (φZj + (2− φ)(1− Zj))119

and120

− 1
(Hk + Ek)2ψkj2 (φ− 1)Cj121

respectively. The elements of the matrices W1, W2, W3 and W4 are hence defined as:122

W 1
i,j = (φZi + (2− φ)(1− Zi))Ci (φZj + (2− φ)(1− Zj))

∑
k>i

αkψkiψkj
(qZk + (2− q)(1− Zk))Ck

(Hk + Ek)2123

W 2
i,j = (φZi + (2− φ)(1− Zi))Ci 2(φ− 1)Cj

∑
k>i

αkψkiψkj
(qZk + (2− q)(1− Zk))Ck

(Hk + Ek)2124

W 3
i,j = 2(φ− 1)(1− Zi)Zi (φZj + (2− φ)(1− Zj))

∑
k>i

αkψkiψkj
(qZk + (2− q)(1− Zk))Ck

(Hk + Ek)2125

W 4
i,j = 2(φ− 1)(1− Zi)Zi 2(φ− 1)Cj

∑
k>i

αkψkiψkj
(qZk + (2− q)(1− Zk))Ck

(Hk + Ek)2126

Note that i and j may be equal to each other as changes in the total density of Ci and the fraction of juveniles Zi change the127

predation rate of species k on species i through a change in the functional response of species k, which effect is not captured128

by the matrices V1, V2, V3 and V4. Furthermore, note that all elements W 1
ij are positive for species that are exposed to129

predation and equal to 0 only for top predators. Together with the fact that V 1
ii = 0 for i 6= 0 this implies that the effect of130

species density Ci on its own rate of change dCi/dt is 0 for top predators and positive for all non-basal species experiencing131

predation.132

All communities resulting from the stage-structured model with asymmetry in feeding and predation between juveniles and133

adults (q = 0.7, φ = 1.8) for which the minimum and maximum values of the total species density differed less than 10−6 from134

each other for all species were considered stable. All communities for which the minimum and maximum values of total species135

density differed more than 10−6 from each other for at least 1 species, were considered unstable (cycling) communities. For136

both stable and unstable communities the average total abundance and fraction of juveniles observed in the simulation were137

used as starting values to numerically solve for the equilibrium state using the package ‘rootSolve’ (1, 2) in R (3). For all138

115 stable communities the equilibrium community state was successfully located and was numerically indistinguishable from139

the average densities and juvenile fractions observed in the numerical simulations. For 147 communities that were considered140

unstable (cycling) the numerical solution procedure also converged to an equilibrium community state with all species present,141

while for 238 unstable communities the numerical solution procedure did not converge to such an equilibrium state.142

For all communities, for which the equilibrium state was successfully located, the Jacobian matrix J was evaluated by143

substituting for all species the equilibrium values for the total abundance and fraction of juveniles as well as all general and144

species-specific parameters into the matrices V1, V2, V3, V4, W1, W2, W3 and W4. The eigenvalues of the Jacobian matrix145

J (see Eq. (17)) were subsequently computed numerically using the routine eigen() in R (3). These calculations of the Jacobian146

matrix based on the analytical expressions for the matrices V1, V2, V3, V4, W1, W2, W3 and W4 were verified by also147

computing the Jacobian matrix numerically using central differencing methods applied to the right-hand side of the ODEs (13)148

and (14) for dCi/dt and dZi/dt.149

For both stable and unstable communities the largest real part among the eigenvalues (i.e. the real part of the dominant150

eigenvalue) is shown in Fig. S4. For stable communities this real part was always negative, ranging between -0.061 and151

−9.8 · 10−5. For unstable communities this real part was always positive, ranging between 1.3 · 10−4 and 0.124.152

Sources of community stability. For stable communities the effect of dynamic changes in population stage-structure (i.e. changes153

in the juvenile-adult ratio) on the stability of the community equilibrium was evaluated further. The dominant eigenvalues154

computed for these communities were compared with the eigenvalues of the top-left submatrix of J , that is the m×m matrix155

∂K/∂C of these communities. The latter matrix determines the stability of the species-density subsystem on its own with the156

juvenile fraction of each species equal to its equilibrium value. More specifically, this reduced model of the species-density157

subsystem on its own is described by the same dynamic equations for the total species densities as in the full model (Eq. (13)),158

but with the fraction of juveniles Zi in the populations taken constant over time and equal to the fraction of juveniles of the159
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species at equilibrium Z̃i:160

dCi
dt

= ((2− q)γiFi − Ti) (1− Z̃i)Ci − µiCi161

−
∑
k>i

αkψki

(
φZ̃i + (2− φ)(1− Z̃i)

)
Ci

Hk + Ek

(
qZ̃k + (2− q)(1− Z̃k)

)
Ck [23]162

Comparing the eigenvalues of this reduced model with the eigenvalues of the full model, in which the juvenile fraction in the163

population Zi is dynamic and changes at the same time scale as the total species density, reveals the impact of dynamic changes164

in the population structure of the species on the stability of the community equilibrium. The eigenvalues of the reduced model165

can be computed from its Jacobian matrix which equals the matrix ∂K/∂C = V1 + W1. This matrix corresponds to the166

community matrix with elements ∂(dCi/dt)/∂Cj that captures the per-capita effect of the species in the community on each167

other’s growth rate and determines stability in community models without population structure.168

To further assess the differences between constant and a dynamic juvenile fraction in the population, for all stable communities169

resulting from the stage-structured model with asymmetry in feeding and predation between juveniles and adults (q = 0.7,170

φ = 1.8) community dynamics were computed starting from the equilibrium community state using the reduced model including171

the differential equations dCi/dt for the species-density subsystem only (Eq. (23)), with the juvenile faction Zi in each of172

the populations taken equal to its equilibrium value inferred from the stable community state (see Fig. 4C, top-left panel,173

in the main text and Fig. S6). Similarly, community dynamics were computed with an age-structured analogue of the full174

model. This age-structured model includes differential equations dCi/dt for the species-density subsystem and dZi/dt for the175

species-structure subsystem, but substitutes the juvenile maturation rate mi(Fi) for each of the species in the community with176

a constant value. This constant value is equal to the maturation rate that juveniles of the species experience in the community177

equilibrium and is indicated with m̃i. Dynamics are then described by the equations:178

dCi
dt

= bi(Fi)(1− Zi)Ci − µiCi179

− (φZi + (2− φ)(1− Zi))Ci
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
[24]180

dZi
dt

= bi(Fi)(1− Zi)2 − m̃iZi181

−2(φ− 1)(1− Zi)Zi
∑
k>i

αkψki
(qZk + (2− q)(1− Zk))Ck

Hk + Ek
[25]182

The simulations with this age-structured analogue were also started from the equilibrium community state (see Fig. 4C, top-right183

panel, in the main text and Fig. S6). For comparison, community dynamics were also computed with the full model including184

the differential equations dCi/dt for the species-density subsystem (Eq. (3)) and dZi/dt for the species-structure subsystem185

(Eq. (4)) starting from a community state in which the initial density of each species was exactly 50% of its equilibrium value186

inferred from the stable community state (see Fig. 4C, bottom panel in the main text and Fig. S6).187

Extent of self-regulation. For stable communities the extent of self-regulation of species is assessed with the diagonal elements188

of the community matrix, the m×m matrix ∂K/∂C (Eq. (17)), which measures the positive or negative effect of the total189

species abundance Ci on its own rate of change dCi/dt (Fig. S5).190

Stage-structured biomass model of species dynamics191

To check the robustness of the results obtained with the stage-structured model in terms of juvenile and adult numerical192

densities, numerical simulations of community dynamics were also carried out, using a stage-structured biomass model for193

species dynamics (4). More specifically, each species was represented by 3 life history stages, referred to as juveniles, subadults194

and adults. Such a stage-structured biomass model (4) constitutes an approximation to a size-structured population model195

that accounts for a complete size distribution of individuals between their size at birth and size at maturation, in which the196

rates of feeding, metabolic maintenance, somatic growth, and reproduction all scale linearly with individual body size (5).197

Juvenile and subadult individuals are assumed to use their net-energy production (the difference between assimilation and198

metabolic maintenance rate) for somatic growth, whereas adults are assumed not to grow and use their net-energy production199

for reproduction. Dynamics are in terms of juvenile, subadult and adult biomass densities, indicated with Ji, Si and Ai,200

respectively.201

In the absence of predation the life history processes in the stage-structured biomass model are described by the following202
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mass-specific rate functions:203

Juvenile somatic growth gJi (Fi) = max ((2− q)γiFi − Ti, 0) [26]204

Subadult somatic growth gSi (Fi) = max (qγiFi − Ti, 0) [27]205

Adult reproduction bi(Fi) = max ((2− q)γiFi − Ti, 0) [28]206

Juvenile mortality dJi (Fi) = µi −min ((2− q)γiFi − Ti, 0) [29]207

Subadult mortality dSi (Fi) = µi −min (qγiFi − Ti, 0) [30]208

Adult mortality dAi (Fi) = µi −min ((2− q)γiFi − Ti, 0) [31]209

Juvenile maturation mJ
i (Fi) =


gJi (Fi)−DJ

i

1− z1−DJ
i
/gJ

i
(Fi)

if gJi (Fi) > 0

0 otherwise
[32]210

Subadult maturation mS
i (Fi) =


gSi (Fi)−DS

i

1− z1−DS
i
/gS

i
(Fi)

if gSi (Fi) > 0

0 otherwise
[33]211

In these equations Fi represents the functional response of species i, which for the basal species equals:212

F1 = P

δ + α1 ((2− q) J1 + q S1 + (2− q)A1) [34]213

The parameter q in this expression determines the asymmetry in feeding capacity between juveniles, subadults and adults (for214

the purpose of this study taken the same for all species). Non-basal species forage following a type II functional response:215

Fi = Ei
Hi + Ei

[35]216

in which Ei represents the encounter rate of non-basal species i with prey biomass:217

Ei =
∑
k<i

ψik (φJk + (2− φ)Sk + (2− φ)Ak) [36]218

The parameter φ represents the bias of the consumer species toward feeding on juvenile as opposed to subadult and adult prey219

(for the purpose of this study taken the same for all species). Notice that all species are ordered according to their body size220

and hence species i can only feed on species with an index k < i.221

The parameter Ti in the life history functions (26)-(33) represents the (mass-specific) loss rate through metabolic maintenance222

requirements, while the parameter µi represents the background mortality. The parameter γi determines the maximum223

assimilation rate per unit biomass, while the parameter z equals the ratio between the body size at entering and leaving each224

of the immature stages (the juvenile and subadult stage). The parameters γi, q and Ti also determine the minimum food225

availability that is needed by juveniles, subadults and adults to just keep itself alive without producing any offspring and226

without maturing.227

DJ
i and DS

i indicate the total mortality rate experienced by juvenile and subadult individuals, respectively, which in the228

absence of predation equals µi, but in the presence of predation also includes the predation mortality (see below; note that229

DJ
i and DS

i do not include starvation mortality as starvation mortality only occurs when gJi (Fi) = 0 or gSi (Fi) = 0, in which230

case mJ
i (Fi) = 0 and mS

i (Fi) = 0, respectively). Equations (28), (26), (27), (32) and (33) express that adult reproduction,231

juvenile and subadult growth in body size and juvenile and subadult maturation come to a halt under starvation conditions,232

which for juveniles, subadults and adults occur when (2− q)γiFi < Ti, qγiFi < Ti and (2− q)γiFi < Ti, respectively. Under233

these starvation conditions juveniles, subadults and adults experience increased mortality (Eqs. (29), (30) and (31)). The234

mass-specific juvenile and subadult maturation rates depends on both juvenile and subadult growth rate in body size as well235

as total juvenile and subadult mortality, DJ
i and DS

i , respectively. The functional form of the maturation rates mJ
i (Fi) and236

mS
i (Fi) is chosen such that any equilibrium state predicted by the stage-structured biomass model corresponds uniquely to237

an equilibrium state of a structured model that accounts for a complete size distribution of individuals between their size at238

birth and size at maturation, in which the rates of feeding, metabolic maintenance, somatic growth, and reproduction all scale239

linearly with individual body size (5).240

A representation of each species by 3 life history stages with the smallest juveniles most vulnerable to predation mortality241

and the maturation of the larger immature individuals limited most by food availability was chosen because the dynamics of242

such a 3-stage biomass model has been found to closely resemble the dynamics of population models with a complete size243

distribution that are based on a dynamic energy budget model for the individual energetics (6). Similar results as presented in244

Fig. S7, S8 and S9 have, however, also been obtained using a stage-structured biomass model with only a single juvenile and245

adult life history stage to describe species dynamics.246
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The dynamics of the juvenile, subadult and adult biomass densities of all species in the community are now described by247

the following set of ordinary differential equations (ODEs):248

dJi
dt

= bi(Fi)Ai + gJi (Fi)Ji −mJ
i (Fi)Ji − dJi (Fi)Ji − φJi

∑
k>i

αkψki
(2− q)Jk + qSk + (2− q)Ak

Hk + Ek
[37]249

dSi
dt

= mJ
i (Fi)Ji + gSi (Fi)Si −mS

i (Fi)Si − dSi (Fi)Si − (2− φ)Si
∑
k>i

αkψki
(2− q)Jk + qSk + (2− q)Ak

Hk + Ek
[38]250

dAi
dt

= mS
i (Fi)Si − dAi (Fi)Ai − (2− φ)Ai

∑
k>i

αkψki
(2− q)Jk + qSk + (2− q)Ak

Hk + Ek
[39]251

In these equations Ek and Hk represent the encounter rate with prey and the half-saturation density in the functional response252

of species k, respectively (Eq. (36)), while the parameters q and φ represent the asymmetry in foraging rate and predation risk,253

respectively, between juvenile, subadult and adult individuals. The default values for these parameters equal 1, implying that254

all 3 stages have identical life history rates (q = 1) and that consumers feed indiscriminately on juveniles, subadults and adults255

of their prey species (φ = 1). Finally, the parameter αk represents the maximum (mass-specific) foraging rate of consumer256

species k.257

Given the above equations, the total juvenile mortality rate, on which the maturation rate (Eq. (32)) of juvenile into258

subadult biomass depends, is the sum of background (but not starvation) mortality and predation mortality:259

DJ
i = µi + φ

∑
k>i

αkψki
(2− q)Jk + qSk + (2− q)Ak

Hk + Ek
[40]260

Starvation mortality is excluded from DJ
i because the maturation rate equals 0 under starvation conditions. Analogously, the261

total subadult mortality rate, on which the maturation rate (Eq. (33)) of subadult into adult biomass depends, is the sum of262

background (but not starvation) mortality and predation mortality:263

DS
i = µi + (2− φ)

∑
k>i

αkψki
(2− q)Jk + qSk + (2− q)Ak

Hk + Ek
[41]264

Model parameterisation and numerical simulation details. Parameterisation of the stage-structured biomass model follows the265

same procedure as the stage-structured model in terms of juvenile and adult abundance (see Materials and Methods). In short,266

half-saturation prey densities Hi for non-basal species are sampled from a uniform distribution on the interval [0.5, 2.5]. The267

ratio between the smallest and the largest body size in each of the two immature life stages, z, that occurs in the maturation268

rates of the stage-structured biomass model (Eq. (32)) and (Eq. (33)), is for all species taken the same and equal to z = 0.1.269

Individuals are hence assumed to grow 2 orders of magnitude in body size between birth and maturation. The parameters αi,270

γi, Ti and µi all represent (mass-specific) rates and are assumed to scale with w−0.25
i following the equations:271

αi = α0
(
1 + 2σα

(
xi1 − 1

2

))
w−0.25
i [42]272

γi = γ0
(
1 + 2σγ

(
xi2 − 1

2

))
w−0.25
i [43]273

Ti = T0
(
1 + 2σT

(
xi3 − 1

2

))
w−0.25
i [44]274

µi = µ0
(
1 + 2σµ

(
xi4 − 1

2

))
w−0.25
i [45]275

The default mean values of the species-specific parameters equal α0 = 1.0, γ0 = 0.6, T0 = 0.1 and µ0 = 0.015 (6), while the276

species-specific parameters αi, γi, Ti and µi are randomly selected from a Bates distribution of degree 3 around these mean277

values. A Bates distribution is the continuous probability distribution of the mean, X, of 3 independent uniformly distributed278

random variables on the unit interval. Random values from this distribution range between 0 and 1 with mean value of 1/2279

and are easily generated by taking the mean of 3 independent samplings from a uniform distribution on the unit interval [0, 1].280

The quantities xij are independent realisations of the random variable X, while σα, σγ , σT and σµ represent the one-sided,281

relative width of the distributions of the species-specific parameters αi, γi, Ti and µi, respectively, around the mean values282

α0 = 1.0, γ0 = 0.6, T0 = 0.1 and µ0 = 0.015. Default values for these relative widths equal 0.1, such that all species-specific283

parameters αi, γi, Ti and µi range between 0.9 and 1.1 times their default mean value and follow hump-shaped distributions284

within these ranges. The productivity P and turn-over rate δ of the exclusive resource of the basal species are taken equal285

to 60 and 2.0, respectively, in all computations. The two remaining parameters, the foraging asymmetry parameter q and286

the predation asymmetry parameter φ, in the model are varied between the different computations to assess their effect on287

community dynamics.288

As described in the Materials and Methods section food webs are generated by selecting N = 500 random niche values ni289

uniformly from the interval [0, 1] and associated with species body mass following wi = (wmax)ni (wmin)(1−ni). Subsequently,290

the network of feeding interactions between these N = 500 species is constructed by generating for each non-basal species291

the midpoint of its feeding niche ci following the procedure and default values for the mean prey-predator body mass ratio292
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described in the Materials and Methods and Fig. S10. Numerical integrations of the food web with N = 500 species are293

carried out using an adaptive Runge-Kutta (Cash-Karp) method implemented in C. Relative and absolute tolerances during294

the integration equal 1.0 · 10−7 and 1.0 · 10−13, respectively. During the first 104 time units no species are removed from the295

community, even if they attain very low density. For t > 104 each species, whose total biomass density Ji + Si + Ai drops296

below 10−8, is removed from the community. This persistence threshold ensures that the product of the relative tolerance297

(10−7) and the lowest species density (10−8) is larger than the machine precision (equal to 1.11 · 10−16 according to the IEEE298

754-2008 standard in case of double precision). During numerical computations mean and variance as well as the maximum299

and minimum value of the total species biomass Ji + Si +Ai are continuously monitored for all species. The values of these300

measured statistics are reset whenever the community structure changes as one or more species in the community go extinct.301

Numerical integrations are halted whenever the community structure has not changed for 106 time units and no change has302

occurred from one time unit to the next in the values of these statistics (mean, minimum, maximum and variance of total303

species density) for all species in the community.304
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Fig. S1. Juvenile-adult asymmetry increases community diversity – Mean community size (non-basal species only) of 500 replicate food web simulations with juvenile-adult
stage-structure for different values of foraging (q) and predation (φ) asymmetry between juveniles and adults. Larger communities result when predation is stronger on juveniles
than on adults and maturation is more limited by food availability than reproduction.

André M. de Roos 11 of 21



0 20 40 60 80 100

0

10

20

30

40

Co
m

m
un

ity
 s

iz
e

0 20 40 60 80 100

Productivity
Fig. S2. Juvenile-adult asymmetry increases community diversity at all productivities – Boxplot of community sizes at different levels of system productivity P resulting
from 500 replicate food web simulations without (left) and with stage-structure and foraging and predation asymmetry between juveniles and adults (right ; q = 0.7, φ = 1.8,
see Materials and Methods).
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Fig. S3. Juvenile-adult asymmetry increases food web connectivity – Number of prey species (black bars; incoming network node links) and predators (grey bars; outgoing
network node links) for all species in food webs resulting from 500 replicate simulations without (top panel) and with stage-structure and foraging and predation asymmetry
between juveniles and adults (bottom panel; q = 0.7, φ = 1.8).
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Fig. S4. Eigenvalues of the Jacobian matrix with largest real part determining community stability – Real part of the dominant (right-most) eigenvalue of the Jacobian
matrix determining community stability as a function of community size for all stable communities (black dots) and all unstable communities for which the equilibrium could be
solved for numerically (grey symbols) for the stage-structured model in case of foraging and predation asymmetry between juveniles and adults (q = 0.7, φ = 1.8).
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Fig. S5. Juvenile-adult asymmetry stabilises community dynamics without self-regulation – Strength of intra-specific density dependence for basal (bottom) and all
non-basal species (top) in stable communities resulting from food web simulations with the stage-structured model and foraging and predation asymmetry between juveniles
and adults (q = 0.7, φ = 1.8). Intra-specific density dependence is assessed with the diagonal elements of the community matrix, which measures for basal and non-basal
species the negative and positive effect, respectively, of total species abundance on its own rate of change (see Materials and Methods).
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Fig. S6. Dynamic juvenile-adult ratio enforces complex community stability – Frequency distribution of community sizes (non-basal species only; red bars) resulting from
simulations of dynamics for all stable communities generated by the stage-structured model in case of foraging and predation asymmetry between juveniles and adults (q = 0.7,
φ = 1.8) with different model variants (see Materials and Methods and section Sources of community stability above). Top-left panel shows results of the species-density
subsystem on its own with the juvenile-adult ratio for each species constant in time and equal to its equilibrium value when initial species densities are identical to their
equilibrium values. Top-right panel shows results of the coupled species-density and species-structure subsystem with the juvenile maturation rate for each species constant in
time and equal to its equilibrium value when initial species densities are identical to their equilibrium values (These results represent dynamics of an analogous age-structured
model). Bottom panel shows results of the coupled species-density and species-structure subsystem when initial densities for each species are reduced to 50% of their
equilibrium densities. For reference, top and bottom panels also show the frequency distribution of community sizes (non-basal species only; blue bars) resulting from 500
replicate food web simulations without and with stage-structure and foraging and predation asymmetry between juveniles and adults, respectively, that are also presented in
Figure 2 in the main text.
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Fig. S7. Juvenile-adult asymmetry in biomass dynamics increases community diversity – A: Frequency distribution of community sizes (non-basal species only) resulting
from 500 replicate food web simulations using the 3-stage biomass model including juveniles, subadults and adults (see section Stage-structured biomass model of species
dynamics above) when juveniles are most vulnerable to predation and subadults are limited most by food availability (left panel; q = 0.9, φ = 1.8) and when subadults and
adults are more vulnerable to predation and small juveniles and adults are limited most by food availability (right panel; q = 1.2, φ = 0.2). B: Mean community size (non-basal
species only) of 500 replicate food web simulations using the 3-stage biomass model including juveniles, subadults and adults for different values of foraging (q) and predation
(φ) asymmetry.

André M. de Roos 17 of 21



A

B

32 44

57 59 70

86

104

115

122

125

134

147 149

164 178

199

200

214

239

245 264

B

37 58 75 94

101 108 109

115 124

128 130

146

158 169

188

205

207

209

227 239

244

269

270

308 330

B

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0

0.1

0.2

0.3

Degree of node

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fig. S8. Juvenile-adult asymmetry in biomass dynamics increases food web complexity – A: Examples of food webs resulting from simulations using the 3-stage
biomass model including juveniles, subadults and adults (see Stage-structured biomass model of species dynamics above) when juveniles are more vulnerable to predation
and subadults are limited most by food availability (top panel; q = 0.9, φ = 1.8) and when subadults and adults are more vulnerable to predation and small juveniles and
adults are limited most by food availability (bottom panel; q = 1.2, φ = 0.2). Vertical position indicates trophic level. Inner circles indicate the biomass fraction of juveniles
(grey) and total immatures (blue) in the population. Arrow widths indicate the relative feeding preference (ψik , see Materials and Methods) of consumers for a particular prey
species. B: Number of prey species (black bars; incoming network node links) and predators (grey bars; outgoing network node links) for all species in food webs resulting from
500 replicate simulations using the 3-stage biomass model including juveniles, subadults and adults when juveniles are more vulnerable to predation and subadults are limited
most by food availability (top panel; q = 0.9, φ = 1.8) and when subadults and adults are more vulnerable to predation and small juveniles and adults are limited most by food
availability (bottom panel; q = 1.2, φ = 0.2).
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Fig. S9. Juvenile-adult asymmetry in biomass dynamics stabilises community dynamics – A: Examples of total biomass dynamics of all species in food web simulations
using the 3-stage biomass model including juveniles, subadults and adults (see Stage-structured biomass model of species dynamics above) when juveniles are more
vulnerable to predation and subadults are limited most by food availability (top panel; q = 0.9, φ = 1.8) and when subadults and adults are more vulnerable to predation
and juveniles are limited most by food availability (bottom panel; q = 1.2, φ = 0.2). Corresponding food web structures are shown in Figure S8. B: Boxplot of minimum
(blue bars) and maximum total biomass densities (red bars) as a function of community size for all persisting species in 500 replicate food web simulations using the 3-stage
biomass model including juveniles, subadults and adults (see Stage-structured biomass model of species dynamics above) when juveniles are more vulnerable to predation
and subadults are limited most by food availability (top panel; q = 0.9, φ = 1.8) and when subadults and adults are more vulnerable to predation and small juveniles and
adults are limited most by food availability (bottom panel; q = 1.2, φ = 0.2).
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Fig. S10. Construction of the prey-predator mass ratio food web model – Species are randomly assigned niche values ni in the range [0,1]. Niche values are related to
body size wi following wi = (wmax)ni (wmin)1−ni with minimum (wmin) and maximum body size (wmax) equal to 10−8 and 104 gram, respectively. The center ci of
the feeding niche of consumer species is uniformly distributed between ni − 2.5/10log(wmax/wmin) and ni − 0.5/10log(wmax/wmin), yielding median prey-predator
body size ratio between 10−2.5 and 10−0.5. The feeding niche width ri equals 1/10log(wmax/wmin). Consumer species i feeds on all prey species k with body sizes
between (wmax)(ci−ri/2)(wmin)(1−(ci−ri/2)) and (wmax)(ci+ri/2)(wmin)(1−(ci+ri/2)) at a relative feeding rate ψik following a hump-shaped distribution of
prey body size (see Materials and Methods).
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