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1. Regularity Conditions and Asymptotic Proofs

We summarize the regularity conditions as follows:

C.1 The covariate vector X; is in a bounded compact set X in RP.

C.2 The true regression parameter vector By lies in a compact set and ap = Ag(t*) < 0.
C.3 Both T" and C' are absolutely continuous.

C4 E{(¥(Xy;B0,a0) —I; 0 79)(¥(Xy; Bo, ap) — Iy 0 7¢) T} is positive definite.

1/3

C.5 The tuning parameter v — 0 and yn'/® — 0o as n goes to the infinity.

1.1 Proof of Theorem 1

Similar to Lemma 1 in Qin and Lawless (1994), we take the first derivative of the following

function with respect to (3,&,v, a, 1),

3" AXTB ~ og{S(Y.,8) + I(¥: < )] + v

i=1

n K
=) log{1+€"(¥(X;:8,0) ~Lion)} —n ) _p,(Iml).
i=1 k=1
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and have five sets of estimation equations,

e S0(1;, 8)
Sl(/ga€7ljaa77-) - ;A’{Xl_S(O)(Y;HB)—FI/[(Y;<75*)}

1+ ¢{¥(X;;8,0) — o7}
o . V(X 8,0) —LioT
82(57€7V7Q7T) - Z 1 —|—£T{\II(X“,B,CY) _IZ O’T}7

i=1

" AJ(Y; < 1)
83(67577/70477-) = Z{S(O)(Yi,ﬁ) + V](Y; < t*) o C(} )

i=1

RS 70w (X,; B, ) /0 B
848 & v anm) = ;{1+£T{\I’(Xi;,@,a)—lio7'} V}’

_ .y Log
semon) = Y| g ag—gen O

where b(r) = (p)(m])sign(ry), -, 11, (| Jsign(rsc))T and SOt B) = n~ S I(Y; >
t) exp(X7 B)X;. By using Lemma 1 in Qin and Lawless (1994) and arguments in Huang
et al. (2016), we can show that the maximizer of the penalized profile log-likelihood function
n (11), denoted as (B,&,?,E, v), satisfies S;(8,&,v,a,7) =0for j =1,--- 5.

Let the penalized profile log-likelihood function (11) after removing the penalty term
n > n  py(|7]) be ls. Assume (B, &, 7) maximize l5. By the argument of Lemma 1 in Qin
and Lawless (1994), (3, &, ) are in the interior of the ball B, = {(8,a,7) : ||(B,a,T) —
(By, o, To)|| < n~/3} with probability 1. Note that

t2 — 2ay[t] + +*
2(a—1)

(a+ 1)72“

Ity <[t ay) + =

py(t) = It <) — [t| > av).

/3 — oo, thus max{p,(|7|) : |7 — Tho| < n~Y/3} is smaller

By regularity condition C.5, yn
than ming{p, (|7|) : |7& — Tko| > n~Y/3}. This implies that (3, @, 7) are in the interior of the
ball By = {(8,a,7) : [|(B,0,7) — (By, a0, To)|| < C1n~"/*} with probability 1, where C} is

a constant. Given ||(B3,a, T) — (B, @, To)|| < Cin~'/3] similar to the arguments of Owen



(1990) and Qin and Lawless (1994), we have
n -1
£B,a,7) = [% Z{\I’(Xz, B,a) —LorTH{¥(X;;8,a) — L0 T}T]
i=1

X [% Z{\II(XZ,,B, o) —Lot}| +o(n 3 (as.)

= O3 (as.)

It follows that |[(3, &, a, T) — (B, 0, g, T0)|| < Con~/3 holds with Cy being a constant. For

each component of T,

. 1 Z ](Xz S Qk)fk
n 1+ &¢"{¥(X;;8,a0) - Lot}

=1

Since maxy, |Ay| < maxy, & [n 7t Y0 {1+ €H{¥(X;;B,a) — Lot} ! =0, (n13)

- p;(]7k|)sign(7'k) = Ay + By.

x O,(1) = 0,(v), P(maxy, |[Ar] > v/2) — 0. When 1o = 0, |7| < en™ /2, thus we have
p,(I7|) = v, and By, = —p_ (|7|)sign(7i) = —vsign(7x). This implies that sign(7;,) dominates
n~1Ss; asymptotically. As n — oo, with probability tending to one, n=!Ss, < 0 for 7, €
(0,en=Y/3) and n*Ss, > 0 for 73, € (—en™'/3,0). So, 7, =0 (k = 1,--- , K) with probability
tending to one when 7o = 0.

Define Sor. = Sk(8,0,0,0,0), for k£ = 1,2,3,4,5. Let 8 = (3,&,v,«). By using the
same arguments as those on Page 790 of Huang et al. (2016), we can show that 0 satisfies
S;(8,&,v,a,0) =0 for j = 1,---,4. Therefore, n1/2{B — By} converges to a multivariate

normal distribution with zero mean and covariance matrix ™! = (X + BQ'B”)~!, where

Y = Var(n %Sy), J:= Var(n /?Sy,), H := —n 'E{0¥(Xy; By, ag)/0a},

5 = [p{2¥XiBp00) " B{X exp(X]By)I(Vi > u)}
B [ { O, [ o s a0

L = Var(n /?Sy3) = /Ot [E{exp(X{Bo)I(Y = u)}] - dAo(u),

J 0 H
Q = o7 L 1

HT 1 0
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Similarly, the same arguments for the weak convergence of A¢(t) in Huang et al. (2016) can

be applied to derive the weak convergence of A(t).

1.2 Proof of Theorem 2

Using the same arguments for Theorem 1, we can show 7y —? 7¢; and P(Tg2 = 0) — 1,
as n — 00. We assume T is [—dimensional and denote 8y = (3,,0,0, o, 7o) and S§, =

Sk(By,0,0, a0, T), for k =1,2,3,4,5. Then S}, can be rewritten as

CEPYALE o
S = Z{‘I’ (X5 By, o) — L o T},

Sty = Z/ S0 M),

884 =

Sos = Oix1,

where M;(t) = N;(t) — f(f exp(XTB)I(Y; = t)dAo(t) and N;(t) = AJI(Y; < t). Clearly,

ESj, =0, ESj, = 0 and E'S{3 = 0. Simple algebra shows that
¥ = Var(n~Y/%8})) = / m(u)dAg(u),
0

where m(u) = F [{X; — p(u) X — p(u)}T exp(XTBy)I(Yy > u)] with

E{X exp(X{By) (Y1 > u)}

M) = o (XTBo) I(Vh > u)}

By the double expectation formula, Cov(S§;, S§,) = 0, Cov(Sg;, S§3) = 0 and Cov(S},, Sis) =
0. Then, by the martingale central limit theorem and classic central limit theorem,

—1/2Q+T ,,—1/2Q*T —1 2Q* * *
(n=128:T n=1/28:T n=1/28%, S, SiF)T converges to a zero mean multivariate normal dis-



tribution with covariance matrix €2 defined by

¥ 00O00O0
0 J 00O
0 0L OO0 |,

0 00 0O

0 0 00O
where L := Var(n='/2S};) = fg* [E{exp(XTBy) (Y1 > u)}] - dAo(u) and J := Var(n~1/28%,).

Let 8 = (B,&,v,a,71) and S(0) = (S1(0)7,S2(0)",S3(0),S4(0),S5(0)")”. Note that

e (%)

6o
where

o ) e
~ [p{Eumoy FEDO BN 2 W)

y

(U), 0p><17 0p><l:| 9

B E{exp(X{By)I(Y1 > u)
J 0 H E
0O L 1 0 diag(I¥)
Q = ) E = )
H” 1 0 0 Ok -1y
ET” 0 0 O

and H = —n"'E{0¥(Xy; By, ap)/0a}, where IV = (E{I(X; € )}, -, E{I(X; € Q) }7T.

Therefore,
-1
~ ¥ B n~1/28s,
V(0 — 0y = . + 0,(1), (1)
—_BT Q nfl/QS*

where S* = (ST, S%,,0,07)7. Since
-1

%~ B (Z2+BQ'B")"!  —(Z+BQ'BT)'BQ!

-B” Q Q 'B"(X+BQ'B")! (Q+B'x'B)™



6 Biometrics, 000 0000

n'2(B - B,) = (£ +BQ'B") ! (n71/28},) — (2 + BQ'BT)'BQ ! (n71/28") + 0,(1). Tt

implies that the asymptotic covariance matrix of ,B\ is

(Z+BQ 'BN) (= +BQ'BY)!

+(Z+BQ'B")'BQ"’

~ (Z+BQ 'B")!

o (E T BQ71BT)71BQ71

Through some algebra, we can show that

HT 1

ET 0

J

0

HT

ET

0

L

Q—lBT(BQ—lBT)—l

QleT(BQleT)fl.

Q'B' =0,

which follows that the asymptotic covariance matrix of n'/2(8 — 8,) is (X + BQ'B7)~".

Similarly, the same arguments for the weak convergence of Ac(t) in Huang et al. (2016) can

be applied to derive the weak convergence of A(t).



2. Variance Estimation
Let 0 = (B,&,v,a,71) and S(0) = (S1(0)T,S2(0)T,S5(0),S4(0),S5(0)"). The information

matrix of the proposed penalized likelihood is

e ()

> B

2} _ BT Q
where

B o_ {E{as(;ém} gan{as(;ie)} 907E{685(§0>} OO’E{(’)‘?T(?)}
_ [E{aﬁf(Xl;ﬂo,ao)T},_ / B{X, exp(X]By)[(Vi > W} a

y

(U), 0p><17 0p><l:| )

B E{exp(X{Bo)I(Y1 > u)
J 0 HE
0 L 1 0 diag(1®
Q: 9 E: ( ) Y
H" 1 0 0 Ok —1)xi
E" 0 0 0

H = —n'E{0¥(X;; By, ap)/0a} and IO = (E{I(X; € Q)},---, E{I(X; € Q)}HT. On
the other hand, we have derived that
¥ B h (X +BQ'BT)! —(Z+BQ'BT)'BQ!
BT Q Q 'B7(Z + BQ'B")! (Q + B'='B)"!
and \/E(B — B,) converges to a zero mean multivariate normal distribution with covariance
matrix (X +BQ'BT)~!. Therefore, the asymptotic covariance of B can be estimated by the

-1
} . The
6o

estimators of the asymptotic covariances of B pp and B peL—p can be obtained similarly.

sub-matrix consisting of the first p rows and the first p columns of — {E (%g”)

For the estimated cumulative baseline hazard function, by the Taylor’s expansion, we have

() = Awpo) =Ly A<D

=1

~ oA : 3, ~ oA 3, ~
B A<t;g°’0)+{%‘(ﬁ*,o)}(B_ﬂOH{(g—fy)’(ﬂW*)}(V_o)’ @)
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~

where (8%, v*) lies between (8, V) and (8, 0). Then, for each time point ¢, the standard error
(SE) of A(t) (denoted as SE(t)) can be obtained based on (2).

In the simulation studies, to report the overall performance of the ]\\(t), we defined a
set of 100 equidistant time points within the interquartile range, denoted as (t1,--- ,t100)-
We then averaged estimation biases, standard errors, and converge probabilities over these
time points, and then used these aggregate statistics to compare the performance of the
four methods. We further defined the empirical mean integrated squared error (EMISE) to

summarize the estimation accuracy and efficiency of the estimated A(-) as follows:

500 100

EMISE(A) = Y {A@(t) — A(t,)}*/(50000),

q=1 =1

where A@(-) is the estimator of A(-) using the gth data set, for ¢ = 1, ..., 500.

3. Extension to Incorporate Aggregate Survival Information at Multiple Time

Points

Without loss of generality, we consider external survival information available at two time

points,

Pr(T > t]|X € Q) =1, k=1,2,--- | K (3)
and

Pr(T >t X € Q) = o, k=1,2,--+ K. (4)

We introduce two additional parameters, defined as a; = A(t}) and as = A(t}), whose sample

analogues are
D NI <t) —a3 =0 (5)
i=1

and

> ONI(Y; < t5) —ap = 0. (6)
=1



We then maximize the conditional log-likelihood [; with constraints (5) and (6). Using the

Lagrange multipliers method, the objective function to be maximized is

ZA{XTB+log —nZ)\S(O (Y;,8) —nl/l{Z)\I —al}
=1

Taking a derivative of (7) with respect to \;, and letting the derivative be 0, we have

A
n{SO(Y;, B) + nI(Y; <)) + Il (Y < t5)}’

where vy and 15 are determined by

>\i:

n

SO(Y;, B) + mI(Y; <)) +wl(Y;<t}) ’

i=1

and

n

3 AI(Y; < 1) S,
SO, B)+ml(Y; <t)+wml(Yi<ty) f

=1

After plugging Equation (8) into (7), we have the double empirical log-likelihood,

L= AXTB—log{SO(Y;, B)+nl(Y; < 1])+1aI(Y; < t5)}+mnas +nvsas+ ) log(py).
i=1 =1

(9)

Given the external aggregate information, the estimators of 3, oy, as, vy, and v, can be

derived by maximizing the likelihood function (9) with the following constraints:

pi=0, > pi=1 ) pU(XiBan,00) =0, > piUu(XiB 00, ¢u) =0k=1-- K,

i=1 i=1 i=1 (10)
where Wy (Xy; 8, ou, o) = 1(X; € Q) [exp{—cyexp(XTB)} — ¢u] for I = 1,2. We denote
the corresponding estimators of 3, oy, aw, v, and v, here as BC, Qic, Qac, Vic, and Vo,
respectively. Using the combined information, the baseline cumulative hazard function A(¢)

can be estimated by:

n

- AT, < 1)
AC(t)— ZS(O (Yv“ﬁc)_{_yloj(y; )—FVQCI(Y; <t )
1\

Let ¥(X;; B8, a1, a2) = (V1(Xi5 8,09, ¢11), -+, Ve (Xi; B, o, d1k), V1 (X B, v, 1), - -+
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U (X5 B, az, ¢ax))T. The primary cohort may not be comparable to the aggregate survival
information, we introduce additional parameters 7 = (711, , ik, To1, - - ,TQK)T to incor-
porate such information. Following similar arguments in Section 3.2, we use the following

estimating equations:

S1(8,&, 11, v ) = iA X, — SU(%.0)
1 y Sy V1, V2, O, Qg T - p ¢ v S(O)(K7ﬁ)+y1[(Kgt*)‘i‘l/ZI(}/zgt;)

Z £Ta\p Xza/670417a2)/816
1+€ {\II(Xl,,B,ozl,ozg)—I O’T}

(X%,B,CM,O!Q) —LoT
SQ(ﬂ7€7V17V27a17a27T) = ,
izl 1+ €T{‘I’(Xi;5,0617042) — Lot}

- AI(Y; < 1)
S = E —
3(8,&,v1, v, 01, 02, T) { (Yz,ﬁ)-i-m Y, <) + ml(Y, < 53) al},

S5(6,£,I/1,V2,0Z1,CY2,T) =

N AJ(Y; < 1)
S4(ﬁ>£7V17V270517042>T) - ;{S Y;,,G + 1 (Y<t*)+V2[(Y;<t§) _052}
& { Ta\II X“,B,Oél,OQ)/aOél _ }
1+£ {\II X“,B,OéhO(g)_I OT} e

=1

n T(‘?\Il X;: ,6 (o5} a2)/80z2
S ﬁ’£7y7lj’a7a77- - { i - V}?
o8& w00 T) = 3\ TG (R, Bravan) Lor]

_ Iog
S8 & ananT) = ;{1 +5T{‘I’(Xi;5,0417042) — Lo} +b(T)}7

where I, = (I(XZ € Ql),"' 7[(Xz S QK),I(XZ € Ql);"' ,[(Xz € QK))T and b(T) =

(p;(|7-11|)sign(711), T 7piy(|7—1K|)Sign(7—1K>7piy(|T21’)Sign(721)7 e ,P;(|T2K|)Sign<7'2K))T~ We get
estimators ,/B\, a1, Qa, V1, and Uy by solving these estimating equations. The cumulative

baseline hazard function A(t) can be estimated by

Alt) =

1¢ A, I(Y t)
L (}/175)4“”1]( t1) + I(Y; 2).

In practice, we recommend not using the external survival information from two approximate
time points. It would not increase the statistical efficiency much, but it could cause singularity

in the covariance matrix of the aforementioned estimating equations.



4. Additional Simulation Studies

We conducted simulation studies to evaluate the finite sample performance of the proposed
method when the external aggregate survival rate P(T > t*| Xy = 0) is comparable with
the primary cohort, but P(T" > t*| X, = 1) is not, ie., (11,72) = (0,0.06). The data
generation mechanism of the primary cohort was the same as that of Section 4.1. Table
S3 summarizes the simulation results of the estimated regression coefficients, including the
empirical biases, empirical standard deviation (SD), and estimated standard errors (SE);
square root of mean squared errors (RMSE); and coverage probabilities (CP) of 95% Wald-
type confidence intervals.

All the four methods produced similar results for the regression coefficient of X (e.g.,
f1), since the external aggregate information was given in the subgroups determined by X,.
For 5, our proposed method was more efficient than the standard Cox regression with the
partial likelihood (PL). On the other hand, the double empirical likelihood method (DEL)
and its extension (DEL-E) by Huang et al. (2016) had large estimation biases and inaccurate

inference conclusions by directly borrowing from incomparable external information.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

We have conducted additional simulation studies to compare estimators by using two
different penalties (SCAD and LASSO) under four settings. The simulation results (see
Table S4 ) suggest that two different penalties produced almost identical results under our

settings, confirming the robustness of our method in terms of the penalty functions.

[Table 4 about here.]

11
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Table S1: Simulation results (all the entries are multiplied by 100) of the estimated
cumulative baseline hazard functions under Settings 1 and 2. PL, the standard Cox
regression with the partial likelihood; DEL and DEL-E, the double empirical likelihood
method and its extension by Huang et al. (2016); ADEL, the proposed adaptive double
empirical likelihood method.

Setting 1 Setting 2

PC Method Bias SD SE EMISE CP Bias SD SE EMISE CP

Sample Size=100
0% PL —-0.59 9.19 8.94 1.04 92.8 —-0.59 9.19 8.94 1.04 92.8
DEL 0.36 6.04 6.95 0.52 96.9 —-3.79 6.05 6.78 0.69 86.4
DEL-E —0.51 890 8.83 0.97 93.5 —4.36 8.70 8.21 1.16 84.0
ADEL -0.29 7.03 7.72 0.66 96.2 —0.63 7.14 8.55 0.67 96.1

15% PL 0.19 10.47 9.67 1.39 91.5 0.19 10.47 9.67 1.39 91.5
DEL 0.63 6.73 7.54 0.68 96.4 —3.41 6.72 7.37 0.81 87.5
DEL-E  0.43 10.36 9.57 1.36 91.9 —3.47 10.07 8.92 1.45 84.0
ADEL 0.16 8.16 8.51 0.90 95.3 —0.55 8.17 9.28 0.91 94.7

30% PL 0.05 11.32 10.43 1.62 91.0 0.05 11.32 10.43 1.62 91.0
DEL 0.68 7.21 8.14 0.79 96.3 —3.32 7.28 7.96 0.93 87.9
DEL-E  0.35 11.17 10.31 1.59 91.5 —3.61 10.95 9.61 1.71 84.2
ADEL 0.03 8.5 9.36 1.01 96.0 —0.58 8.70 10.00 1.04 93.9

Sample Size=200
0% PL —-0.37 6.39 6.33 0.50 93.3 —0.37 6.39 6.33 0.50 93.3
DEL 0.18 4.33 4.92 0.27 96.8 —4.06 4.31 4.80 0.46 79.1
DEL-E —-0.32 6.19 6.26 0.46 939 —4.20 6.06 5.83 0.66 82.5
ADEL —-0.15 5.21 5.43 0.35 955 —0.82 5.30 6.19 0.37 95.5

15% PL 033 7.00 6.81 0.61 94.3 0.33 7.00 6.81 0.61 94.3
DEL 0.19 4.49 5.29 0.29 96.8 —3.92 447 5.16 0.47 81.6

DEL-E 0.52 6.85 6.76 0.59 95.1 —-3.36 6.72 6.29 0.71 85.1
ADEL 0.02 5.62 5.89 0.42 956 —0.50 5.74 6.65 0.43 95.9

30% PL 036 7.79 7.37 0.78 93.8 036 7.79 7.37 0.78 93.8
DEL 0.26 5.00 5.74 0.37 96.8 —3.83 4.97 5.59 0.54 82.3

DEL-E 0.56 7.60 7.30 0.74 945 —342 745 6.79 0.86 84.4
ADEL 0.12 6.33 6.50 0.54 959 —040 6.36 7.26 0.55 96.1
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Table S2: Simulation results (all the entries are multiplied by 100) of the estimated
cumulative baseline hazard functions under Settings 3 and 4. PL, the standard Cox
regression with the partial likelihood; DEL and DEL-E, the double empirical likelihood
method and its extension by Huang et al. (2016); ADEL, the proposed adaptive double
empirical likelihood method.

Setting 3 Setting 4

PC Method Bias SD SE EMISE CP Bias  SD SE EMISE CP

Sample Size=100
0% PL —-0.59 9.19 8.94 1.04 928 —-0.59 9.19 8.94 1.04 92.8
DEL 5.17 6.30 7.17 0.86 84.6 9.97 6.56 7.37 1.70 65.5
DEL-E  0.12 8.93 8.92 0.97 94.3 0.59 8.96 9.00 0.98 94.8
ADEL 0.82 7.26 8.29 0.69 94.8 2.02 8.02 8.74 0.86 93.6

15% PL 0.19 10.47 9.67 1.39 91.5 0.19 10.47 9.67 1.39 91.5
DEL 548 7.00 7.78 1.06 85.6 10.35 7.28 7.99 1.97 68.2
DEL-E 1.04 10.40 9.67 1.38 92.8 1.48 10.42 9.74 1.39 93.3
ADEL 1.18 8.41 9.13 0.97 94.6 2.17 884 9.59 1.08 94.3

30% PL  0.05 11.32 10.43 1.62 91.0 0.05 11.32 10.43 1.62 91.0
DEL 5.61 751 841 1.20 86.4 10.56 7.80 8.65 2.15 70.5

DEL-E  0.95 11.19 10.42 1.59 92.2 1.35 11.13 10.49 1.58 92.7
ADEL 091 8.86 9.95 1.08 95.1 1.96 9.28 10.44 1.19 949

Sample Size=200
0% PL —-0.37 6.39 6.33 0.50 93.3 —0.37 6.39 6.33 0.50 93.3
DEL 5.01 4.52 5.08 0.57 76.1 9.83 4.72 5.22 1.38 47.6
DEL-E 030 6.20 6.33 0.46 94.9 0.77 6.21 6.39 0.47 95.3
ADEL 0.82 5.36 6.11 0.37 95.0 2.04 5.70 6.37 0.45 95.1

. 15% PL 033 7.00 6.81 0.61 94.3 0.33 7.00 6.81 0.61 94.3
DEL 5.04 4.70 5.46 0.60 78.4 9.89 4.90 5.61 1.43 52.5

DEL-E 1.13 6.88 6.83 0.60 95.5 1.57 6.89 6.88 0.62 95.7
ADEL 1.27 5.86 6.43 0.46 93.2 2.39 6.20 6.86 0.56 94.5

30% PL 036 779 7.37 0.78 93.8 0.36 7.79 7.37 0.78 93.8
DEL 5.19 5.23 5.93 0.70 79.2 10.10 5.46 6.10 1.57 56.0

DEL-E 117 7.62 7.37 0.76 95.2 1.61 7.64 7.43 0.77 95.5
ADEL 119 6.50 7.05 0.58 93.8 2.29 6.89 7.50 0.68 95.3




Table S3: Simulation results (all the entries are multiplied by 100) of estimated regression
coefficients when the external aggregate survival rate P(T > t*| X, = 0) is comparable with
the primary cohort and P(T > t*| Xy = 1) is not, i.e., (11, 72) = (0,0.06).

B B2
Method Bias SD SE RMSE CP Bias SD SE RMSE CP

Sample Size=100
PL —1.27 11.09 11.56 11.15 954 1.93 21.69 21.25 21.76 954
DEL —-1.44 10.85 11.34 10.93 94.8 16.84 9.36 9.53 19.26 53.0
DEL-E —1.94 11.03 11.50 11.19 94.8 1740 9.38 9.61 19.76 50.6
ADEL —1.22 11.04 11.54 11.10 95.4 1.79 18.88 19.88 18.93 92.6

Sample Size=200
PL —-0.18 8.15 8.00 8.15 95.4 0.44 15.17 14.78 15.16 95.2
DEL —-0.34 8.05 7.86 8.05 95.2 16.99 6.84 06.54 18.31 24.2
DEL-E —0.79 8.16 7.96 819 944 17.49 6.89 06.59 18.80 23.0
ADEL -0.11 8.14 7.99 8.13 95.6 0.58 14.45 14.86 14.45 93.0
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Table S4: Simulation results (all the entries are multiplied by 100) of estimated regression
coefficients by using SCAD and LASSO penalties.

B1 B2
Method Bias SD SE RMSE Bias SD SE RMSE

Setting 1: (71, 72) = (0.01,0.01)
ADEL-SCAD —1.32 10.20 9.87 10.27  0.24 19.09 19.67 19.07
ADEL-LASSO —1.32 10.19 9.86 10.26  0.22 19.07 19.67 19.05

Setting 2: (11, 72) = (0.04, —0.04)
ADEL-SCAD -2.80 10.92 11.04 11.26 1.17 19.29 20.21 19.30
ADEL-LASSO —2.80 10.92 11.03 11.26 1.16 19.28 20.20 19.29

Setting 3: (71, 72) = (0.06,0.06)
ADEL-SCAD -1.68 10.79 10.82 10.91 —3.27 19.48 20.43 19.73
ADEL-LASSO —-1.69 10.80 10.82 10.92 —3.31 19.49 20.43 19.74

Setting 4: (11, 72) = (0.08,0.08)
ADEL-SCAD —-2.18 10.92 11.49 11.13 —3.93 19.29 20.99 19.66
ADEL-LASSO —-2.19 10.93 11.49 11.14 —-3.94 19.30 20.99 19.67




