
Editorial Note: Parts of this Peer Review File have been redacted as indicated to maintain patient confidentiality. Some 

pronouns have also been altered for this purpose.  

REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This paper reports analyses of a very rare and valuable dataset of single neuron recordings from human posterior 
parietal cortex during a near-threshold detection task. The authors were able to relate the same accumulation-to-
bound signals observed in single neurons to EEG recordings in healthy volunteers, and show that a 

computational model of evidence accumulation is able to accommodate both the neural responses and the 
confidence data. Perhaps most impressively, this model was able to predict confidence levels in the absence of a 
detection response (i.e. on miss trials) in the patient data, suggesting subtle modulations of confidence in saying 
“no stimulus was present” depend on the status of subthreshold evidence accumulation in the parietal cortex. 

This is a tour de force combining different sets of neuronal data with an elegant and simple computational model 
to account for variation in perceptual confidence. I have three main comments that I hope the authors will find 
useful, together with minor questions about the modelling approach. I have limited knowledge of single unit 
analysis so my review mostly focuses on the psychophysics and interpretation of the model. 

1) I found the introduction somewhat skewed by interpreting detection through the lens of perceptual 
consciousness. I am on board with the idea that studying detection+confidence can give us a particularly 
sensitive window on the computations supporting visual awareness. But I found the current framing to fall short in 
making this case. In particular, there is a notable failure to cite classic single-unit studies of detection in 
macaques – for instance Cook & Maunsell (2002) Nat Neurosci for detection of coherent motion, de Lafuente & 

Romo (2005) Nat Neurosci for detection of vibrotactile stimuli and Merten & Nieder (2012) PNAS for detection of 
near-threshold contrast. Many of these studies I think align with the authors’ findings (of a graded accumulation 
that varies with stimulus intensity) albeit in different brain regions. However, and perhaps this is why they weren’t 
included here, they are notably silent on the issue of consciousness, and instead simply present their results as 
neural correlates of psychophysical detection curves. I think the authors do have a strong case for framing their 
study as novel in this context – because the recordings are in humans, and subjective confidence reports are 
elicited, they offer an unusual window onto whether similar evidence accumulation processes that have been 
discovered in monkeys might also support perceptual awareness in humans. But the way the paper is currently 
structured gives the reader the impression that such studies haven’t yet been done at all, in animals or humans 
(cf. lines 48-50). 
2) I found it striking that across all experiments (and also the EEG data), misses were effectively default-coded in 
terms of evidence accumulation. In other words, stimuli that were missed or otherwise of low intensity led to the 
lowest average firing rates. This makes sense in relation to a graded magnitude code for intensity. But it is 
notably at odds with the notion that neural populations might actively code for each response category – i.e. an 

active coding of both “yes” and “no” responses (see Merten & Nieder, 2012 PNAS for findings on the active 
coding of stimulus absence in macaque PFC independent of report). Did the authors discover any neural 
responses in PPC that actively coded for “no” responses / confident misses? Would these have been apparent in 
the current analysis if they had been present? If there are none, I wonder whether this is actually an informative 
null result – suggesting that parietal neurons provide a low-dimensional magnitude code that might then be “read 
out” by the kind of PFC populations identified by Merten & Nieder, to actively code for presence and absence. 
3) It took me a while to figure out how the model in Figure 4 accounted for confidence in misses. As far as I 
understand it from the methods, miss-confidence is inverted, so that the lower the firing rate peak, the more 
confident I am that nothing is there. That makes sense – but it’s difficult to infer from Figure 4A. Can a similar 
graphical interpretation be added for miss-confidence, perhaps as a separate panel? How is this defined in 
relation to threshold? In relation to this point, I was initially surprised to see that the correlation coefficient 
between miss-confidence and activity was negative (line 263), but eventually figured out this makes sense under 
a definition in which miss confidence is inversely related to activity. It would be useful to help the reader through 
this logic. 

4) Linking points 2 and 3 above – I feel that there is a step missing from the computational model, or at least a 
step missing from the interpretation of the model in the discussion. Confidence is positively related to activity on 
hits, but negatively related on misses. This implies that there must be some downstream computation that does 
the inversion – i.e. that “knows” to interpret strong PPC signals as indicating higher confidence when saying 
“yes”, but lower confidence when saying “no”. Such an architecture would nuance the authors’ interpretation of a 
single code in PPC for both detection and confidence. 

Minor points: 



- “no-responses” on line 73 is potentially ambiguous as it could mean reporting “no”/”absent” rather than non-
report 
- Could the base rate of catch trials be reported in Results? I know it’s in methods, but I think it would be useful 
here for the reader to provide context when interpreting the conservative criterion of the patient. 
- What is v(t) in equation 2? It’s not defined in the text and I’m wondering whether it’s even necessary given that 
d(t) stands for the drift rate 
- How was observation noise handled when fitting the model to hit/false alarm rates and EEG data (p. 24)? A 

Gaussian link function is alluded to but no equations are given. Were these fixed or free parameters? Also I think 
this passage should say the log-likelihood “corresponded to the log of the normal probability…” 

Reviewer #2 (Remarks to the Author): 

General 

The study by Pereira et al describes single neuron recordings from a microarray in the posterior parietal cortex of 
a young adult epileptic [redacted] while they perform a simple vibrotactile detection task. In the main experiment, 
they collect response times (RT) for successful detections (Hits). The RT design delineates the epoch, between 
the stimulus and the report, in which the decision is made. The downside of RT in this design is that there is no 
RT for a failures to detect (Misses). In a second experiment the authors obtain explicit “no” responses, but 

without RT. In this case Hits, Misses, Correct Rejections and False Alarms are discerned along with a 3-level 
confidence rating. The authors interpret the first experiment as support for an evidence accumulation process 
with a terminating threshold (or bound) that establishes detection and its timing. They interpret the confidence 
ratings as support for metacognitive monitoring. The combination of findings are adduced to support a conclusion 
that threshold applied to the representation of accumulating evidence in parietal neurons explains the transition 
from unconscious deliberation to a conscious awareness of the vibration (as in Dehaene et al., 2014; Kang et al., 
2017). 

It is rare to obtain quality single neuron recording from the human brain during well controlled perceptual 
experiments involving perception, especially accompanied by measures of RT. It is rarer still to do this in a 
computational framework, and extremely rare to obtain such recordings from the parietal cortex. I am therefore 
enthusiastic about the dissemination of these data to the scientific community. I will share several reservations 
about the claims and analyses, but they are intended to help the authors improve what is already an interesting 
paper. To put it in perspective, it is far superior to a recent publication on this topic in Science. I would ask the 

authors and the editor to read some of the critical comments below as an attempt to help the authors sharpen the 
analyses and interpretation. 

Major concerns 

A. In Experiment 1, the authors propose that their neural recordings are consistent with the accumulation of 
evidence and noise (aka, deterministic drift plus diffusion) until the neural activity reaches threshold to terminate 
the decision in a detection report. The evidence for a threshold level of neural activity at termination is reasonably 
compelling, but the evidence for accumulation is less convincing (e.g., example neurons in Figs 1C-D). The 
“hallmark of a process leading to a decision threshold (Line 95)” seems promising for the leftmost histogram of 
the three neurons (Fig 1D), but in panel C, this neuron turns out to simply start its rise later on the trials with 
longer RT. In drift-diffusion the (1) the start of the accumulation is time locked to the stimulus and (2) the process 
halts when the accumulation reaches a threshold level just prior to the report. Without #1, observation #2 is 

consistent with any stereotyped neural response associated with the completion of the decision. Perhaps the 
problem is only a matter of presentation. The authors state that “the cumulative sum of spikes following stimulus 
onset correlated with the corresponding RT in 67/94 detection-selective neurons…” (lines 97-98). Perhaps these 
67 neurons could be subjected to a more rigorous analysis, especially if they were recorded simultaneously (see 
below). 

B. The authors also exploit a second hallmark of diffusion, which stems from the the accumulation of noise over 
time. A running sum of independent and identically distributed (iid) samples of noise has a variance that 
increases linearly with the number of samples and a correlation between cumulants from samples 1 to i and 
samples 1 to j>i such that r_{ij}=√(i/j). Conformance to this pattern has been demonstrated in the parietal cortex 
of monkeys during evidence accumulation. The challenge is to identify the variance of these latent accumulations 
from the variance of the point process (spike trains), which would contribute variance even if the latent rate were 



identical on every trial. These are the statistics that the authors refer to as VarCE and CorCE (the CE stands for 
‘of the conditional expectation’). 
It is laudable that the authors attempted to interrogate their data for these signatures, but there are several issues 
of concern. (1) It is essential to use all trials, not just the hits, and it is crucial perform the analysis in an epoch 
that is not affected by many terminations. I don’t know if this is possible without knowing the RT for Miss trials. (2) 
There is a better way to estimate phi than the description on line 687 (see Shushruth, J Neursosci 2018). (3) The 
CorCE must be unity along the main diagonal. That is not what is shown in Fig 1F. (4) There is no point to doing 
this analysis in neurons that do not show a clear rise in the mean firing rate on Hits. One is seeking a 2nd order 

confirmation of an accumulation process. If it’s not suspected on the basis of a first order observation, what’s the 
point? (5) It is essential to analyze the 1st juxtadiagonal of the CorCE matrix (i.e., lag=1). Decorrelation as a 
function of lag is nonspecific. It is the combination of this decay with the increase in correlation for lag=1, as 
function of time that provides evidence for the process. (6) Unless the authors have many neurons like the three 
examples, it’s unlikely they have to power to discern these 2nd order hallmarks. 
It might be worthwhile to give it another try with these concerns in mind. Consider identifying a subset of the 47 
neurons; apply a sensible attrition rule; concentrate on data during the accumulation without many terminations 
(or perhaps guided by Fig 1E, looking only from 300-800 ms); include the Miss trials. Alternatively, why not take 
advantage of the large number of recorded neurons? VarCE and CorCE provide an indirect glimpse at the latent 
rates across trials from single neurons, which are hypothesized to represent drift+diffusion, and the diffusion part 
is suppressed by averaging across trials (the expectation of the diffusion is 0 for all t). A multi-neuron data set 
might have several neurons that show signs of the drift part of drift+diffusion in the average. If so, one can 
average across these neurons on a single trial to obtain an estimate of the population rate on that trial. One can 
then inspect these across trials to observe the diffusion directly. 

C. Experiment 2 is a delayed double-response task. Its main contribution to the paper is to bolster the idea that 
the neural responses are tied in some way to the subjective experience of the detection. We already know that 
the subject was not guessing (dprime=1.64 by my calculation), so we can believe that the subject felt the 
vibration. The fact that confidence judgments were greater on hits than misses does not say much. It is actually 
inconsistent with standard signal detection when Hit and Miss rates are equal, assuming (i) a Gaussian 
distribution for the signal plus noise and (ii) a ‘distance from criterion’ measure for confidence. My interpretation 
of the Fig 2A (bottom) is that these two assumptions are incorrect and/or the participant interpreted the scale 
differently for hits and misses. I think the authors agree. So we learn little from the behavior other than to be 
skeptical about the metacognitive measures mentioned later in the paper. The crucial issue ought to be the 
relationship between neural activity and confidence, given the same choice. I’m not sure the GLM (lines 646-650) 
is useful here. Confidence is heavily weighted to the middle for misses. A significant interaction term might be 
correcting for this. The authors need to devote more attention to the single neuron analysis here. They should 
show that on Hits the firing rates covary with confidence rating. It may be that some further subclassification of 

the neurons is required, and assuming it is justified (eg, neurons that show some modulation for hits in the first 
palace and do so with the same sign). It weakens the thesis to rely on the decoding analysis, because one must 
accept that the brain employs such a decoder. It’s one thing to state that information is present using a machine-
learning statistical procedure. It’s another to state that this information is related to subjective monitoring. 
I raise some specific concerns about Experiments 3 and 4, below, but they are not major. The possible exception 
is that the use of the Ornstein-Uhlenbeck process in Experiment 4 is a potential source of confusion to readers, 
as this model seems antithetical to the ideas put forth in Experiments 1 and 2. 

D. A final major concern is over the framing of consciousness. I have already stated my position that the data 
provided by the authors is special and worthy of dissemination. The framing in relation to conscious awareness is 
valiant. Assuming the authors can rise to the challenges above, they are entitled to interpret their finding as they 
see fit. That said, I would encourage the authors to steer clear of some common pitfalls. The conversion from 
preconscious neural activity to a conscious state is likely to involve an operation like a threshold, applied to the 
representation of information or evidence. But the same is true for many mental operations that do not lead to 

conscious awareness. For example, “ignition” in Dehaene’s global neural workspace theory (GNW) does not 
explain consciousness, whereas some consequence of the ignition might hold the key. Calling it a GNW is not 
enough. What we know is that lots of brain is activated, but this is hardly the explanation we are looking for, and 
by Dehaene’s own reckoning, there is no example of an area in the GNW that is not also activated under 
conditions that support mental operations that are not consciously experienced. The other pitfall is the degree to 
which one relies on confidence as a sign of “monitoring”. The confidence ratings can be understood by multiple 
criteria (rating scale psychophysics) without any appeal to phenomenology—or at least no more appeal than one 
would invoke in a simple detection task. I think it is safe to say that correct detections (Hits) were reliably 
experienced because the human said they were and because their graded confidence is consistent with the 
process that explains the rate of hits, correct rejects, etc. I don’t know how well you can make the latter point. For 
example the confidence ratings in Experiment 4 do not make sense to me. 



Specific concerns 

The abstract makes use of 3 terms, perceptual consciousness, reflexive consciousness, and reflexive monitoring. 
This is confusing. Is reflexive monitoring just another term for perceptual monitoring? Elsewhere, reflexive 
consciousness also makes an appearance. Please clarify the meanings of these terms. 

L21. “…confidence as the distance between maximal evidence and that bound.” AND L216. “Confidence was 
read out from the distance between accumulated evidence and the decision threshold”. That does not make 
sense in evidence accumulation to a stopping bound. It implies that all detections would share the same 
confidence. See papers by Doug Vickers, Jereome Busemeyer and Roozbeh Kiani. 

L47 “…evidence accumulation process reaches a threshold [12] similar to the physiological processes underlying 
decision-making.[13-16]” Reference 40 is germane to both parts of this sentence. Reference 14 is irrelevant; it 
presents no support for evidence accumulation, nor is it a reaction time task. Causal evidence for the influence of 
parietal neurons on choice and RT can be found in Hanks et al, 2006 Nat Neurosci 9: 682 - 89. 

Fig 1B. The horizontal dashed line labeled “no” is not described in the figure caption. How does the subject 
indicate “no”? I was led to believe it was just the absence of a key press by 2 s. The caption to B is confusing 
overall. More details are needed in Methods about the behavior. For example, what is the operational definition of 

a false alarm? Would a response at 2.1 s count as a FA or a Miss? Or are there sham trials that are interleaved? 
If so, does the subject just experience these as longer gaps? Was there feedback given? If so was the or correct 
and errors? If so, when was the feedback given for a miss and correct reject? 

L62 “Yet, to our knowledge the underlying neural mechanisms remain to be described.” See Kiani & Shadlen, 
Science 2009. 

L103 The statement about covariance is weak. Many processes exhibit a decrease in correlation as a function of 
time lag. For diffusion one must also observe an increase in correlation, for fixed lag, as a function of time. See 
major concern B. 

Fig 1E shows the increase in VarCE up to 1 second. That can be explained by a stopping bound. 

L187. Experiment 3 is a nice addition. It shows that neurons (some parietal neurons) process the stimulus even 
when the subject is not engaged in the task. But i don’t understand what the term “task activity” means. Also the 

lack of a report does not mean the brain did not prepare one provisionally. 

L212 “A stimulus was perceived if the simulated evidence accumulation (EA) process reached a bound 40 at any 
time during the stimulus window (Fig. 4A), compatible with all-or-none views of conscious access.” This could be 
said of non-conscious processing too. For example, something flickers in the visual periphery. The parietal cortex 
may or may not encode a plan to direct attention there. The subject may be unaware but subsequent eye 
movements might reveal that the object was effectively interrogated. Such gnostic states probably rely on the 
provisional commitment that makes use of a threshold applied to evidence, but it need not result in 
consciousness. 

L226 Fig 4D, Why is confidence high on the Misses? 

The use of the Ornstein-Uhlenbeck process (OUP) in Experiment 4 is confusing. The OUP is not really an 

evidence accumulation process; it is a leaky accumulation, more like smoothing. Was this used only for the 
ECoG or do the authors think the elecrophysiology in Experiment 1 is also described by such a model? If so the 
VarCE and CorCE relationships associated with accumulation are misguided. Presumably the author believe the 
same mathematical process underlies the decisions in both experiments. It so, then the prediction for confidence 
should not be based on a signal that does not represent the underlying process. 

Metacognitive sensitivity (LL 798-802). Please spell out what you calculated and how the numbers relate to the 
values reported in the text and graphs. It is reasonable to express skepticism about the metacognitive measures 
(e.g., meta-dprime) because they fail to acknowledge that the distribution of S+N is not the same as the 
conditional distribution of S+N, given the response. This creates distortions which are further compounded by 
violations of the Gaussian and variance assumption. 



The authors seem to be unaware of older work from David Heeger using fMRI to study a similar detection task 
(e.g., Ress et al., Nat Neurosci 2000). 

Reviewer #3 (Remarks to the Author): 

Pereira et al. present an elegant set of complementary experiments, including intracranial single neuron and 
ECoG recordings from a single patient, and scalp EEG in a group of 18 healthy subjects. They suggest that their 

experimental and computational model evidence support a neural evidence accumulation account of “perceptual 
consciousness” and “perceptual monitoring “of a vibrotactile stimulus presented at near-detection level. 

Overall, I feel that this paper is technically and conceptually very impressive. The experimental design and data 
analysis approaches are highly rigorous and take care to appropriately control for important factors (e.g. using 
delayed and no report paradigm) to support the major findings. The paper is an important contribution to our 
understanding of mechanisms that give rise to conscious access, importantly providing a computational 
framework that could be further extended in the future to test generalizability (beyond the multiple experiments 
already presented here). 

My concerns are only minor. I found the narrative to be sometimes difficult to follow, and I think improvements are 
needed in the flow and the consistency of terminology used. Moreover, the authors largely describe the single 
neuron, ECoG, and EEG analyses as replications of one another, but these distinct modalities do not capture the 
same neural phenomena. I hope that the authors can address the following points: 

- I think the manuscript title should be changed to “Evidence accumulation determines VIBROTACTILE conscious 
access” to better acknowledge the scope of the paper 

- The ECoG and EEG results are largely described as “replication” or “generalization” of the single neuron 
findings. Yet in both ECoG and EEG analyses, the authors focus on raw voltage fluctuations, which can reflect 
electrophysiological processes that are unrelated to neuronal firing. In the domain of ECoG, evidence suggests 
that high-gamma/high frequency broadband (~50-200 Hz) power amplitude may be more closely related to 
neuronal population firing near a given electrode contact (see Parvizi & Kastner 2018 Nat Neurosci for recent 
review). The authors could consider redoing the ECoG analyses based on high-frequency power amplitude. At 
minimum, the issue should be discussed, and the analyses should not be framed as “replication” (though the 
similarity of findings across neuron firing, ECoG and EEG is indeed striking as presented). 

- In the abstract, the first sentence describes “perceptual consciousness” as encompassing (1) the perceptual 

experience, and (2) reflexive monitoring. Later, these terms are described as “perceptual and reflexive 
consciousness” and then throughout the paper, the term “perceptual monitoring” is used (I believe synonymously 
with reflexive monitoring). The title of the paper refers to “conscious access.” The paper would be much easier to 
follow if terms are used much more consistently throughout. Relatedly, I recommend referring to the following 
paper, which distinguishes between access and phenomenal consciousness Block, N. (1995). On a confusion 
about a function of consciousness. Behavioral and brain sciences, 18(2), 227-247. 

- Abstract: “…irrespective of response effectors” is ambiguous here without context (though I understood after 
reading the whole paper) and I think should be worded more clearly 

- The rationales for the three experimental paradigms (immediate response, delayed response, and no report) is 
not really fully explained until late in the Discussion (second last paragraph, lines 369-372). The use of these 
multiple paradigms is a major strength of this study, and I think the rationales should be further clarified and 
explicitly stated in the Intro and better embedded throughout the description of results. In the Intro, a short 

discussion of how correlative (reported vs. unreported) findings have been suggested to be confounded by 
postperceptual processes would be helpful to motivate their exp. 2 and exp. 3. I recommend referring to the 
following paper: Block, N. (2020 Trends Cogn sci). Finessing the bored monkey problem. 

- An updated review on global neuronal workspace perhaps could be cited when discussing relevant concepts: 
Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious processing and the global 
neuronal workspace hypothesis. Neuron, 105(5), 776-798. 

- In the introduction, I recommend that the authors expand on the notion of ignition and the role of evidence 
accumulation in GWT, as the entire paper is built from these theoretical considerations. To my knowledge, the 
concept only applies to GWT and the authors should be explicit about this (or argue otherwise). Higher order 
models of consciousness and recurrent activation theories do not suggest such a mechanism (e.g. Lau, H. 



(2019b). Consciousness, Metacognition, & Perceptual Reality Monitoring. PsyArXiv. doi:10.31234/osf.io/ckbyf. 

- For the EEG study, it seems that details may be missing regarding how subjects were screened 
inclusion/exclusion criteria. 

- If possible, the authors should report on the intracranial patient’s state at the times of testing (e.g. medications, 
pain, cognitive state/mood), especially since results are based on a single case. 

- Please add information about the size of ECoG electrode contacts 

- In Fig 1D, the “Slow/Mid/Fast” text is partly cut off 
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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This paper reports analyses of a very rare and valuable dataset of single neuron recordings from 

human posterior parietal cortex during a near-threshold detection task. The authors were able to 

relate the same accumulation-to-bound signals observed in single neurons to EEG recordings in 

healthy volunteers, and show that a computational model of evidence accumulation is able to 

accommodate both the neural responses and the confidence data. Perhaps most impressively, 

this model was able to predict confidence levels in the absence of a detection response (i.e. on 

miss trials) in the patient data, suggesting subtle modulations of confidence in saying “no stimulus 

was present” depend on the status of subthreshold evidence accumulation in the parietal cortex. 

This is a tour de force combining different sets of neuronal data with an elegant and simple 

computational model to account for variation in perceptual confidence. I have three main 

comments that I hope the authors will find useful, together with minor questions about the 

modelling approach. I have limited knowledge of single unit analysis so my review mostly focuses 

on the psychophysics and interpretation of the model. 

We thank the reviewer for the kind words and constructive comments. We hope that the reviewer 

will appreciate this revised version of the manuscript and the new analysis revealing neurons 

encoding misses.  

1) I found the introduction somewhat skewed by interpreting detection through the lens of 

perceptual consciousness. I am on board with the idea that studying detection+confidence can 

give us a particularly sensitive window on the computations supporting visual awareness. But I 

found the current framing to fall short in making this case. In particular, there is a notable failure 

to cite classic single-unit studies of detection in macaques – for instance Cook & Maunsell (2002) 

Nat Neurosci for detection of coherent motion, de Lafuente & Romo (2005) Nat Neurosci for 

detection of vibrotactile stimuli and Merten & Nieder (2012) PNAS for detection of near-threshold 

contrast. Many of these studies I think align with the authors’ findings (of a graded accumulation 

that varies with stimulus intensity) albeit in different brain regions. However, and perhaps this is 

why they weren’t included here, they are notably silent on the issue of consciousness, and instead 

simply present their results as neural correlates of psychophysical detection curves. I think the 

authors do have a strong case for framing their study as novel in this context – because the 

recordings are in humans, and subjective confidence reports are elicited, they offer an unusual 

window onto whether similar evidence accumulation processes that have been discovered in 

monkeys might also support perceptual awareness in humans. But the way the paper is currently 
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structured gives the reader the impression that such studies haven’t yet been done at all, in 

animals or humans (cf. lines 48-50). 

Although we were careful to refer to animal work with respect to evidence accumulation in 

discrimination tasks, it is true that we missed some important references concerning neuronal 

activity related to detection. We acknowledge and regret that the introduction could reflect an 

unfair sense of novelty with respect to animal works and have revised it accordingly, including the 

references suggested by the reviewer.  

We added the following sentence (lines 44-45). 

“[...] and several animal studies have reported single neuron correlates in detection tasks (Cook 

& Maunsell, 2002, Nat. Neuro; de Lafuente & Romo, 2005, Nat. Neuro.; Merten & Nieder, 2012, 

PNAS).” 

We hope that this addition gives a fairer representation of the field, combining animal studies 

using detection tasks, and human studies using detection, confidence, and no-report paradigms. 

2) I found it striking that across all experiments (and also the EEG data), misses were effectively 

default-coded in terms of evidence accumulation. In other words, stimuli that were missed or 

otherwise of low intensity led to the lowest average firing rates. This makes sense in relation to a 

graded magnitude code for intensity. But it is notably at odds with the notion that neural 

populations might actively code for each response category – i.e. an active coding of both “yes” 

and “no” responses (see Merten & Nieder, 2012 PNAS for findings on the active coding of stimulus 

absence in macaque PFC independent of report). Did the authors discover any neural responses 

in PPC that actively coded for “no” responses / confident misses? Would these have been 

apparent in the current analysis if they had been present? If there are none, I wonder whether 

this is actually an informative null result – suggesting that parietal neurons provide a low-

dimensional magnitude code that might then be “read out” by the kind of PFC populations 

identified by Merten & Nieder, to actively code for presence and absence. 

This is a very good point, and we thank the reviewer for raising it. In the original manuscript, we 

only reported the contrast between hits and misses; neurons with a higher firing rate for misses 

would thus be included in the analysis but we did not specifically look for them. Following the 

reviewer’s implicit suggestion, we dug deeper in the matter and were pleasantly surprised to find 

what is described hereafter: 
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We searched for miss-coding neurons, concentrating on experiment 1 which had more detection-

selective neurons to be stratified into different categories. To do so, we relied on a two-step 

categorization approach. As a first step, we identified detection-selective neurons which had 

significantly different spike rates between the baseline (0.3 s pre-stimulus) and the window of 

interest (0.5 - 1.5 s post-stimulus). We found 24 such neurons (permutation test: p = 0.001), with 

16 showing a significant increase in spike rate compared to baseline (p = 0.001). As the reviewer 

may notice, these neurons may not necessarily encode misses specifically, since they could have 

a higher firing rate for misses compared to baseline but an even higher firing rate for hits. In a 

second step, we thus further subcategorized these neurons into miss-coding neurons with a 

higher firing rate for misses compared to both baseline and hits (N = 6 neurons, p = 0.001). We 

interpret such firing rate patterns as ‘actively coding for “no” responses’. Of note, although we 

found only six of these neurons, which calls for cautious interpretations, the criteria to define them 

were extremely conservative. We found no miss-coding neurons in Exp. 2, possibly because there 

were five times less detection-selective neurons (17 instead of 81).  

We reasoned that this analysis also called for some additional analysis for possible increases in 

firing rates for hits. We now report these additional analyses in the result section (lines 94-96 and 

103-108): 

44 / 81 of these detection-selective neurons significantly increased their firing rate compared to a 

300 ms baseline prior to stimulus onset (Supplementary Fig. 2b; p = 0.001) while only one 

decreased its firing rate (p = 0.78).  […] 

Regarding misses, 16 / 81 neurons significantly increased their firing rate compared to baseline 

(Supplementary Fig. 2c; p = 0.001). Average firing rates for these 16 neurons suggested that this 

increase from baseline, was lower than the one we observed for hits. We therefore sought for 

neurons that increased their firing rates for misses and had higher spike counts for misses than 

for hits. We found 6 such miss-coding neurons (Fig. 1g, Supplementary Fig. 2d; p = 0.001), 

suggesting that some neurons in the PPC actively code missed stimuli (Merten & Nieder, 2012, 

PNAS). 

We also added a Supplementary Figure to illustrate the spike rate pattern of these neurons:  



4

Supplementary Fig 2. Average firing rates of different types of responsive neurons in Experiment 1. Firing 

rates were normalized using a 0.3 s pre-stimulus baseline, for three bins of RT (hits; blue) and for misses 

(red). (a) Detection-selective neurons, (b) Subset of a with an increase in firing rate compared to baseline. 

(c) Subset of a with an increase in firing rate for misses but not as high as for hits. The increase in firing 

rate for misses can be seen for the red trace. (d) Subset of a with an increase in firing rate for misses which 

was stronger than for hits. All shaded areas represent 95%-CI.

Finally, we discuss possible roles of miss-coding neurons (lines 360-364):  

We found six neurons showing a higher increase in firing rate for misses compared to hits, raising 

the intriguing possibility that some neurons could respond specifically to misses. This extends a 

study on non-human primates which found prefrontal neurons also coding for misses but rather 

in the delay period following the stimulus (Merten & Nieder, 2012, PNAS). However, more work 

is needed to show how such neurons could contribute to confidence in detection tasks.  

It is worth noting that in the Merten & Nieder paper, “no” response neurons were only found in a 

delay period starting 1.9 s after stimulus onset. We did find neurons that had different firing rates 

for hits and misses during the delay period of experiment 2. However, if the reviewer agrees, we 

will not include this analysis in the manuscript, as these neurons represent a purely post-

perceptual process while our paper focuses on perceptual consciousness.  

3) It took me a while to figure out how the model in Figure 4 accounted for confidence in misses. 

As far as I understand it from the methods, miss-confidence is inverted, so that the lower the firing 

rate peak, the more confident I am that nothing is there. That makes sense – but it’s difficult to 

infer from Figure 4A. Can a similar graphical interpretation be added for miss-confidence, perhaps 

as a separate panel? How is this defined in relation to threshold? In relation to this point, I was 

initially surprised to see that the correlation coefficient between miss-confidence and activity was 

negative (line 263), but eventually figured out this makes sense under a definition in which miss 

confidence is inversely related to activity. It would be useful to help the reader through this logic. 

The reviewer is correct in assuming that confidence is inverted with respect to the decision 

threshold for “no” responses (i.e. misses and correct rejections). We agree that this was not clear 

enough in our original submission, and we added the proposed panel (Fig. 4b) to dissipate any 

doubts regarding our model assumptions.  
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Fig. 4. Computational model based on evidence accumulation. (a) Simulation: Time-varying drift rate (d; 

thick black trace) had a short-lasting boost after a non-decision time following stimulus onset (dashed 

vertical line). Example evidence accumulation for one trial (EA; cyan trace for a hit, red trace for a miss) 

rises sharply after the drift boost and is attracted back to zero due to leakage. A stimulus is considered as 

perceived (hit) if EA reaches a decision threshold (horizontal line), and as non-perceived (miss) if not. (b) 

The maximum of accumulated evidence with respect to the decision threshold is used as a confidence 

readout. In the example in (a), the cyan trace results in high confidence in a hit (large distance from the 

bound) and the red trace results in low confidence in a miss (small distance from the bound). 

As for the correlations, we hesitated while writing the manuscript on whether we should invert 

confidence to have positive correlations but choose to stay as close as possible to the data. We 

therefore updated the text to make this clear: 

Lines 227-229:  

Confidence was read out from the difference between accumulated evidence and the decision 

threshold, with a sign inversion for misses and correct rejections, since the closer the evidence to 

the bound, the lower the confidence.  

4) Linking points 2 and 3 above – I feel that there is a step missing from the computational model, 

or at least a step missing from the interpretation of the model in the discussion. Confidence is 

positively related to activity on hits, but negatively related on misses. This implies that there must 

be some downstream computation that does the inversion – i.e. that “knows” to interpret strong 

PPC signals as indicating higher confidence when saying “yes”, but lower confidence when saying 



6

“no”. Such an architecture would nuance the authors’ interpretation of a single code in PPC for 

both detection and confidence. 

Indeed, although our model implies an inversion to compute confidence in misses, our neural data 

provides no direct evidence for such a process. One possibility is indeed that this inversion takes 

place at a later stage in prefrontal areas. We now briefly mention this issue as a venue for future 

research in the revised discussion.  

Lines 350-352: It remains unknown however, where this readout is implemented, as we had 

limited anatomical coverage in this individual patient, and did not find parietal neurons encoding 

confidence irrespective of detection.   

Minor points: 

- “no-responses” on line 73 is potentially ambiguous as it could mean reporting “no”/”absent” 

rather than non-report 

We agree with the reviewer, and changed to “no-report” accordingly. 

- Could the base rate of catch trials be reported in Results? I know it’s in methods, but I think it 

would be useful here for the reader to provide context when interpreting the conservative criterion 

of the patient. 

Unless we misunderstood the reviewer’s point, we reported this information in the results section, 

on lines 131-132 of the original manuscript: “20% trials had no stimuli”. We added “(catch trials)” 

for clarity.  

- What is v(t) in equation 2? It’s not defined in the text and I’m wondering whether it’s even 

necessary given that d(t) stands for the drift rate 

We are sorry for this, we replaced v(t) by its expression (line 790). 
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- How was observation noise handled when fitting the model to hit/false alarm rates and EEG data 

(p. 24)? A Gaussian link function is alluded to but no equations are given. Were these fixed or 

free parameters?  

We used a Gaussian link function with fixed standard deviation. For hit and false alarm rate we 

used a standard deviation of 0.02, corresponding to a confidence interval of around ±4%, which 

worked better than a logit. To fit EEG data, we used a standard deviation of 0.2 which 

corresponded to a confidence interval of around ±0.4 µV. We found that these values 

corresponded to a reasonable range considering the corresponding behavior and EEG. In a 

previous attempt to fit the model, we used the variability of the EEG directly, but the fit was worse. 

However, our results on confidence still held. Therefore, we do not think that these parameters 

affect our conclusions. We have adapted the methods section accordingly (lines 813-815). 

The standard deviation of the observation noise was set to 0.02 for hit-rate and false-alarm rate 

and 0.2 for EA(t) and pEA(t).

Also I think this passage should say the log-likelihood “corresponded to the log of the normal 

probability…” 

The reviewer is right, we corrected this accordingly.
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Reviewer #2 (Remarks to the Author): 

General 

The study by Pereira et al describes single neuron recordings from a microarray in the posterior 

parietal cortex of a young adult epileptic [redacted] while they perform a simple vibrotactile 

detection task. In the main experiment, they collect response times (RT) for successful detections 

(Hits). The RT design delineates the epoch, between the stimulus and the report, in which the 

decision is made. The downside of RT in this design is that there is no RT for a failures to detect 

(Misses). In a second experiment the authors obtain explicit “no” responses, but without RT. In 

this case Hits, Misses, Correct Rejections and False Alarms are discerned along with a 3-level 

confidence rating. The authors interpret the first experiment as support for an evidence 

accumulation process with a terminating threshold (or bound) that establishes detection and its 

timing. They interpret the confidence ratings as support for metacognitive monitoring. The 

combination of findings are adduced to support a conclusion that threshold applied to the 

representation of accumulating evidence in parietal neurons explains the transition from 

unconscious deliberation to a conscious awareness of the vibration (as in Dehaene et al., 2014; 

Kang et al., 2017). 

It is rare to obtain quality single neuron recording from the human brain during well controlled 

perceptual experiments involving perception, especially accompanied by measures of RT. It is 

rarer still to do this in a computational framework, and extremely rare to obtain such recordings 

from the parietal cortex. I am therefore enthusiastic about the dissemination of these data to the 

scientific community. I will share several reservations about the claims and analyses, but they are 

intended to help the authors improve what is already an interesting paper. To put it in perspective, 

it is far superior to a recent publication on this topic in Science. I would ask the authors and the 

editor to read some of the critical comments below as an attempt to help the authors sharpen the 

analyses and interpretation. 

We thank the reviewer for their enthusiasm despite their legitimate reservations, which we have 

addressed to the best of our capacity. We hope that they will find this revised version with adapted 

claims/interpretations, new analyses and acknowledged limitations convincing, keeping in mind 

that some results that are normative for discrimination tasks based on random dot kinematograms 

might not hold for detection tasks based on vibrotactile stimulation with unpredictable onsets. 

Major concerns 
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A. In Experiment 1, the authors propose that their neural recordings are consistent with the 

accumulation of evidence and noise (aka, deterministic drift plus diffusion) until the neural activity 

reaches threshold to terminate the decision in a detection report. The evidence for a threshold 

level of neural activity at termination is reasonably compelling, but the evidence for accumulation 

is less convincing (e.g., example neurons in Figs 1C-D). The “hallmark of a process leading to a 

decision threshold (Line 95)” seems promising for the leftmost histogram of the three neurons (Fig 

1D), but in panel C, this neuron turns out to simply start its rise later on the trials with longer RT. 

In drift-diffusion the (1) the start of the accumulation is time locked to the stimulus and (2) the 

process halts when the accumulation reaches a threshold level just prior to the report. Without 

#1, observation #2 is consistent with any stereotyped neural response associated with the 

completion of the decision. Perhaps the problem is only a matter of presentation. The authors 

state that “the cumulative sum of spikes following stimulus onset correlated with the 

corresponding RT in 67/94 detection-selective neurons…” (lines 97-98). Perhaps these 67 

neurons could be subjected to a more rigorous analysis, especially if they were recorded 

simultaneously (see below). 

We agree with the reviewer’s concern. It is true that our method of correlating RT with the 

cumulative sum of spikes was suboptimal in selecting neurons with gradual increases in firing 

rate, since it did not concentrate specifically on the time preceding the response. We followed the 

reviewer’s suggestion and applied a more rigorous stimulus-locked analysis:   

For each neuron and trial, we fit a regression line to the firing rate between 300 ms post-stimulus 

and the response onset. We then select neurons for which the so-computed slope significantly 

correlates with the RT (p<0.05; Spearman correlation). This stimulus-locked analysis thus 

specifically targets the pre-decisional period and was much more conservative (resulting in the 

selection of 14 neurons instead of 67, which remains significantly higher than what we could 

expect by chance: p = 0.001). It selected the leftmost neuron but not the two right ones, confirming 

the reviewer’s intuition. Overall, these results confirm that the start of the accumulation is time 

locked to the stimulus. We updated the methods (lines 698-670), the main text (lines 96-102) and 

Figure 1 panels d and e and added a panel with firing rates averaged across selective neurons, 

time-locked to the stimulus onset or to the response onset (see below).  
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Figure 1. (f) Average firing rates for detection- and RT- responsive neurons, for three bins of RT (hits; 

blue) and for misses (red). Firing rates were normalized to a 0.3 s pre-stimulus baseline and time-locked 

to the stimulus onset. Inset: Corresponding average firing rates time-locked to the response 

In our view, the qualitative assessment of evidence accumulation for single neurons is hindered 

by the fact that most neurons had lower firing rates than typical LIP neurons in non-human primate 

studies, likely because we had no way of tuning the electrode position after surgery for clinical 

purposes. We also note that in the non-human primate literature, the stereotypical firing rates for 

evidence accumulation are often averaged across all recorded neurons (e.g. Roitman & Shadlen, 

2002, J. Neuro; Shushruth et al., 2018, J. Neuro). 

To provide further evidence (and further reassure ourselves and the reviewer), we performed the 

same analysis this time combining single and multi-units. We thereby included 11 clusters that 

were identified by the spike sorting algorithm but not considered as coming from a single unit (e.g. 

because the percentage of inter spike interval was too high). These results seem to be closer to 

what is expected from an evidence accumulation process (Supplementary Fig. 3a). Moreover, the 

analysis the reviewer suggested in the next concern provides further evidence for the fact that 

“(1) the start of the accumulation is time locked to the stimulus.”.

We also provide the same panel with five bins of RT to show that this pattern is consistent across 

several parametrizations (Supplementary Fig. 3b,c). We notice that for the first two bins of RT, 

evidence accumulation seems to start earlier. This is consistent with Fig. 5a in the study from 

Cook & Maunsell, 2002, (Nat. Neuro) which also used a detection task. As the reviewer can see 

in our new Supplementary Fig 8 (see below), we were also able to reproduce this qualitatively 

with a computational model of evidence accumulation.  
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Of note, we added traces of the firing rates after the RT. As we argue below in response to the 

reviewer’s point below, we consider that these are consistent with post-decisional evidence 

accumulation. 

We included these results in the supplementary materials. 

Supplementary Fig 3. Average firing rates of detection- and RT-selective single- and multi-units, combined 

(Experiment 1). Firing rates are normalized using a 0.3 s pre-stimulus baseline, for three bins of RT (hits; 

blue) and for misses (red). (a) Aligned to stimulus onset for three bins of RT (hits; blue) and for misses 

(red). (b) Aligned to stimulus onset for five bins of RT (hits; blue) and for misses (red). Traces without 

shaded areas represent firing rates after the median RT for each bin and suggest that evidence 

accumulation continues after the decision. (c) Firing rates for the four RT bins of b, aligned to the response 

time (RT). 

B. The authors also exploit a second hallmark of diffusion, which stems from the the accumulation 

of noise over time. A running sum of independent and identically distributed (iid) samples of noise 

has a variance that increases linearly with the number of samples and a correlation between 

cumulants from samples 1 to i and samples 1 to j>i such that r_{ij}=√(i/j). Conformance to this 

pattern has been demonstrated in the parietal cortex of monkeys during evidence accumulation. 

The challenge is to identify the variance of these latent accumulations from the variance of the 

point process (spike trains), which would contribute variance even if the latent rate were identical 

on every trial. These are the statistics that the authors refer to as VarCE and CorCE (the CE 

stands for ‘of the conditional expectation’). 

It is laudable that the authors attempted to interrogate their data for these signatures, but there 

are several issues of concern. (1) It is essential to use all trials, not just the hits, and it is crucial 

perform the analysis in an epoch that is not affected by many terminations. I don’t know if this is 

possible without knowing the RT for Miss trials. (2) There is a better way to estimate phi than the 

description on line 687 (see Shushruth, J Neursosci 2018). (3) The CorCE must be unity along 

the main diagonal. That is not what is shown in Fig 1F. (4) There is no point to doing this analysis 

in neurons that do not show a clear rise in the mean firing rate on Hits. One is seeking a 2nd order 

confirmation of an accumulation process. If it’s not suspected on the basis of a first order 

observation, what’s the point? (5) It is essential to analyze the 1st juxtadiagonal of the CorCE 

matrix (i.e., lag=1). Decorrelation as a function of lag is nonspecific. It is the combination 
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of this decay with the increase in correlation for lag=1, as function of time that provides evidence 

for the process. (6) Unless the authors have many neurons like the three examples, it’s unlikely 

they have to power to discern these 2nd order hallmarks. It might be worthwhile to give it another 

try with these concerns in mind.  

Consider identifying a subset of the 47 neurons; apply a sensible attrition rule;  

concentrate on data during the accumulation without many terminations (or perhaps guided by 

Fig 1E, looking only from 300-800 ms); include the Miss trials.  

Alternatively, why not take advantage of the large number of recorded neurons? VarCE and 

CorCE provide an indirect glimpse at the latent rates across trials from single neurons, which are 

hypothesized to represent drift+diffusion, and the diffusion part is suppressed by averaging across 

trials (the expectation of the diffusion is 0 for all t).  

A multi-neuron data set might have several neurons that show signs of the drift part of 

drift+diffusion in the average. If so, one can average across these neurons on a single trial to 

obtain an estimate of the population rate on that trial. 

One can then inspect these across trials to observe the diffusion directly. 

We highly appreciate this thorough feedback of our variance analysis. We realize that we might 

have overlooked some important assumptions and, considering that our earliest RTs are around 

300 ms, it will be difficult to find an analysis window that does not contain many terminations 

without removing too many trials. We are therefore grateful to the reviewer for proposing an 

alternative and more tractable analysis.  

We analyzed the aforementioned set of 25 single- and multi-units following the reviewer’s 

suggested analysis plan. We averaged firing rates across single- and multi-units for each trial and 

displayed the resulting average by increasing RT. We were able to confirm that firing rates start 

increasing around 300 ms after stimulus onset (solid vertical white line), which happens to 

correspond to the lowest RTs. We also confirmed that the slope of the average firing rate between 

300 ms and the response correlated with the RT, although admittedly, this analysis is circular 

since we select the units based on this criterion.  

We have added this analysis as Supplementary Fig. 3, which confirms that selected units using 

more stringent criteria do represent an evidence accumulation process. These results also 

support the fact that the neurons we record start accumulating evidence at a latency time-locked 

to the stimulus onset. 
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Supplementary Fig 3. (d,e) Firing rates for single trials, averaged across the 25 detection- and 

RT-selective single- and multi-units, reordered by RT for the two sessions of Experiment 1 (d and 

e). Insets represent the slope of the firing rates between 300 ms and the RT, as a function of the 

RT. All shaded areas represent 95%-CI. Of note, this is the only figure in this study including multi-

unit data. 

C. Experiment 2 is a delayed double-response task. Its main contribution to the paper is to bolster 

the idea that the neural responses are tied in some way to the subjective experience of the 

detection. We already know that the subject was not guessing (dprime=1.64 by my calculation), 

so we can believe that the subject felt the vibration.  

The fact that confidence judgments were greater on hits than misses does not say much. It is 

actually inconsistent with standard signal detection when Hit and Miss rates are equal, assuming 

(i) a Gaussian distribution for the signal plus noise and (ii) a ‘distance from criterion’ measure for 

confidence.  

We agree that SDT predicts identical confidence levels when hit-rate is 50% under the two 

assumptions mentioned by the reviewer, and a third assumption, which is that the confidence 

criteria used to bin confidence into three levels are symmetrical around the decision criterion. This 

last assumption is not common in the literature and confidence criteria are usually free parameters 

in current fitting toolboxes (e.g. Maniscalco & Lau, 2012, Consc. & Cog.; Fleming, 2017, Neurosci 

Consc). Note that we did not use these methods in the current manuscript, we refer to them to 

build our argument.  

We nonetheless removed the phrase “[...] indicative of accurate detection monitoring processes”, 

line 143.  
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My interpretation of the Fig 2A (bottom) is that these two assumptions are incorrect and/or the 

participant interpreted the scale differently for hits and misses. I think the authors agree. So we 

learn little from the behavior other than to be skeptical about the metacognitive measures 

mentioned later in the paper.  

We agree that the participant may have interpreted the scale differently for hits and misses, which 

could translate into asymmetrical confidence criteria around the decision criterion. With this 

property in mind, a simple simulation shows that the two assumptions mentioned by the reviewer 

could still be true. Indeed, using a normal distribution representing the difference between the 

internal perceptual representation X and the decision criterion c, it was easy to find confidence 

criteria that approximately but reliably reproduced our data without dropping either assumption 

(and using an identical number of trials).  

A. The normal distribution and the (manually) selected confidence criteria. 

B. The detection rate was reproduced by our simulations (black dots) 

C. Similar distribution shapes were reproduced by our simulations (black traces) for 

confidence, leading to a higher confidence for hits compared to misses. 

That said, we thought and still think that behavioral results from this rare patient deserved to be 

reported for the sake of completeness/transparency. We understand the reviewer’s reservation 

for SDT-based measures of metacognition. However, as we detail later, our measure of 

metacognition based on areas under the receiver operating characteristic (AUROC) curve is non-

parametric (although it can also be analyzed in an SDT framework).  
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The crucial issue ought to be the relationship between neural activity and confidence, given the 

same choice. I’m not sure the GLM (lines 646-650) is useful here. Confidence is heavily weighted 

to the middle for misses. A significant interaction term might be correcting for this. The authors 

need to devote more attention to the single neuron analysis here. They should show that on Hits 

the firing rates covary with confidence rating.

It may be that some further subclassification of the neurons is required, and assuming it is justified 

(eg, neurons that show some modulation for hits in the first palace and do so with the same sign). 

We thank the reviewer for raising this point. However, we only partially agree. We would like to 

remind the reviewer that since we used nonparametric permutation tests, the class imbalance for 

the misses could not have induced a statistical bias in the selection of the neurons, since this bias 

would also have been present in the permuted data. Nonetheless, we agree that the class 

imbalance calls for caution. When performing the analysis proposed by the reviewer, we found 

19/86 neurons with a firing rate correlating with confidence for hit trials (permutation test: p = 

0.001). However, we still think that the GLM approach is valuable to disentangle the detection 

and confidence factors, so we conducted further simulation tests.  

We simulated spike counts using a Poisson distribution, with a baseline rate of 10 Hz under four 

situations: i) no effect of detection nor effect of confidence (0), ii) an effect of detection (D), iii) an 

effect of confidence (C), iv) an interaction between detection and confidence (D x C). Situations 

ii-iv) were represented by effect sizes of 0.2. We fitted a GLM on these simulated data and 

compared the results with the approach consisting in testing for differences between hits and 

misses, and assessing the correlation with confidence in hits. We repeated this process 200 times 

using the same trial structure as in our data (thus reproducing the class imbalance in confidence 

for misses).  
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The first row shows the theoretical spike rate under different situations (columns: 0: no effect, D: 

effect of detection, C: effect of confidence, D x C: interaction effect). Whiskers represent standard 

deviation. Hits and misses are slightly shifted for display purposes. The second row shows the 

proportion of times that our simulated data led to a significant GLM coefficient. Whiskers represent 

95%-confidence intervals (CI). The third row shows the proportion of times that the single tests 

led to significant effects for detection (D), confidence in hits (C(hit)) and both detection and 

confidence in hits (D & C(hit)). Whiskers represent 95%-CI.  

First, these simulations showed that the GLM does not seem to compensate for confidence 

imbalance for misses, as we found approximately 5% of false positives for the no-effect situation 

(leftmost column, second line). Importantly, for interaction effects (rightmost column), the 

alternative approach found effects of detection and confidence, but underestimated the overlap 

(i.e., hits > misses and correlation with confidence in hits). This is understandable, since obtaining 

the intersection of detection and confidence in hits underlies multiplying their probabilities. Of 

note, we found similar results in our neuronal data: when applying successive tests, we found 

detection and confidence in hits neurons but few neurons that showed both effects. In view of this 

analysis, we believe that it does not represent evidence against an overlap of detection and 

confidence in hits effects.  

On the contrary, the GLM did a decent job in finding interaction effects. One downside of the GLM 

was that it was less sensitive in finding detection effects compared to the single test, which would 

lead us to rather underestimate than overestimate. In sum, this simulation analysis supports the 

GLM as a better approach to characterize the underlying firing rate of the neurons we recorded. 
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We obtained similar simulation results when changing baseline firing rates, effect sizes, or when 

coding the variables so as to have a decrease in firing rate for misses in the interaction effect 

situation.  

One important point that we realized thanks to the reviewer’s comment is that our interpretation 

of the interaction term as an overlap between detection and confidence was a bit far-fetched and 

we agree that a further subclassification of neurons is needed. To avoid the statistical issues 

mentioned above, we performed a supplementary analysis on choice probabilities and rank 

correlation between spike counts and confidence for hits or for misses. We now show a linear 

relation between choice probability for detection and the correlation between confidence in hits 

and spike rate, at the population level (R = 0.54, p = 0.001). This analysis does not require a 

statistical threshold and is thus, in our view, more adapted to support our claim. We have added 

the choice probability analysis in the SI (Supplementary text and Supplementary Fig. 4).  

Supplementary Fig 4. Choice probability and correlation analysis. Each panel depicts individual neurons, as a function 

of different measures: (a) Correlation between confidence in hits and spike rate (x-axis) and choice probability (y-axis). 

(b) Correlation between confidence in hits and spike rate (x-axis) and choice probability (y-axis). (c) Correlation between 

confidence in hits and spike rate (x-axis) and correlation between confidence in misses and spike rate (y-axis). 

Regression lines are represented in red with shaded areas representing 95%-CI. Unresponsive neurons are in dark 

green and responsive neurons in light green (neurons with an interaction effect between detection and confidence). 

Neurons with a number of spikes correlating with confidence in hits (respectively misses) are circled in cyan (resp. red).  

We updated the results section (lines 147-155): 

However, 17/86 neurons showed an interaction between detection and confidence (19.77%, p = 

0.02, permutation test) driven by firing rates for hits with high confidence (Fig. 2b). Among these 

17 neurons, we found 9 neurons showing a significant correlation between spike counts and 

confidence in hits (p = 0.001). The sign of this correlation was consistent with the choice 

probability in 8 of these 9 neurons, suggesting that evidence for detection increases confidence 

in hits. We found no neuron showing a significant correlation between spike count and confidence 
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in misses. The same pattern was observed in the population of 86 neurons, as higher correlation 

coefficients between spike counts and confidence were positively related with choice probabilities 

for hits but not for misses (Supplementary Fig. 4a–b). 

It weakens the thesis to rely on the decoding analysis, because one must accept that the brain 

employs such a decoder. It’s one thing to state that information is present using a machine-

learning statistical procedure. It’s another to state that this information is related to subjective 

monitoring. 

This is a fair point, which applies to the vast majority of neuroscientific studies employing machine 

learning. To our defense, the decoders we relied on are just weighted averages of neuronal firing 

rates. We hope that the reviewer agrees with us that such decoders represent a rather 

straightforward neural implementation. Although the weights will certainly differ, it does not seem 

implausible to us that some neurons aggregate the activity from other evidence accumulating 

neurons. Nonetheless, we have mentioned this issue in the discussion, acknowledging that this 

“result implies the existence of neurons aggregating the output of evidence accumulating neurons, 

which remain to be described” (lines 324-325). We also added a schema of these decoders in 

Fig. 2c. 

I raise some specific concerns about Experiments 3 and 4, below, but they are not major. The 

possible exception is that the use of the Ornstein-Uhlenbeck process in Experiment 4 is a potential 

source of confusion to readers, as this model seems antithetical to the ideas put forth in 

Experiments 1 and 2. 

D. A final major concern is over the framing of consciousness. I have already stated my position 

that the data provided by the authors is special and worthy of dissemination. The framing in 

relation to conscious awareness is valiant. Assuming the authors can rise to the challenges 

above, they are entitled to interpret their finding as they see fit. That said, I would encourage the 

authors to steer clear of some common pitfalls. The conversion from preconscious neural activity 

to a conscious state is likely to involve an operation like a threshold, applied to the representation 

of information or evidence. But the same is true for many mental operations that do not lead to 

conscious awareness. For example, “ignition” in Dehaene’s global neural workspace theory 

(GNW) does not explain consciousness, whereas some consequence of the ignition might hold 

the key. Calling it a GNW is not enough. What we know is that lots of brain is activated, but this 

is hardly the explanation we are looking for, and by Dehaene’s own reckoning, there is no example 

of an area in the GNW that is not also activated under conditions that support mental operations 

that are not consciously experienced. The other pitfall is the degree to which one relies on 

confidence as a sign of “monitoring”. The confidence ratings can be understood by multiple criteria 
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(rating scale psychophysics) without any appeal to phenomenology—or at least no more appeal 

than one would invoke in a simple detection task. I think it is safe to say that correct detections 

(Hits) were reliably experienced because the human said they were and because their graded 

confidence is consistent with the process that explains the rate of hits, correct rejects, etc. I don’t 

know how well you can make the latter point. For example the confidence ratings in Experiment 

4 do not make sense to me. 

We did our best to steer clear from several confounding factors that contaminate studies on 

consciousness, and to rise to the challenges mentioned above. Yet, and if both the editor and 

reviewer agree, we would like to avoid taking position regarding the specificity of GNW in the 

manuscript, as it clearly is beyond the scope of our work. We are aware that different views co-

exist regarding broadcasting, some considering it as a neural correlate of consciousness while 

others as a marker of high-level cognition. Yet, the mechanism we describe in the present study 

is agnostic with respect to which specific theoretical framework may explain consciousness. We 

may have over-emphasized GNW in the current manuscript because its link with evidence 

accumulation is clear, we made an effort to correct this in the revised version, (lines 410-413): 

Furthermore, conceptual work will be needed to assess to what extent evidence accumulation is 

necessary if not sufficient for consciousness (Vlassova et al, 2014, PNAS; Barbosa et al., 2017, 

Consc, & Cog.), and how it fits within other theoretical frameworks such as higher order thought 

theories (Brown et al., 2019, TiCS) or recurrent processing theories of consciousness (Lamme, 

2006, TiCS).

Importantly, we do not consider that evidence accumulation is both necessary and sufficient for 

consciousness, and we acknowledge that the thresholding of accumulated evidence is also at 

play in other domains. In fact, there is even behavioral evidence suggesting that EA can operate 

unconsciously (Vlassova et al., 2014, PNAS; Barbosa et al., 2017, Consc. & Cog.). We clarified 

this in the revised discussion by stating that “stimulus detectability involves the accumulation of 

sampled evidence towards a decision bound, as previously discussed for discrimination tasks as 

well as several cognitive functions“. 

Now regarding confidence: we are aware of the theoretical difficulties to use confidence as a 

reliable test for consciousness (e.g., Rosenthal, 2019, Neuropsychologia).  Our goal was to 

propose a common mechanism for both detection reports and confidence, then argue for links 

between detection and subjective experience. We did not intend to equate confidence ratings with 

phenomenology, although we acknowledge that our use of different terms related to 

consciousness was confusing.  
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As of today, confidence is considered as a gold-standard in human studies of metacognition/self-

monitoring (Rahnev et al., 2020, Nat. Hum. Beh.), which in turn, can be related to some aspects 

of perceptual consciousness (Dehaene et al., 2017, Science; Brown et al., 2019, TiCS; Shea & 

Frith, 2019, TiCS).  We thus used confidence ratings conditioned to first-order detection reports 

as a proxy to investigate second-order representations and metacognitive monitoring, while 

avoiding to directly equate those to phenomenology. For example, we wrote in the conclusion: 

“We argue that this neuronal mechanism involving a decision bound may serve as a trigger for 

the neural ignition underlying consciousness and explains how contents remaining inaccessible 

to consciousness may still be subject to self-monitoring”. Of note, the derivation of confidence as 

the maximal evidence accumulated over time suggests the existence of post-decisional 

mechanisms, which supports the view that confidence reflects monitoring rather than first-order 

processes. 

Finally, regarding confidence in Experiment 4: we were also puzzled at first. However, in 

preliminary analyses, we found that this difference could reproduced by an SDT model in which 

confidence was the weighted distance between the evidence and the criterion after applying a 

logit function (note that the hit-rate was slightly lower than 50% (SI: 37.81% ± 1.70 of all trials for 

hits vs. 42.07% ± 1.67 of all trials for misses; rate of catch trials: 20%).   

Specific concerns 

The abstract makes use of 3 terms, perceptual consciousness, reflexive consciousness, and 

reflexive monitoring. This is confusing. Is reflexive monitoring just another term for perceptual 

monitoring? Elsewhere, reflexive consciousness also makes an appearance. Please clarify the 

meanings of these terms. 

The reviewer is correct that we considered reflexive monitoring and perceptual monitoring as the 

same process, which is confusing. We now use only “perceptual consciousness” when referring 

to subjective experience, and “perceptual monitoring” for self- or metacognitive monitoring. Both 

these terms are defined in the introduction. We removed any other mention of the term “reflexive”.  

L21. “…confidence as the distance between maximal evidence and that bound.” AND L216. 

“Confidence was read out from the distance between accumulated evidence and the decision 

threshold”. That does not make sense in evidence accumulation to a stopping bound. It implies 
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that all detections would share the same confidence. See papers by Doug Vickers, Jereome 

Busemeyer and Roozbeh Kiani.  

We understand that opting-out of a discrimination task is well explained by computing the log-

odds of two accumulators representing each choice (Kiani & Shadlen, 2009, Science). If evidence 

accumulation stops immediately after the decision, this is probably the best way to compute 

confidence. However, we interpret our neuronal data in a way that departs a bit from the current 

literature on LIP data.  

Indeed, there is strong computational (e.g. Resulaj et al., 2009, Nature) and electrophysiological 

(e.g. Murphy et al., 2015, eLife) evidence for post-decisional evidence accumulation. Various 

studies in humans (Fleming et al., 2018, Nat. Neuro.; Van den Berg et al, 2016, eLife; Pereira et 

al., 2020, PNAS) rely on a post-decisional interpretation of confidence ratings and many works 

have modeled confidence using a post-decisional readout, including some authors referred to by 

the reviewer (Pleskac & Busemeyer, 2010, Psych. Rev.). We now also show average firing rates 

time-locked to the response onset in Fig. 1f and Supplementary Fig. 3a-c, suggesting that our 

assumption is not unrealistic.  

It is our understanding that this concern of the reviewer might stem from our misuse of the term 

“bounded evidence accumulation” in the original manuscript. As we detail in the later concern 

about Ornstein-Uhlenbeck processes, although we assume a stimulus is consciously perceived 

when the accumulated evidence reaches the decision bound, we do not assume that evidence 

accumulation stops immediately after. 

We now mention that the modelling approach requires post-decisional evidence accumulation, 

and discuss this issue, acknowledging other possible models of confidence: 

Lines 354-364:  

To achieve this confidence readout, we relied on two modelling assumptions: that evidence 

accumulation i) continues after reaching the bound and ii) leaks information. Indeed, LIP neurons 

documented in non-human primate studies show a sharp drop in firing rate immediately after the 

decision, consistent with an absorbing bound, implying that evidence accumulation stops after a 

decision. Such a mechanism would lead to constant maximal evidence for “yes” responses, and 

therefore require a second accumulator towards the opposite choice to derive graded confidence 

ratings (Kiani & Shadlen, 2009, Science). This second accumulator may be represented by the 

neurons we found showing a higher increase in firing rate for misses compared to hits, raising 

also the intriguing possibility that misses are encoded actively. This extends a study on non-
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human primates which found prefrontal neurons also coding for misses but rather in the delay 

period following the stimulus (Merten & Nieder, 2012, PNAS). However, more work is needed to 

show how such neurons could contribute to confidence in detection tasks.

L47 “…evidence accumulation process reaches a threshold [12] similar to the physiological 

processes underlying decision-making.[13-16]” Reference 40 is germane to both parts of this 

sentence. Reference 14 is irrelevant; it presents no support for evidence accumulation, nor is it a 

reaction time task. Causal evidence for the influence of parietal neurons on choice and RT can 

be found in Hanks et al, 2006 Nat Neurosci 9: 682 - 89. 

We removed reference 14, following the reviewer’s request. As for reference 40, we added the 

sentence “A behavioral modelling study proposed a similar mechanism for the subjective 

experience of reaching a decision (Kang et al., 2017, Cur. Bio.)” (Lines 41-42). 

Fig 1B. The horizontal dashed line labeled “no” is not described in the figure caption. How does 

the subject indicate “no”? I was led to believe it was just the absence of a key press by 2 s. The 

caption to B is confusing overall. More details are needed in Methods about the behavior. For 

example, what is the operational definition of a false alarm? Would a response at 2.1 s count as 

a FA or a Miss? Or are there sham trials that are interleaved? If so, does the subject just 

experience these as longer gaps? Was there feedback given? If so was the or correct and errors? 

If so, when was the feedback given for a miss and correct reject? 

We have modified Fig. 1b, as well as its legend. We now dedicate Fig. 1c to show the response 

times for hits with the 2 s deadline. As the reviewer can judge, all response times were well under 

2 s so we do not think that this is a problem. We do however agree that one sentence in the 

results was unclear and we changed it to: 

Lines 90-91: The participant rarely responded outside this 2 s window (0.36%; false-alarms) 

No sham trials were interleaved. Inter stimulus interval was defined as a constant 2 s delay plus 

an exponential distribution with a mean of 2 s, therefore the participant experienced gaps of 

different lengths. No feedback was given to the participant. 
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Fig. 1 (b) The participant pressed a key as soon as they felt a stimulus. In this example, the first stimulus is a miss (i.e. 

no key press within 2 s following stimulus onset) and the second stimulus is a hit (i.e. key press within 2 s following 

stimulus onset). ISI: inter-stimulus interval. (c) Distribution of response times (RT) and response deadline for a trial to 

be considered as a hit (red vertical dashed line) 

L62 “Yet, to our knowledge the underlying neural mechanisms remain to be described.” See Kiani 

& Shadlen, Science 2009. 

This sentence was unclear, as we meant to refer to the neural mechanisms of confidence in 

detection tasks, which to our knowledge is indeed unknown. We modified the sentence to “Yet, 

to our knowledge, the underlying neural mechanisms of confidence in detection tasks remain to 

be described”. 

L103 The statement about covariance is weak. Many processes exhibit a decrease in correlation 

as a function of time lag. For diffusion one must also observe an increase in correlation, for fixed 

lag, as a function of time. See major concern B. 

Fig 1E shows the increase in VarCE up to 1 second. That can be explained by a stopping bound. 

These two points should not be a concern in the revised version of the manuscript which does 

not include variance analyses.  

L187. Experiment 3 is a nice addition. It shows that neurons (some parietal neurons) process the 

stimulus even when the subject is not engaged in the task. But i don’t understand what the term 

“task activity” means. Also the lack of a report does not mean the brain did not prepare one 

provisionally. 
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We agree that the use of “task activity” was inadequate in the context of a no-report paradigm. 

Instead, we now refer to “activity related to reporting rather than perceptual processing leading to 

consciousness”. (Lines 201-202) We also added an introductory sentence to Experiment 3: “While 

the use of delayed responses in Experiment 2 ensured that the comparison of hits and misses 

was not contaminated by motor confounds, a possibility remains that the neurons we uncovered 

are involved in task execution rather than subjective experience per se.” (Lines 190-192)   

Regarding the reviewer’s second point, it is true that we have no quantitative way of assessing 

whether the patient was covertly performing the task. As noted by reviewer 3, this concern is also 

related to a critique of no-report tasks formulated by N. Block (2019, TiCS).  

L212 “A stimulus was perceived if the simulated evidence accumulation (EA) process reached a 

bound 40 at any time during the stimulus window (Fig. 4A), compatible with all-or-none views of 

conscious access.” This could be said of non-conscious processing too. For example, something 

flickers in the visual periphery. The parietal cortex may or may not encode a plan to direct attention 

there. The subject may be unaware but subsequent eye movements might reveal that the object 

was effectively interrogated. Such gnostic states probably rely on the provisional commitment that 

makes use of a threshold applied to evidence, but it need not result in consciousness. 

The reviewer seems to interpret our claims regarding EA as necessary and sufficient for 

consciousness. As we clarified above, by no means do we believe that all EA processes reaching 

a bound result in a conscious percept.  Indeed, the example provided by the reviewer may well 

involve EA reaching a bound too (although this is a fairly complex situation, that may be qualified 

as preconscious according to an influential taxonomy of conscious states, see Dehaene et al., 

2006). Yet, our model predicts decisions of reporting a consciously perceived stimulus, and we 

were careful to avoid typical confounds using delayed-report and no report paradigms. We added 

a sentence to clarify evidence accumulation may provide a necessary, if not sufficient mechanism 

for consciousness.  

“Furthermore, conceptual work will be needed to assess to what extent evidence accumulation is 

necessary if not sufficient for consciousness […]”. (Lines 410-413)

L226 Fig 4D, Why is confidence high on the Misses? 

Please see our response above.   

The use of the Ornstein-Uhlenbeck process (OUP) in Experiment 4 is confusing. The OUP is not 

really an evidence accumulation process; it is a leaky accumulation, more like smoothing. Was 
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this used only for the ECoG or do the authors think the elecrophysiology in Experiment 1 is also 

described by such a model? If so the VarCE and CorCE relationships associated with 

accumulation are misguided. Presumably the author believe the same mathematical process 

underlies the decisions in both experiments. It so, then the prediction for confidence should not 

be based on a signal that does not represent the underlying process. 

We first take this opportunity to clarify that by “Ornstein-Uhlenbeck process”, we meant a 

continuous leaky evidence accumulation process that may or may not reach a bound (that we 

relate to conscious perception). We reasoned that this process could continue after the decision, 

but not forever, thus the decay in drift rate was added to the model. The leakage was a practical 

way of driving the decision variable (DV) to zero after the decision and allowed us to fit the shape 

of the average DV to the EEG data. With this in mind, we argue that it is still an “evidence 

accumulation process”, even if it is not perfect accumulation. While reading our manuscript, we 

realized that we wrongly used the term “bounded evidence accumulation” twice and apologize for 

this mistake which we have corrected. We now completely dropped the terms “Ornstein-

Uhlenbeck” and “bounded evidence accumulation” and only write about “evidence accumulation” 

or “leaky evidence accumulation”. We are of course willing to change this if the reviewer proposes 

a better taxonomy.  

We agree with the reviewer that the leakiness and post-decisional evidence accumulation 

assumptions of our model need to be clarified with respect to the neuronal data. As we briefly 

introduced in an earlier response, our take is that both the neuronal data and the computational 

model of confidence are consistent with leakiness and post-decisional evidence accumulation. In 

what follows, we present some evidence that our modelling assumption can simulate evidence 

accumulation traces that are qualitatively similar to the firing rates we observed. However, we 

would rather refrain from making strong claims about the parameters of the underlying neuronal 

dynamics in the manuscript, as this issue is –in our view– too complex to address in the present 

manuscript.  

In experiment 1, the firing rates of the neurons after the button press did not drop immediately, as 

in LIP studies (e.g. Roitman & Shadlen, 2002, J. Neuro.). Instead, they briefly continued to 

increase, reaching a higher maximum for shorter RTs. We now present these data in the revised 

manuscript (see Fig 1f (inset); Supplementary Fig. 3). This is consistent with our model. To 

illustrate this, we simulated the DV using our model and separated the simulated DVs into misses 

and three bins of RT for hits. We were able to find parameters that reproduced patterns similar to 

the neuronal data.  
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Supplementary Fig 8. Comparison between neuronal data and evidence accumulation traces 

simulated by the computational model. Left: Average firing rates for detection- and RT- responsive 

neurons, for three bins of RT (hits; blue) and for misses (red). Firing rates were normalized to a 

0.3 s pre-stimulus baseline and time-locked to the stimulus onset. Inset: Corresponding average 

firing rates time-locked to the response (data identical to Fig. 1F, displayed here for comparison 

purposes). Right: Average evidence accumulation traces, time-locked to the stimulus onset, as 

simulated by the model for a set of manually selected parameters. Inset: Corresponding average 

evidence accumulation traces time-locked to the response time of the model. To make the 

simulation more realistic, we separated the non-decision time into a perceptual component 

(corresponding to the delay for perceptual evidence to start being accumulated) and a motor 

component, corresponding to the delay between the decision and the motor response. We set 

the motor delay to 80 ms (Resulaj et al., 2009, Nat. Neuro) and added a small amount of variability 

to both components (Gaussian random noise with a standard deviation of 40 ms).  

The inclusion of a leakage parameter departs from close-to-perfect accumulation during 

discrimination tasks using random-dot kinematograms documented both at the behavioral (Kiani 

et al., 2008, J. Neuro) and neural levels in the LIP (Churchland et al., 2011). However, we hope 

the reviewer agrees that for first-order responses in detection tasks using short vibrotactile stimuli 

with unpredictable onsets, the brain may adapt the dynamics of evidence accumulation to fit the 

task. Indeed, without leakage, neurons would need to “know” when to start accumulating 

evidence, otherwise, arguably, the state of the accumulator would increase with time prior to the 

stimulus onset, as noise is integrated. Other works using change detection tasks support our 

speculation (e.g. Ossmy et al., 2013, Cur. Bio.), although we are also aware of some works that 
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do not (Waskom & Kiani, 2018, Cur. Bio.). Evidence accumulation prior to stimulus onset is 

supported by evidence from a scalp EEG study (Devine et al., 2019, eLife).  

For confidence, post-decisional readouts are well accepted (as argued in the response to the 

corresponding concern) and one modelling study additionally found evidence supporting leakage 

(Yu et al., 2015, J. Exp. Psych.). We are not aware of any evidence accumulation model that 

describes confidence in a detection task, especially with unpredictable stimulus onsets. 

In sum, our modelling choice of using leakage: 

i) Provided a way to model the decrease of the EEG signal (and firing rates). 

ii) Is more adapted to a detection task with short stimuli and unpredictable stimulus onset, as 

shown by some prior works (Ossmy et al., 2013, Cur. Bio.)  

iii) Provides a parsimonious way of computing confidence in such a setting.  

iv) Allows us to reproduce similar evidence accumulation traces as the firing rates when time-

locking to the response onset. 

As for any model, ours does not provide a definitive answer concerning the general mechanism 

underlying confidence ratings, but we hope that our arguments and toy examples convinced the 

reviewer that leakiness is not an unreasonable assumption and that a definitive answer on this 

much debated matter is out of the scope of the present manuscript. That said, we thank the 

reviewer for raising this crucial point that we completely overlooked in the original manuscript and 

that was causing confusion. We have now added two paragraphs on the topic in the discussion 

(lines 354-380) and included the Figure above as Supplementary Figure 8.  

With respect to the variance analysis, we had a modest aim: showing an increase in VarCE and 

a decrease in CorCE with increasing lag to support our evidence accumulation interpretation. We 

did not presume that our data would allow us to dissociate between leaky and ideal accumulators. 

As we have dropped this variance analysis (see answer to concern B), this should not be a 

concern anymore.  

Metacognitive sensitivity (LL 798-802). Please spell out what you calculated and how the numbers 

relate to the values reported in the text and graphs. It is reasonable to express skepticism about 

the metacognitive measures (e.g., meta-dprime) because they fail to acknowledge that the 

distribution of S+N is not the same as the conditional distribution of S+N, given the response. This 

creates distortions which are further compounded by violations of the Gaussian and variance 

assumption. 
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We used the area under the receiver operating characteristic (AUROC) curve (Fleming et al., 

2011, Science). This measure thus “decodes” first-order performance using confidence ratings. If 

participants always rate their confidence at 100% when they are correct and at 50% when 

incorrect, the AUROC will be 1. In the other extreme case, if participants give random confidence 

ratings, the AUROC will be 0.5.  We would like to point to the reviewer’s attention that the AUROC 

measure does not rely on any statistical assumptions and does not suffer from the limitations of 

meta-dprime. Its main criticism has been that it does not compensate for differences in first-order 

performance. In our manuscript however, we never attempt a comparison between AUROC 

measures for “yes” and “no” responses, nor between participants. We use AUROC measures to 

show that our model reproduces the metacognitive abilities of the participants. As our model 

reproduced first-order performances well (hit-rate and false-alarm rate; see Supplementary Fig. 

6), our analysis is not affected by this issue.  

We clarified the corresponding section of the methods:

We evaluated metacognitive sensitivity or how well confidence predicted task performance 

(Fleming & Lau, 2014). For this, we represented the posterior probability of confidence ratings 

knowing the correctness of the detection report using the area under the receiver operating 

characteristic (AUROC) curve, computed independently for “yes” responses (hits and false 

alarms) and “no” responses (correct rejections and misses). (Lines 827-820)

The authors seem to be unaware of older work from David Heeger using fMRI to study a similar 

detection task (e.g., Ress et al., Nat Neurosci 2000). 

We included this reference in the introduction (lines 42-45): “Various neuroimaging studies have 

interpreted increases in neural activity elicited by detected stimuli (Ress et al., 2000, Nat Neuro.) 

(versus missed stimuli) as evidence accumulation (Salti et al., 2015, eLife; Tagliabue et al., 2015, 

Sci. Rep.; Wyart & Tallon-Baudry, 2009, J. Neuro)”
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Reviewer #3 (Remarks to the Author): 

Pereira et al. present an elegant set of complementary experiments, including intracranial single 

neuron and ECoG recordings from a single patient, and scalp EEG in a group of 18 healthy 

subjects. They suggest that their experimental and computational model evidence support a 

neural evidence accumulation account of “perceptual consciousness” and “perceptual monitoring 

“of a vibrotactile stimulus presented at near-detection level. 

Overall, I feel that this paper is technically and conceptually very impressive. The experimental 

design and data analysis approaches are highly rigorous and take care to appropriately control 

for important factors (e.g. using delayed and no report paradigm) to support the major findings. 

The paper is an important contribution to our understanding of mechanisms that give rise to 

conscious access, importantly providing a computational framework that could be further 

extended in the future to test generalizability (beyond the multiple experiments already presented 

here). 

We thank the reviewer for their appreciation of our work. 

My concerns are only minor. I found the narrative to be sometimes difficult to follow, and I think 

improvements are needed in the flow and the consistency of terminology used. Moreover, the 

authors largely describe the single neuron, ECoG, and EEG analyses as replications of one 

another, but these distinct modalities do not capture the same neural phenomena. I hope that the 

authors can address the following points: 

- I think the manuscript title should be changed to “Evidence accumulation determines 

VIBROTACTILE conscious access” to better acknowledge the scope of the paper 

We agree with the reviewer that our title was not specific enough, although looking at our 

references, we also note that very few authors specify the sensory modality in the title. Instead of 

putting the focus on the vibrotactile nature of our stimuli, we would like to emphasize that evidence 

accumulation concerns both perceptual consciousness and perceptual monitoring. Therefore, if 

both the editor and reviewer agree, and in line with the simplified writing we now use throughout 

the text, we propose to change the title to “Evidence accumulation determines perceptual 

consciousness and monitoring”. We now suggest in the discussion that evidence accumulation 

may generalize to other perceptual domains beyond vibrotactile stimuli, although further research 

will be necessary to prove it.  
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- The ECoG and EEG results are largely described as “replication” or “generalization” of the single 

neuron findings. Yet in both ECoG and EEG analyses, the authors focus on raw voltage 

fluctuations, which can reflect electrophysiological processes that are unrelated to neuronal firing. 

In the domain of ECoG, evidence suggests that high-gamma/high frequency broadband (~50-200 

Hz) power amplitude may be more closely related to neuronal population firing near a given 

electrode contact (see Parvizi & Kastner 2018 Nat Neurosci for recent review). The authors could 

consider redoing the ECoG analyses based on high-frequency power amplitude. At minimum, the 

issue should be discussed, and the analyses should not be framed as “replication” (though the 

similarity of findings across neuron firing, ECoG and EEG is indeed striking as presented). 

It is true that although we obtained comparable results across recording methods, the underlying 

physiological processes may differ. We now refrain from using the term “replication”, and 

acknowledge in the discussion that ECoG/EEG and single-unit results were based on arguably 

distinct electrophysiological processes:  

Line 331-333: Analyzing the amplitude of EcoG data and EEG data from Experiment 4, we could 

generalize our single-neuron findings at a larger scale and arguably distinct electrophysiological 

processes.

We performed the same analysis for Experiment 1 using broadband gamma (50 – 180 Hz). To 

compensate for the 1/f drop, we filtered the data in consecutive 10 Hz sub-bands. For each sub-

band, we stored the absolute value of the Hilbert transformed filtered data, divided by its mean 

value. We then averaged sub-bands to get the broadband gamma signal. The reviewer can see 

the result for broadband gamma below (a), for the electrode depicted in Figure 1i (revised 

manuscript), which we show in (b) for the reviewer’s convenience. Although the broadband data 

shows a buildup prior to the RT, unlike the low frequency ECoG data, the final amplitude seems 

to decay with time. 

We would like to point out however, that a recent paper recording laminar data in monkeys 

suggests that ECoG electrodes measure the broadband activity of superficial sources for which 

no clear corresponding multi-unit activity can be found, suggesting that these broadband gamma 

signals could reflect dendritic processes rather than neuronal activity (Leszczyński et al. 2020, 

Sci. Adv.).  

Therefore, considering i) the uncertain link between broadband gamma and neuronal activity, ii) 

the quantity of results already contained in this manuscript and iii) the fact that the data is open 

anyways, we prefer to not include these results in SI unless the editor / reviewer argues otherwise. 
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(a) Average broadband gamma, aligned to stimulus onset from one electrode posterior to the 

microelectrode array for three terciles of RT (blue) and for misses (red). (b) Average ECoG amplitude, for 

the same electrode and time-locking. In all panels, shaded areas represent 95%-CI.  

- In the abstract, the first sentence describes “perceptual consciousness” as encompassing (1) 

the perceptual experience, and (2) reflexive monitoring. Later, these terms are described as 

“perceptual and reflexive consciousness” and then throughout the paper, the term “perceptual 

monitoring” is used (I believe synonymously with reflexive monitoring). The title of the paper refers 

to “conscious access.” The paper would be much easier to follow if terms are used much more 

consistently throughout. Relatedly, I recommend referring to the following paper, which 

distinguishes between access and phenomenal consciousness Block, N. (1995). On a confusion 

about a function of consciousness. Behavioral and brain sciences, 18(2), 227-247. 

We agree that our terminology was not consistent enough. We rewrote parts of the abstract and 

introduction based on the reviewer’s comment, and simplified our terminology accordingly. We 

now use only “perceptual consciousness and monitoring” in the title, abstract and introduction, 

which refer respectively to subjective experience and metacognitive monitoring. We also removed 

all instances of the term “conscious access”, to avoid any ambiguities regarding phenomenal vs. 

access consciousness as put by Ned Block.   

- Abstract: “…irrespective of response effectors” is ambiguous here without context (though I 

understood after reading the whole paper) and I think should be worded more clearly 

We agree that this sentence is unclear. We changed it to “irrespective of motor confounds”.  
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- The rationales for the three experimental paradigms (immediate response, delayed response, 

and no report) is not really fully explained until late in the Discussion (second last paragraph, lines 

369-372). The use of these multiple paradigms is a major strength of this study, and I think the 

rationales should be further clarified and explicitly stated in the Intro and better embedded 

throughout the description of results. In the Intro, a short discussion of how correlative (reported 

vs. unreported) findings have been suggested to be confounded by postperceptual processes 

would be helpful to motivate their exp. 2 and exp. 3. I recommend referring to the following paper: 

Block, N. (2020 Trends Cogn sci). Finessing the bored monkey problem. 

The reviewer is right in that we did not motivate our different paradigms early enough in the 

manuscript. We now mention this in the introduction:  

Lines 72-75:  

Namely, the comparison of neural signals between paradigms involving immediate and delayed 

responses ensured that the NCCs we isolated were not contaminated by motor actions. Moreover, 

the use of a no-report paradigm ensured that these NCCs reflected perceptual consciousness per 

se, irrespective of task demand. 

We now also provide a clearer narration in the results section when introducing Experiment 2:  

Lines 133-134: Because the participant hit a key as soon as they detected a stimulus in 

Experiment 1, the comparison between hits and misses mentioned above may be contaminated 

by motor confounds. Thus, we tested whether neuronal responses relate to conscious perception 

irrespective of motor actions by imposing a delay between stimulus onset and reports. 

Introducing Experiment 3, we now recapitulate the advantage and limitations inherent to 

Experiment 2, before resuming to the original description of the no-report paradigm we wrote 

previously:  

Line 190-192: While the use of delayed responses in Experiment 2 ensured that the comparison 

of hits and misses was not contaminated by motor confounds, a possibility remains that the 

neurons we uncovered are involved in task execution rather than subjective experience per se. 

Finally, when summarizing our results at the beginning of the discussion, we now remind the 

reader that “Using a combination of delayed response and no-report paradigms, we ruled out the 

possibility that these effects stemmed from motor actions or task demand” (lines 290-292). 
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We thank the reviewer for helping us improving our rationale throughout the revised manuscript. 

- An updated review on global neuronal workspace perhaps could be cited when discussing 

relevant concepts: Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). 

Conscious processing and the global neuronal workspace hypothesis. Neuron, 105(5), 776-798. 

We thank the reviewer for pointing this out. Although we were aware of this updated version, it 

somehow slipped from the submitted manuscript. This is now corrected. 

- In the introduction, I recommend that the authors expand on the notion of ignition and the role 

of evidence accumulation in GWT, as the entire paper is built from these theoretical 

considerations. To my knowledge, the concept only applies to GWT and the authors should be 

explicit about this (or argue otherwise). Higher order models of consciousness and recurrent 

activation theories do not suggest such a mechanism (e.g. Lau, H. (2019b). Consciousness, 

Metacognition, & Perceptual Reality Monitoring. PsyArXiv. doi:10.31234/osf.io/ckbyf. 

We agree with the reviewer that ignition and evidence accumulation are key mechanisms put 

forward by GWT. At the same time, establishing a clear formal link with GWT and ruling out a 

possible role of evidence accumulation in other theoretical frameworks is beyond the scope of the 

present study. At the current stage, and as we indicated in our response to reviewer 2, we 

consider evidence accumulation to be agnostic with respect to which specific theoretical 

framework may explain consciousness. To make this clearer, we now state that “Furthermore, 

conceptual work will be needed to assess to what extent evidence accumulation is necessary if 

not sufficient for consciousness (Vlassova, 2014, PNAS; Barbosa et al., 2017, Consc. & Cog.), 

and how it fits within other theoretical frameworks such as higher order thought theories (Brown 

et al., 2019, TiCS) or recurrent processing theories of consciousness (Lamme, 2005, TiCS). ” 

(lines 410-413). Unless the reviewer disagrees, we will cite the TiCS opinion paper from the same 

authors, which provides a more general description of higher order theories.  

- For the EEG study, it seems that details may be missing regarding how subjects were screened 

inclusion/exclusion criteria. 

We added the following sentence in the methods section (lines 622-623):  
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All participants reported being right-handed, had normal hearing and normal or corrected-to-

normal vision, and no psychiatric or neurological history. Two participants were excluded due to 

excessive artifacts.  

- If possible, the authors should report on the intracranial patient’s state at the times of testing 

(e.g. medications, pain, cognitive state/mood), especially since results are based on a single case. 

This is important and has been added to the original manuscript in the methods section (lines 

615-619):  

Except for ibuprofen, paracetamol and esomeprazole, the patient was not under the influence of 

any medication (i.e., no antiepileptic drug). The patient rated their pain at 1 out of 10 on a visual 

analog scale, except for Experiment 3, for which they rated their pain at 2 out of 10, reporting a 

slight pain around the left orbit. No neurological or cognitive abnormality, or anxiety were reported 

by the clinical team and their mood was stable.  

- Please add information about the size of ECoG electrode contacts 

We added the following sentence to the methods section (line 678):  

The electrodes had a 4 mm diameter with 2.3 mm exposed corresponding to an area of 4.15 

mm2 

- In Fig 1D, the “Slow/Mid/Fast” text is partly cut off 

This has been corrected.
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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have provided a comprehensive response to my comments. I was struck by how 

delayed/extended the response of these newly characterised “miss”-coding neurons was, even in 

Experiment 1. It’s up to the authors and editor of course, but if similar extended responses in the 

delay period of Experiment 2 are seen this would seem informative to include in the supplement. 

One minor final suggestion - in the new lines 350-352, perhaps “irrespective of detection” should 

be “irrespective of detection response”, given that what matters here is the sign of the response 

(yes or no), not the task itself. 

Reviewer #2 (Remarks to the Author): 

The authors have performed a very thorough revision. I commend them for the serious thought 

they put into this revision. I was enthusiastic about the original submission and all the more so 

now. I have no further recommendations. 

Reviewer #3 (Remarks to the Author): 

I am satisfied with the authors' response and congratulate them on an outstanding manuscript. I 

am ok with the authors leaving out the ECoG broadband gamma result given that they now 

acknowledge the distinct processes captured by single-unit and ECoG/EEG raw voltage. Though 

the Leszczynski 2020 paper noted by the authors concludes that broadband gamma does not 

alway correspond to multi-unit activity, I encourage them to further examine the findings from that 

paper, which does actually report a strong temporal correlation between spiking and broadband 

gamma (in line with lots of other literature). The dissociation that they report is very context-

specific (and potentially region specific). This is just a note for future reference, and again, I 

congratulate the authors on their paper which I think is acceptable for publication in its current 

form. 



Reviewer #1 (Remarks to the Author): 

The authors have provided a comprehensive response to my comments. I was struck by how 

delayed/extended the response of these newly characterised “miss”-coding neurons was, even in 

Experiment 1. It’s up to the authors and editor of course, but if similar extended responses in the 

delay period of Experiment 2 are seen this would seem informative to include in the supplement. 

One minor final suggestion - in the new lines 350-352, perhaps “irrespective of detection” should be 

“irrespective of detection response”, given that what matters here is the sign of the response (yes or 

no), not the task itself. 

Response: Like the reviewer, we were intrigued by the shape and latency of the responses we 

obtained from miss-coding neurons. As we now mention in the revised manuscript, we found no miss-

coding neurons in Experiment 2, possibly because there were five times less detection-selective 

neurons (17 instead of 81).  

We changed “irrespective of detection” by “irrespective of detection response”.  

We thank the reviewer for her/his kind words and invaluable feedback.   

Reviewer #2 (Remarks to the Author): 

The authors have performed a very thorough revision. I commend them for the serious thought they 

put into this revision. I was enthusiastic about the original submission and all the more so now. I have 

no further recommendations. 

Response: We thank the reviewer for her/his kind words and invaluable feedback.   

Reviewer #3 (Remarks to the Author): 

I am satisfied with the authors' response and congratulate them on an outstanding manuscript. I am 

ok with the authors leaving out the ECoG broadband gamma result given that they now acknowledge 

the distinct processes captured by single-unit and ECoG/EEG raw voltage. Though the Leszczynski 

2020 paper noted by the authors concludes that broadband gamma does not alway correspond to 

multi-unit activity, I encourage them to further examine the findings from that paper, which does 

actually report a strong temporal correlation between spiking and broadband gamma (in line with lots 

of other literature). The dissociation that they report is very context-specific (and potentially region 

specific). This is just a note for future reference, and again, I congratulate the authors on their paper 

which I think is acceptable for publication in its current form. 



Response: We agree with the reviewer that the relationship between gamma and multi-unit activity is 

complex and this specific study by Leszczynski and colleagues does not settle the issue. We will keep 

this in mind for the future.  

We thank the reviewer for her/his kind words and invaluable feedback.   


