
REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author); expert on cancer metabolism and autophagy:

The authors have generated a pipeline for uncovering mutations in LIR motifs across 

the proteome that may have functional significance in modulating autophagy in cancer 

cells. Through this analysis several putative proteins containing mutated LIRs were 

identified and validated for binding to ATG8 homologs including STBD1 – a known 

autophagy receptor for glycogen. The authors find that the LIR in STBD1 (WEMV 

located at aa 203) is mutated to CEMV leading to loss of binding to GABARAPL1. 

Differential levels of STBD1 was also found in diverse cancer cell lines. Knockdown of 

STBD1 led to changes in glycogen co-localization with GABARAPL1, cellular 

metabolism, and in vitro and vivo tumor growth. The authors propose that STBD1 is a 

novel tumor suppressor. 

Overall the computation pipeline appears to be an exciting new approach to identify 

novel LIR motifs and those that are altered in cancer. The data associated with BRAF 

for instance, showing a gain of binding to LC3 and GABARAPL1 is very interesting. 

However, a clear connection between the selected LIR mutation in STBD1 and 

autophagy regulation or tumorigenesis is not well established. Specific points are 

noted below. 

Western blots for LC3 shown in extended figure 1 are conducted using overexpression 

of WT or mutant STBD1. The results as presented do not establish whether STBD1 

loss changes autophagy flux, which should be conducted using established reporters 

or treatment with lysosome inhibitors. 

In figures 4a and extended data figure 1b expression of STBD1 W203C causes a 

dramatic change in GABARAPL1 cellular distribution. Can the authors provide an 

explanation for this result and whether this phenotype contributes to the downstream 

effects observed ? 

Based on the data presented in supplementary table 3 it appears that the W203C 

mutation is present in a single tumor sample ( intestinal adenocarcinoma). It is difficult 

to therefore assign this gene as a bone fide tumor suppressor given the absence of 

wide spread inactivating mutations either in this cancer type or across cancer types. 

Therefore, the authors may wish to reconsidering assigning STBD1 as a tumor 

suppressor. 

The patient survival data presented in fig. 3e, while statistically significant, does not 

convincingly show a major difference in the survival outcomes of patients with high vs 

low mRNA levels of STBD1. Is it possible that assessing survival within a given cancer 

type might show more convincing differences? 

In order to establish cancer relevance, I believe it is important to validate the reported 



reduced expression of STBD1 in cell lines (ext data figure 2c), in patient tumor 

specimens and provide statistical analysis of staining intensity. Moreover, it is important 

to include normal cell controls to assess relative change in STBD1 expression levels 

in cancer cells. 

The authors interchangeably utilize the STBD1 W203C mutant and complete 

knockdown/knockout of STBD1 which are technically not equivalent. For instance the 

in vivo data presented in figure 4o,p are conducted using cells knocked down for 

STBD1. Does expression of STBD1 W203C mutant in STBD1 KO cells also accelerate 

tumor growth ? 

The connection between STBD1 and Myc is difficult to reconcile. It is unclear as to why 

myc levels change in response to STBD1 knockdown or expression of the W203C 

mutant. Can the authors provide an explanation as to how and why this occurs ? 

Related to the previous point, a direct role for STBD1 in regulation of metabolism or 

expression of metabolic genes is not convincingly established – the data as presented 

is largely correlative. For instance, is it possible that the increased glycolysis 

associated with STBD1 loss or expression of the W203C mutant may be indirect – ie 

associated with changes in Myc levels? If so additional mechanistic insight into how 

STBD1 changes Myc activity is important to establish. 

Overall the study delves more so into the functional significance of STBD1 rather than 

a specific role for the LIR mutant and its effect on tumorigenesis, metabolism and 

autophagy. 

Reviewer #2 (Remarks to the Author); expert on autophagy and computational biology:

The manuscript of Han et al describes a novel bioinformatics approach to identify 

autophagy targeted proteins, focuses on those that are mutated in cancer, and 

experimentally validates and assess one of the key predictions, STBD1. The 

manuscript is well written compared to the complexity of the study, though there are a 

few minor issues with the text listed below. The topic is very timely, and the applied 

approach extends our current knowledge. The assessment of the data has been 

carried out properly, except for a few points in relation for example to how the cancer-

associated mutations were defined and used (see details below). 

Major points: 

- Title does not represent fully the study. It should be more specific to the presented 

work. 

- The abstract does not contain the key results properly in relation to the STBD1 

experiments. Ie, the paper contains much more that what is written currently in the 

abstract. 



- Throughout the manuscript abbreviation usage is not ideal. There are much more 

abbreviations than needed, any many are not standard ones. For example “AA” as 

autophagy-associated (AA) proteins is not really common, and confusing with ATG 

proteins, even if AA meant to cover more. I suggest reducing the number of abbreviated 

terms. 

- The mutation data, while described in detail in the Methods section, is not always 

clear in the Results section which one was used and why. For example in the Results 

section: “Next, we mapped known cancer mutations to potential human LIRCPs “. In 

the Methods there are three mutation sources, which one was used here, and why? 

Also, a more important point currently not covered is what was the mutational rate for 

the identified LAMs? How frequent they are in the different cancer types? COSMIC 

contains for example so many passenger mutations that should not be considered in 

general as cancer-associated. Therefore, more data presentation and quality control 

are needed here, before applying their new model. 

- At some parts, the data integration is not always justified or clear. For example, “The 

pan-cancer analysis revealed that SNVs, RNA expressions, and DNA methylation 

levels of 19, 101 and 109 LIRCPs are statistically associated with human cancer (Fig. 

3a).” Why these data is relevant when LIR motif based associations would affect the 

protein level and not the regulation of the respected genes? If external data is aimed 

to use as in silico confirmation than proteomics difference for example from the Human 

Protein Atlas’s cancer dataset would be much more adequate. 

- In general, the whole “LAM-containing LIRCPs play a potential role in human cancer 

“ section is out of scope or focus of this study. While relevance in cancer is an important 

thing to validate, these omics layer provide this just indirectly, not in relation to the 

LAMs. 

- The section on EHMT2, ERCC6, and BRAF are inserted in the middle of the STBD1 

analysis and validation. Probably it would be better before the STBD1. Also, from the 

current brief text it is not clear what the role of the newly discovered LIR motifs is in 

EHMT2, ERCC6, and BRAF? Especially the BRAF is very relevant to cancer biology. 

This should be presented better, or removed for the sake of the focus of the study. 

- There is a network reconstruction work in the study, which is needed in principle but 

was not inserted, justified and carried out properly. This LIRCP-regulating network 

contains protein-protein interactions (PPIs) and transcriptional regulations among the 

151 AA proteins. Why these interactions were added? This reconstruction study should 

be in the Results but currently it is referred only in the Discussion and the Methods. 

And additional issue is that the layout and visualization of the network on Figure 7 are 

not informative, unclear and not following best practices in the field (for example, 

please check the guidance here https://doi.org/10.1371/journal.pcbi.1007244) 

- The discussion on the LIR prediction model is missing, more details on the 

benchmarking with other existing methods is needed, not only that the coverage of the 

new method is higher. How many LAMs can be found with the existing methods? How 

many putative LIR motifs (from iLIR database and iLIR@viral, which were correctly left 

out in the original data curation) can be found/confirmed with the new extended 

algorithm. 



- The “A Modified GPS Algorithm “ section is difficult to understand. More explanation 

is needed to understand and asses this part. 

- A potential key issue is that according to the Methods from the human proteome set, 

the authors detected 19,577 proteins containing at least one tetapeptide that follows 

the cLIR motif. As they checked 20,659 proteins, it would mean that the authors have 

found these motifs in nearly all human proteins which is worrying. Even if they apply a 

model to filter false positives, this initial step and data could question their approach 

and the results, thus this should be addressed. 

Technical details: 

- On page 25, add specific Uniprot release number and or date of download – year is 

not enough. 

- On page 25, It is not clear what was the initial rational to define the short flanking 

peptides and the LMP(7, 7). 

- On page 25, It is also not clear how the positive and the negative datasets were 

compiled from this sentence: “we regarded LMP(7, 7) entries derived from all known 

cLIR and aLIR motifs as positive data, and we took LMP(7, 7) items around other 

putative cLIR motifs in the same proteins as negative data.“ 

- Where is the result of the “Performance Measurements” mentioned in the Methods 

(page 26)? 

- On page 26, “Recently, we improved our previously-developed GPS algorithm from 

2.1 to 5.0…” – it is not clear what 2.1 to 5.0 means. 

- In the end of the same sentence on page 26 ”in order to predict kinase-specific 

phosphorylation sites (http://gps.biocuckoo.cn/, published elsewhere).” – please add 

the exact reference. 

Minor: 

- In the abstract: “Further analysis confirms that LAMs in ATG4B, EHMT2 and BRAF 

that can alter interactions with LC3 and/or autophagic activities.” – remove “that” 

- In the abstract: “Unexpectedly, STBD1, a poorly-characterized protein, inhibits tumor 

growth via modulating glycogen autophagy, while its cancer-linked mutation abolishes 

the cancer inhibitory function.” I suggest rewriting as the “unexpectedly” refers to the 

second part of the sentence. 

- In the abstract: “… provides a fundamental framework to uncover the molecular 

landscape that drives carcinogenesis via modulating autophagy selectivity.” – I do not 

think it is a “molecular landscape”, rather a “molecular mechanism”. 

- In the Introduction: “LIRCPs “ is not introduced or described what it means. 

- “Our benchmark data set was much larger than iLIR (Kalvari et al., 2014) and hfAIM 

(Xie et al., 2016), which only collected 27 and 36 known LIR motifs, respectively “ – 

Probably add details or reference to Fig2a where the authors’ benchmark is quantified 

properly. 

- “we identified 233 potential LAMs that significantly change 177 cLIR motifs in 151 



LIRCPs, including 64 Type I and 169 Type II LAMs” – Please rewrite as “including” is 

not in a proper place of the sentence. 

- “indicating that a strong correlation between autophagy and human cancer “ – remove 

“that” 

- On page 17, “differentially expression genes (DEGs)” – change to “differentially 

expressed genes” 

- On page 22, “Glycophagyis” -> Glycophagy is” 

- On page 27., “tothe" -> “to the” 

- On Figure 1: There is a typo in “tumor proliferation” 

Tamas Korcsmaros 



Detailed Responses to Reviewers’ Comments 

Reviewer #1:

1. The authors have generated a pipeline for uncovering mutations in LIR motifs across 

the proteome that may have functional significance in modulating autophagy in cancer 

cells. Through this analysis several putative proteins containing mutated LIRs were 

identified and validated for binding to ATG8 homologs including STBD1 – a known 

autophagy receptor for glycogen. The authors find that the LIR in STBD1 (WEMV 

located at aa 203) is mutated to CEMV leading to loss of binding to GABARAPL1. 

Differential levels of STBD1 was also found in diverse cancer cell lines. Knockdown of 

STBD1 led to changes in glycogen co-localization with GABARAPL1, cellular 

metabolism, and in vitro and vivo tumor growth. The authors propose that STBD1 is a 

novel tumor suppressor.  

Overall the computation pipeline appears to be an exciting new approach to identify 

novel LIR motifs and those that are altered in cancer. The data associated with BRAF 

for instance, showing a gain of binding to LC3 and GABARAPL1 is very interesting. 

However, a clear connection between the selected LIR mutation in STBD1 and 

autophagy regulation or tumorigenesis is not well established. Specific points are noted 

below.  

Ans: We thank the reviewers for the time and efforts spent evaluating our manuscript. 

In the past over two months, we have been working very hard performing experiments 

and revising the manuscript, to address these concerns. 

2. Western blots for LC3 shown in extended figure 1 are conducted using overexpression 

of WT or mutant STBD1. The results as presented do not establish whether STBD1 loss 

changes autophagy flux, which should be conducted using established reporters or 

treatment with lysosome inhibitors.  

Ans: Thanks a lot for the suggestions. We tested whether STBD1 affected degradation 

of p62 in the presence or absence lysosome inhibitor BafA1. Overexpression of STBD1 

WT, but not W230C, induces degradation of p62, in the absence of BafA1 (new 

Supplementary Fig. 3f). The presence of BafA1, however, leads to the accumulation of 

p62 in both cells (new Supplementary Fig. 3f). These data indicate that cancer-

associated mutation of STBD1 on W203 abrogates its binding to GABARAPL1 and 

impairs its functions in autophagy.  

3. In figures 4a and extended data figure 1b expression of STBD1 W203C causes a 

dramatic change in GABARAPL1 cellular distribution. Can the authors provide an 

explanation for this result and whether this phenotype contributes to the downstream 

effects observed? 



Ans: STBD1 has a glycogen-binding domain, in addition to its LIR motif. We and 

others have shown that STBD1 has strong co-localization with glycogen. Therefore, 

GABARAPL1 co-localizes with glycogen through its interaction with STBD1 WT. 

STBD1 W203C disrupts the interaction with GABARAPL1, thus altering its cellular 

distribution. Although alteration of both GABARAPL1 cellular distribution and cell 

proliferation are induced by STBD1 LIR mutation, we have no evidence that they are 

directly connected with each other.  

4. Based on the data presented in supplementary table 3 it appears that the W203C 

mutation is present in a single tumor sample (intestinal adenocarcinoma). It is difficult 

to therefore assign this gene as a bone fide tumor suppressor given the absence of wide 

spread inactivating mutations either in this cancer type or across cancer types. 

Therefore, the authors may wish to reconsidering assigning STBD1 as a tumor 

suppressor. 

Ans: Thanks for the suggestion. We are no longer assigning STBD1 as a tumor 

suppressor, as substantially more evidence is needed to claim a tumor suppressor (as 

the reviewer has suggested). Instead, we suggest that STBD1 has potential tumor-

suppressive activities based on our results. In addition to the point mutation in a single 

tumor sample, we also provide new evidences that STBD1 is down-regulated in liver 

cancer tissues relative to the adjacent non-carcinoma tissues (new Supplementary Fig. 

4a). 

5. The patient survival data presented in fig. 3e, while statistically significant, does not 

convincingly show a major difference in the survival outcomes of patients with high vs 

low mRNA levels of STBD1. Is it possible that assessing survival within a given cancer 

type might show more convincing differences?  

Ans: In the original form, actually the survival analysis was performed in both pan-

cancer and individual cancer levels, and here we added a new Supplementary Data 4 to 

present all statistically significant results (The log-rank test, SNV: p-value < 0.05; RNA 

expression: p-value < 10-4; DNA methylation: p-value < 10-4). For STBD1, we found 

that its higher mRNA expression level in glioma (GBMLGG) and lower DNA 

methylation level in GBMLGG and brain lower grade glioma (LGG) are significantly 

associated with a lower survival probability, exhibiting an opposite result against that 

in the pan-cancer level. So in general STBD1 might have tumor suppressive functions, 

and it might have different roles in different types of cancer.  

6. In order to establish cancer relevance, I believe it is important to validate the 

reported reduced expression of STBD1 in cell lines (ext data figure 2c), in patient tumor 

specimens and provide statistical analysis of staining intensity. Moreover, it is 

important to include normal cell controls to assess relative change in STBD1 expression 

levels in cancer cells. 



Ans: Suggestions are well-taken. We performed immunohistochemistry (IHC) staining 

to examine 27 colon cancer specimens and paired adjacent noncancerous tissues. The 

expression of STBD1 at the protein level is significantly lower in the cancer tissues in 

comparison with that in the adjacent non-carcinoma tissues (~56% of paracancer) (new 

Supplementary Fig. 4a). 

7. The authors interchangeably utilize the STBD1 W203C mutant and complete 

knockdown/knockout of STBD1 which are technically not equivalent. For instance the 

in vivo data presented in figure 4o,p are conducted using cells knocked down for STBD1. 

Does expression of STBD1 W203C mutant in STBD1 KO cells also accelerate tumor 

growth?  

Ans: We highly appreciate these insightful suggestions! We performed multiple 

experiments as suggested. Multiple new cell lines were generated, including the 

shSTBD1 HCT116 cells were rescued with shRNA-resistant STBD1 WT 

(shSTBD1/WT), W203C (shSTBD1/W203C), or empty vector (shSTBD1/plvx neo). 

We found:  

(1) shSTBD1/WT, but not shSTBD1/W203C, significantly decreases cell growth 

(Supplementary Fig. 6a-b). 

(2) shSTBD1/WT pronouncedly suppresses tumor growth in the tumor xenograft model, 

in comparison with control (plvx neo) and shSTBD1/W203C (Fig. 4o-p). 

(3) Analysis of RNA-Seq results reveals that STBD1 W203C and shSTBD1 affect 

many similar pathways. Eight out of 14 pathways, including 

glycolysis/gluconeogenesis, enriched in the shSTBD1 vs. shControl cells are also found 

in the ones that are differentially affected in shSTBD1/W203C vs. shSTBD1/WT cells 

(Supplementary Fig. 8a-d). 

(4) Both STBD1 W203C and depletion of STBD1 affect the expression of genes in the 

glycolysis pathway (Fig. 5e).  

(5) Both STBD1 W203C and depletion of STBD1 promote the expression of c-Myc 

(Supplementary Fig. 9).  

Collectively, our results indicate that STBD1 has potential tumor suppressive activity 

through interacting with LC3B and participating in glycophagy. STBD1 W203C 

mutation leads to the loss of normal functions of STBD1, similar to shSTBD1. 

8. The connection between STBD1 and Myc is difficult to reconcile. It is unclear as to 

why myc levels change in response to STBD1 knockdown or expression of the W203C 

mutant. Can the authors provide an explanation as to how and why this occurs? 

Ans: c-Myc is a well-characterized marker of multiple cancer hallmarks including 

evasion of anti-growth signaling, sustained proliferation and cell death. Since STBD1 

has potential tumor-suppressive activities, we are interested in determining which 

cancer hallmark traits are affected by STBD1. From a well-curated database named 

HOC, we obtained 377 known cancer hallmark genes, and mapped them to our 

transcriptomic data with or without STBD1 depletion. The enrichment analyses 



demonstrated that 5 cancer hallmarks might be regulated by STBD1, including 

sustained proliferation, genome instability, cell death, invasion and metastasis, and 

metabolism. As c-Myc associates with two cancer hallmarks regulated by STBD1, 

sustained proliferation and cell death, we suspected that STBD1 may affect the 

expression of c-Myc. Indeed, depletion of STBD1 dramatically increases the expression 

of c-Myc (new Fig. 5f, 5g and Supplementary Fig. 9).  

To further validate our approach, we tested two addtional hallmark genes, NFKB1 and 

AKT1, which are predicted to be affected by STBD1. We found that STBD1 depletion 

leads to up-regulation of oncogene AKT1, whereas suppresses the expression of tumor 

suppressor NFKB1 (Fig. 5g). Thus, STBD1 suppresses tumor growth through 

inhibiting multiple cancer hallmark traits. 

9. Related to the previous point, a direct role for STBD1 in regulation of metabolism or 

expression of metabolic genes is not convincingly established – the data as presented 

is largely correlative. For instance, is it possible that the increased glycolysis 

associated with STBD1 loss or expression of the W203C mutant may be indirect – ie 

associated with changes in Myc levels? If so additional mechanistic insight into how 

STBD1 changes Myc activity is important to establish. 

Ans: We have tried our best, but could not accurately predict any direct relations 

between c-Myc and STBD1, using available bioinformatic tools. In current stage, our 

algorithms including pLIRm and pLAM in iCAL pipeline can only prioritize potentially 

cancer-associated LIR-containing proteins (LIRCPs) that carry single point mutations 

within the LIR motif. Accurate prediction and demonstration of the connection between 

STBD1 and c-Myc, although potentially important, is out of the scope of our current 

study. However, our results presented above strongly supported that STBD1 depletion 

or mutation promote the acquisition of multiple cancer hallmark traits.  

10. Overall the study delves more so into the functional significance of STBD1 rather 

than a specific role for the LIR mutant and its effect on tumorigenesis, metabolism and 

autophagy.  

Ans: Thanks a lot for the suggestions. We have taken your comments very seriously, 

and performed multiple sets of experiments to demonstrate the importance of the lIR 

mutation in STBD1. As illustrated in Fig. 4o-p, Fig. 5e-g, Supplementary Fig. 6a-b, 8d, 

9, we now provide multiple lines of new evidence that the LIR mutation in STBD1 

affects tumor growth, expression of genes critical for glycolysis, and autophagy. 



Reviewer #2: 

1. The manuscript of Han et al describes a novel bioinformatics approach to identify 

autophagy targeted proteins, focuses on those that are mutated in cancer, and 

experimentally validates and assess one of the key predictions, STBD1. The manuscript 

is well written compared to the complexity of the study, though there are a few minor 

issues with the text listed below. The topic is very timely, and the applied approach 

extends our current knowledge. The assessment of the data has been carried out 

properly, except for a few points in relation for example to how the cancer-associated 

mutations were defined and used (see details below). 

Major points: 

- Title does not represent fully the study. It should be more specific to the presented 

work. 

Ans: Based on your suggestion, we changed the title into “Model-based analysis 

uncovers mutations that change autophagy selectivity in cancer cells”.  

2. The abstract does not contain the key results properly in relation to the STBD1 

experiments. Ie, the paper contains much more that what is written currently in the 

abstract. 

Ans: Thanks a lot for the suggestions! We have modified the abstract as suggested.  

3. Throughout the manuscript abbreviation usage is not ideal. There are much more 

abbreviations than needed, any many are not standard ones. For example “AA” as 

autophagy-associated (AA) proteins is not really common, and confusing with ATG 

proteins, even if AA meant to cover more. I suggest reducing the number of abbreviated 

terms. 

Ans: The abbreviation “AA” was replaced by ATG genes/proteins and autophagy 

regulators throughout the manuscript. Other non-commonly or less used abbreviations 

were removed.

4. The mutation data, while described in detail in the Methods section, is not always 

clear in the Results section which one was used and why. For example in the Results 

section: “Next, we mapped known cancer mutations to potential human LIRCPs “. In 

the Methods there are three mutation sources, which one was used here, and why? 

Ans: In this study, all missense single nucleotide variants (SNVs) collected from TCGA, 

ICGC and COSMIC databases were used. The three data sets were highly redundant, 

and we merged them into a single data set and cleared the redundancy before use. We 

revised the manuscript to clarify this point as below: 



Page 9, paragraph 2, added, 

“From The Cancer Genome Atlas (TCGA) 22, International Cancer Genome 

Consortium (ICGC) 23 and Catalogue of Somatic Mutations in Cancer (COSMIC) 24, 

we obtain 2,963,952 non-redundant missense single nucleotide variants (SNVs).” 

Page 32, paragraph 1, changed, 

“…In total, we obtain 1,898,302, 4,306,716 and 5,806,067 human missense SNVs from 

TCGA, ICGC and COSMIC databases, respectively. We merge the three data sets 

together, and there are 2,963,952 unique missense SNVs reserved after redundancy 

clearance.” 

5. Also, a more important point currently not covered is what was the mutational rate 

for the identified LAMs? How frequent they are in the different cancer types? 

Ans: We agree with your opinion, and added the information of cancer type(s), numbers 

of affected cases against all cases, and percentile for each identified LAM if available 

(Supplementary Data 3). For COSMIC mutations, functional impacts predicted by 

FATHMM, a Hidden Markov Model (HMM)-based web-server to predict the functional 

impacts of coding or non-coding variants, were also present.  

6. COSMIC contains for example so many passenger mutations that should not be 

considered in general as cancer-associated. Therefore, more data presentation and 

quality control are needed here, before applying their new model. 

Ans: In the new Supplementary Data 3, there were 94 identified LAMs derived from 

the COSMIC database. From the functional impacts of these mutations predicted by 

FATHMM, it could be found that 87 (92.6%) COSMIC-derived LAMs were annotated 

as “Pathogenic” (FATHMM score > 0.8). Thus, this result indicated that cancer driver 

mutations might be truly enriched in identified LAMs. 

7. At some parts, the data integration is not always justified or clear. For example, “The 

pan-cancer analysis revealed that SNVs, RNA expressions, and DNA methylation levels 

of 19, 101 and 109 LIRCPs are statistically associated with human cancer (Fig. 3a).” 

Why these data is relevant when LIR motif based associations would affect the protein 

level and not the regulation of the respected genes? If external data is aimed to use as 

in silico confirmation than proteomics difference for example from the Human Protein 

Atlas’s cancer dataset would be much more adequate. 

Ans: To ensure the data quality, all computational analyses in this study were re-

performed, and in total we identified 222 potential LIR motif-associated mutations 

(LAMs) in 148 proteins (Supplementary Data 3). We apologize for this inconvenience. 

Indeed, bona fide LAMs will change LIR motifs and affect the protein expressions, 

which should significantly correlate with clinical outcomes under the survival analysis 

to indicate potential roles in tumorigenesis. However, we cannot get a high-quality data 



set of protein expressions in cancer. For example, in The Human Protein Atlas (HPA, 

https://www.proteinatlas.org/), exact protein expression values were not provided in the 

file “pathology.tsv.zip” (https://www.proteinatlas.org/about/download). Instead, 

expression profiles for proteins in human tumor tissues based on 

immunohistochemistry were annotated for different staining levels ("High", "Medium", 

"Low" & "Not detected"). The records of STBD1 were shown as below: 

Gene 

Name 

UniProt 

ID 
Cancer type 

Hig

h 

Mediu

m 

Lo

w 

Not 

detected 

STBD1 O95210 breast cancer 0 1 2 9 

STBD1 O95210 carcinoid 2 0 1 1 

STBD1 O95210 cervical cancer 0 2 1 8 

STBD1 O95210 colorectal cancer 0 2 3 5 

STBD1 O95210 endometrial cancer 0 0 0 11 

STBD1 O95210 glioma 0 1 3 6 

STBD1 O95210 
head and neck 

cancer 
0 1 1 1 

STBD1 O95210 liver cancer 4 2 4 2 

STBD1 O95210 lung cancer 0 4 5 3 

STBD1 O95210 lymphoma 0 2 7 3 

STBD1 O95210 melanoma 1 6 0 4 

STBD1 O95210 ovarian cancer 0 2 1 8 

STBD1 O95210 pancreatic cancer 0 4 3 2 

STBD1 O95210 prostate cancer 0 0 6 5 

STBD1 O95210 renal cancer 0 5 2 5 

STBD1 O95210 skin cancer 0 1 4 6 

STBD1 O95210 stomach cancer 0 1 1 9 

STBD1 O95210 testis cancer 0 0 1 11 

STBD1 O95210 thyroid cancer 0 0 2 1 

STBD1 O95210 urothelial cancer 0 3 1 7 

Due to the limited information of protein expressions in cancer, we have to use SNVs, 

RNA-seq and DNA methylation data to probe the potential correlations between 

LIRCPs and cancer (Supplementary Data 4). It can be expected that such an information 

will be not as efficient as directing using the proteomic data, however, it still provided 

very useful candidates for our further experiments, and helped us to validate the role of 

STBD1 in tumorigenesis. 

8. In general, the whole “LAM-containing LIRCPs play a potential role in human 

cancer “ section is out of scope or focus of this study. While relevance in cancer is an 

important thing to validate, these omics layer provide this just indirectly, not in relation 

to the LAMs. 

Ans: As a pure bioinformatician, one of the corresponding authors, Yu Xue, definitely 



agree with your opinion. However, his collaborative partners working in cancer biology 

insisted that such a systematic modeling was helpful for biologists to understand the 

potential roles of LAMs and LIRCPs in human cancer, and highlighted the importance 

of the study. We also consulted Dr. Garcia-Fernandez, the editor for this manuscript, 

who suggests that we should keep this section.  

9. The section on EHMT2, ERCC6, and BRAF are inserted in the middle of the STBD1 

analysis and validation. Probably it would be better before the STBD1. 

Ans: Thanks for the excellent suggestion. We have modified this section as suggested.  

10. Also, from the current brief text it is not clear what the role of the newly discovered 

LIR motifs is in EHMT2, ERCC6, and BRAF? Especially the BRAF is very relevant to 

cancer biology. This should be presented better, or removed for the sake of the focus of 

the study. 

Ans: We have modified this section by putting the data on EHMT2, ERCC6, and BRAF 

before STBD1. For the sake of time, we spent most of our effort in studying STBD1. 

In the revised manuscript, we emphasize several times that BRAF and many other genes 

discovered in our study are worthy of further investigation. 

11. There is a network reconstruction work in the study, which is needed in principle 

but was not inserted, justified and carried out properly. This LIRCP-regulating network 

contains protein-protein interactions (PPIs) and transcriptional regulations among the 

151 AA proteins. Why these interactions were added? This reconstruction study should 

be in the Results but currently it is referred only in the Discussion and the Methods. 

And additional issue is that the layout and visualization of the network on Figure 7 are 

not informative, unclear and not following best practices in the field (for example, 

please check the guidance here https://doi.org/10.1371/journal.pcbi.1007244) 

Ans: Thank you very much for your suggestion. We have put this section into Results 

entitled “A LIRCP-regulating network links autophagy selectivity and tumorigenesis”. 

Both PPIs and transcriptional regulations were considered, because both two 

mechanisms are important in regulating autophagy. We revised the manuscript as below: 

Page 22, paragraph 2, added, 

“A LIRCP-regulating network links autophagy selectivity and tumorigenesis 

Understanding the mechanisms whereby the autophagy network interfaces with cancer 

is a long-standing challenge. The central questions include whether the autophagy 

pathways are targets for recurring molecular alteration in human cancer, and which 

pathways are targeted 1, 2. To identify the autophagy pathways perturbed in human 

cancer, we model a LIRCP-regulating network by integrating protein-protein 

interactions (PPIs) and transcriptional regulations among the 148 identified LIRCPs, 7 

LC3 proteins and 14 proteins regulated by STBD1, since both mechanisms are 



important for regulating autophagy 32, 33, 34, 35 (Fig. 7).  

Based on the functional annotations in UniProt 36, we classify 148 LIRCPs into 9 classes, 

including apoptosis-associated events, autophagic vacuole assembly, cell 

cycle/proliferation, small GTPase-associated signaling, inflammatory/immune 

response, metabolic pathways, PI3K/AKT/mTOR signaling, biomolecule/vesicle 

transport, and glycolysis. The 7 LC3 proteins are categorized into the class of 

autophagic vacuole assembly, based on their important role in autophagosome 

formation. The 14 downstream proteins of STBD1 are also included. Known or 

predicted PPIs and transcriptional regulations between transcription factors and target 

genes are integrated from 8 public databases, including ARN 32, BioGrid 37, IID 38, 

inBio MapTM 39, Mentha 40, HINT 41, iRefIndex 42 and PINA 43. In total, we obtain 

2,204 PPIs and 91 transcriptional regulations for the 169 proteins, in which known 

cancer hallmark proteins are also indicated 35 (Fig. 7). From the network, it can be found 

how LIRCPs affect human cancer through the 9 functional aspects, and highlight the 

functional importance of STBD1 in inhibiting cancer growth through modulating 

glycophagy (Fig. 7). Our work indicates cancer cells frequently alter autophagy 

selectivity for survival.” 

Page 47, paragraph 2, changed, 

“From the 8 public databases including ARN 32, BioGrid 37, IID 38, inBio MapTM 39, 

Mentha 40, HINT 41, iRefIndex 42 and PINA 43, we collect 1,771,193 PPIs and 131,541 

transcriptional regulations of 18,839 human proteins from these databases, and map 

them to the 148 identified LIRCPs, 7 LC3 proteins and 14 proteins regulated by STBD1.

Among the 91 transcriptional regulations, there are 88 for STAT1 and 3 for STAT3, 

respectively. Both two transcription factors, STAT1 and STAT3, are important 

autophagy regulators 73, 74. Similar to previous studies33, 34, the LIRCP-regulating 

network is constructed and visualized with Cytoscape 3.7.2 software package 75.” 

12. The discussion on the LIR prediction model is missing, more details on the 

benchmarking with other existing methods is needed, not only that the coverage of the 

new method is higher.  

Ans: Based on your concern, we perform additional comparisons of pLIRm and other 

existing methods, and the results are present in a new Supplementary Note 1 entitled 

“Additional comparisons of pLIRm and other existing methods”.  

13. How many LAMs can be found with the existing methods?  

Ans: iLIR, hfAIM and other motif-based methods are developed for predicting potential 

LIR motifs. To the best of our knowledge, pLAM is the only algorithm to predict 

potential LAMs.  

14. How many putative LIR motifs (from iLIR database and iLIR@viral, which were 



correctly left out in the original data curation) can be found/confirmed with the new 

extended algorithm. 

Ans: In iLIR database and iLIR@viral database, all canonical LIRs (cLIRs) were 

annotated, although iLIR prediction scores were also presented. Using a same threshold 

of Sp = 90%, we compare the results of iLIR and pLIRm, and find that only a moderate 

proportion of iLIR-derived hits are covered by pLIRm. The poor overlap between iLIR 

and pLIRm might be attributed to a small training data set used in iLIR. The 

corresponding results are described in the Supplementary Note 1.  

15. The “A Modified GPS Algorithm “section is difficult to understand. More 

explanation is needed to understand and asses this part. 

Ans: Based on your concern, we add more details on the GPS algorithm by revising the 

manuscript as below: 

Page 28, paragraph 3, changed, 

“In 2004, we developed the GPS 1.0 algorithm for prediction of kinase kinase-specific 

phosphorylation sites 57. Based on a hypothesis that similar short peptides might share 

similar biological properties and functions, we used an amino acid substitution matrix, 

e.g., BLOSUM62, to measure the sequence similarity among short peptides around 

known or putative phosphorylation sites 57. We adopted this basic scoring strategy in 

all versions of GPS algorithms, and incorporated more methods to improve the accuracy 

in later versions 58. In GPS 5.0 (http://gps.biocuckoo.cn/) 17, we developed two 

additional approaches including PWD and SMO in order to improve the accuracy, 

besides the basic scoring strategy. PWD could efficiently optimize the position-specific 

weight values of short peptides around phosphorylation sites, whereas SMO could 

rapidly determine the scoring matrix. We used the PLR algorithm with the ridge (L2) 

penalty to optimize parameters 17. 

Here, we modify the original GPS 5.0 algorithm to comprise two parts. In the part of 

the basic scoring strategy, we measure the average similarity score (S) of a given LMP(7, 

7) item against all known LMP(7, 7) entries in positive data as below:” 

16. A potential key issue is that according to the Methods from the human proteome set, 

the authors detected 19,577 proteins containing at least one tetapeptide that follows the 

cLIR motif. As they checked 20,659 proteins, it would mean that the authors have found 

these motifs in nearly all human proteins which is worrying. Even if they apply a model 

to filter false positives, this initial step and data could question their approach and the 

results, thus this should be addressed. 

Ans: Here, we confirm that we truly find 19,577 proteins containing at least one 

tetapeptide cLIRs that follow the sequence pattern [FWY]XX[LIV]. This motif is very 

short and loosely defined. Thus, it’s not surprise that over 94.8% of all human proteins 



contain this tetapeptide. We mapped non-redundant missense SNVs in cancer to this 

data, and identify 842,789 potential LAMs located in or around 238,840 cLIRs of 

18,806 human proteins. It can be expected that most of these initial LAMs will be non-

functional, and this data is a high-quality data set for us to estimate the global 

distribution of potential impacts of missense SNVs. From the results, it can be found 

that most of the initial LAMs have very slight influence before and after mutation. 

Using pLAM, we only prioritize 222 potential LAMs in 148 LIRCPs as useful 

candidates for further analysis. If the size of the initial data is small, the estimation of 

the global distribution might be biased and not accurate enough. 

17. Technical details: 

- On page 25, add specific Uniprot release number and or date of download – year 

is not enough. 

Ans: Sure, and we change the corresponding description as “…Then, we map known 

LIR motifs to primary protein sequences downloaded from UniProt database 36 to 

pinpoint their exact positions (On October 17, 2019).”

18. On page 25, It is not clear what was the initial rational to define the short flanking 

peptides and the LMP(7, 7). 

Ans: We adopted a LMP(7, 7) with a length of 18 aa to balance the training time and 

accuracy. Longer peptides will cost more training time. We change the corresponding 

description as “…with a total length of 18 aa to balance the training time and accuracy.” 

19. On page 25, It is also not clear how the positive and the negative datasets were 

compiled from this sentence: “we regarded LMP(7, 7) entries derived from all known 

cLIR and aLIR motifs as positive data, and we took LMP(7, 7) items around other 

putative cLIR motifs in the same proteins as negative data.” 

Ans: We add a new sheet “Training data set” in Supplementary Data 1 to present both 

positive and negative data sets, which can clarify the ambiguous point on the 

preparation of the benchmark data set.  

20. Where is the result of the “Performance Measurements” mentioned in the Methods 

(page 26)? 

Ans: We apologize for this convenience, and add a new Supplementary Data 2 to 

present the performance measurements of pLIRm under high, medium and low 

thresholds.  

21. On page 26, “Recently, we improved our previously-developed GPS algorithm from 

2.1 to 5.0…” – it is not clear what 2.1 to 5.0 means. 



Ans: This unclear description is deleted, and the corresponding paragraph is re-written 

to present more details on the GPS algorithm.

22. In the end of the same sentence on page 26 ”in order to predict kinase-specific 

phosphorylation sites (http://gps.biocuckoo.cn/, published elsewhere).” – please add 

the exact reference. 

Ans: The reference has been added.

23. Minor: 

- In the abstract: “Further analysis confirms that LAMs in ATG4B, EHMT2 and 

BRAF that can alter interactions with LC3 and/or autophagic activities.” – remove 

“that” 

Ans: The abstract has been re-written, and this error is cleared. 

24. In the abstract: “Unexpectedly, STBD1, a poorly-characterized protein, inhibits 

tumor growth via modulating glycogen autophagy, while its cancer-linked mutation 

abolishes the cancer inhibitory function.” I suggest rewriting as the “unexpectedly” 

refers to the second part of the sentence.  

Ans: Thank for the suggestion. We have re-written the abstract.

25. In the abstract: “… provides a fundamental framework to uncover the molecular 

landscape that drives carcinogenesis via modulating autophagy selectivity.” – I do not 

think it is a “molecular landscape”, rather a “molecular mechanism”.  

Ans: The Abstract has been re-written, and the nomenclature “molecular landscape” is 

not used any longer. 

26. In the Introduction: “LIRCPs “ is not introduced or described what it means. 

Ans: In the introduction, we changed the corresponding description as “…Using iCAL, 

we have identified 148 LIR-containing proteins (LIRCPs) that carry single point 

mutations within the LIR motif, including some well-established ATG genes and 

autophagy regulators as well as many novel candidate genes.” in Page 6, paragraph 1. 

27. “Our benchmark data set was much larger than iLIR (Kalvari et al., 2014) and 

hfAIM (Xie et al., 2016), which only collected 27 and 36 known LIR motifs, respectively 

“ – Probably add details or reference to Fig2a where the authors’ benchmark is 

quantified properly. 

Ans: The legend of Fig. 2a has been changed as “a) A comparison of known LIR motifs 

and corresponding proteins collected by iLIR 19, hfAIM 20 and pLIRm, as well as the 



distribution of our collected data in H. sapiens and S. cerevisiae and other species 

(Supplementary Data 1).”

28. “we identified 233 potential LAMs that significantly change 177 cLIR motifs in 151 

LIRCPs, including 64 Type I and 169 Type II LAMs” – Please rewrite as “including” 

is not in a proper place of the sentence.  

Ans: We changed the corresponding description as “…In total, we identify 222 potential 

LAMs including 60 Type I and 162 Type II LAMs that significantly change 172 cLIR 

motifs in 148 LIRCPs (Fig. 2d and Supplementary Data 3).” in Page 9, paragraph 2. 

29. “indicating that a strong correlation between autophagy and human cancer “ – 

remove “that” 

Ans: We have fixed this.

30. On page 17, “differentially expression genes (DEGs)” – change to “differentially 

expressed genes” 

Ans: We have fixed this.

31. On page 22, “Glycophagyis” -> Glycophagy is”  

Ans: We have fixed this. 

32. On page 27., “tothe" -> “to the”  

Ans: We have fixed this. 

33. On Figure 1: There is a typo in “tumor proliferation” 

Ans: We have fixed the typo. 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have made a concerted effort to address all my comments. In particular 

the inclusion of significant studies comparing the WT and LIR mutant of STBD1 in in 

vitro and in vivo experiments is a strength. I only have minor suggestions relating to 

narrative. 

I believe the study would read better if the authors emphasize the pro-tumorigenic 

activity of suppressing STBD1 – either via knockdown or expression of the mutant. 

Similarly, it would be useful to discuss why glycophagy would be detrimental or less 

beneficial to some cancer cells, as implied by the authors finding that STBD1 is 

suppressed. 

Finally, in the text which states that the authors test whether “STBD1 depletion 

influences genome instability and invasion and metastasis” by looking at AKT1 and 

NFKB1 is not justified. Changes in AKT1 or NFKB1 do not confer information regarding 

genome instability, invasion or metastasis in the absence of specific assays to test 

these features. The sentence should be changed to indicate that other pro-tumorigenic 

pathways (AKT1 levels) are upregulated. If possible it would be useful to actually probe 

AKT1 phosphorylation or its downstream targets to more directly indicate that the 

pathway is more active in STBD1 knockdown cells. However, again this is largely 

correlative. 

The abstract needs to be corrected for spelling and grammar. 

Reviewer #2 (Remarks to the Author): 

I went through all the responses given to my previous comments in the response letter, 

and checked it in the revised manuscript. The authors elegantly and correctly 

addressed all my previous concerns. I was really pleased to see the new Figure 7, and 

all the corrections they have added during the revision. I do not have any further 

comments or concerns for this work to be published. I thank the authors for the clear 

and high-quality revision. 

Tamas Korcsmaros 

Reviewer #3 (Remarks to the Author): 

Overview 

The authors applied metabolomics to find that STBD1 knockdown cells have increased 

glucose utilization as indicated by: 1) increased abundances and 13C-labeling of 

glycolytic intermediates, PPP intermediates, and nucleotides; and 2) decreased in 

media glucose. This is a straightforward application of metabolomics with clear results 

that complement the rest of the paper. Based on expert review, addressing the 



comments below will improve the results and discussion of Figure 6, Supplementary 

Figure 10, and Supplementary Data 8. 

Major comments 

• Fig 6b: Is the heatmap displaying ratio of averages? It would be better to display 

individual samples; otherwise barplots with error bars should be used instead to give 

some indication of the variance in the data. Additionally, this heatmap appears to 

combine data from both metabolite profiling and 13C-labeling experiments; this makes 

it rather confusing to interpret. The authors should consider separating data for the 

metabolite profiling and 13C-labeling experiments into two figures. Also, for 13C 

labeling data, the specific labeled isotopologs (M1, M2 etc) should be indicated. 

• Fig 6d: Specific labeled isotopologues should be indicated. 

• Fig 6g and 6h: Strictly speaking, MTT assays measure reducing power and the results 

may be influenced by differences in metabolic activity/NADH production in the cells. 

This is especially relevant here since the authors found STBD1 depletion to influence 

metabolism. This caveat should be mentioned in the discussion. 

• The authors additionally found that STBD1 knockdown cells have decreased TCA 

cycle metabolites. This is interesting and should be discussed further. If STBD1 

knockdown cells have enhanced glycolysis and consume more glucose, but do not 

produce more lactate, one would expect glycolytic intermediates to be feeding into the 

TCA cycle but this does not seem to be the case. Where are the products of increased 

glycolysis going? Is the glucose all being shunted into nucleotide biosynthesis? 

• In the Methods section, the following information should be included: 

1. How many cells were seeded, and how long were they cultured (e.g. 24 h) before 

extraction? 

2. How was metabolite data normalized? 

3. What do ‘relative concentrations’ mean: was absolute quantification performed for 

either intracellular metabolites or media glucose and lactate levels, then normalized to 

control samples? Or do relative concentrations simply mean relative peak areas? 

Minor comment 

• Page 21, lines 8-10: “Subsequently, more 13C6-glucose is incorporated into the 

purine (AMP and GDP) and pyrimidine (UMP, CDP and CTP) ring, required to make 

RNA and DNA in proliferating cells in shSTBD1 cells (Fig. 6b).” It is confusing to bring 

in 13C labeling results here, since both preceding and following paragraphs are 

concerning metabolite levels. This should be moved to later in the paragraph, e.g. after 

“These results are further supported by metabolic flux analysis using stable 13C6-

glucose labeling.” 



Detailed Responses to Reviewers’ Comments 

Reviewer #1: 

1. The authors have made a concerted effort to address all my comments. In particular 

the inclusion of significant studies comparing the WT and LIR mutant of STBD1 in in 

vitro and in vivo experiments is a strength. I only have minor suggestions relating to 

narrative. 

I believe the study would read better if the authors emphasize the pro-tumorigenic 

activity of suppressing STBD1 – either via knockdown or expression of the mutant. 

Similarly, it would be useful to discuss why glycophagy would be detrimental or less 

beneficial to some cancer cells, as implied by the authors finding that STBD1 is 

suppressed. 

Ans: Suggestions are well-taken. We have added one paragraph in the discussion 

section to discuss why suppressing STBD1 and glycophagy contribute to tumorigenesis. 

Page 25, paragraph 2, added, 

“Why does the inhibition of glycophagy contribute to tumorigenesis? Glycogen is 

degraded via two major pathways: the cytosolic pathway that decomposes glycogen 

into glucose-1-phosphate and glucose, and glycophagy that decomposes glycogen into 

glucose. Therefore, it is expected that glycophagy inhibition could cause metabolic 

reprogramming. Indeed, we find that the depletion of STBD1 increases expression of 

multiple key glycolytic enzymes, and enhances the TCA cycle and nucleotide 

biosynthesis. Suppression of STBD1 – either via knockdown or expression of the 

mutant – also promote the expression of multiple cancer hallmark genes, including 

c-Myc, NFKB1 and AKT1, although the exact underlying mechanisms remain to be 

determined…” 

2. Finally, in the text which states that the authors test whether “STBD1 depletion 

influences genome instability and invasion and metastasis” by looking at AKT1 and 

NFKB1 is not justified. Changes in AKT1 or NFKB1 do not confer information 

regarding genome instability, invasion or metastasis in the absence of specific assays 

to test these features. The sentence should be changed to indicate that other pro-

tumorigenic pathways (AKT1 levels) are upregulated.  



Ans: Thanks for the suggestion. We have modified the corresponding sentence in Page 

20, paragraph 1, as “…indicating that other pro-tumorigenic pathways are also 

upregulated.”

3. If possible it would be useful to actually probe AKT1 phosphorylation or its 

downstream targets to more directly indicate that the pathway is more active in STBD1 

knockdown cells. However, again this is largely correlative.

Ans: We have measured AKT1 phosphorylation as suggested. In two of our three 

experiments, we found that STBD1 knockdown led to an increase of phosphorylation 

of AKT1 at Ser473 (left and central panel); however, in our third experiment, we did 

not observe a significant increase (right panel). As a result, we do not include this piece 

of data in our manuscript. However, we have consistently observed that STBD1 

depletion leads to up-regulation of oncogene AKT1. 

4. The abstract needs to be corrected for spelling and grammar.

Ans: The suggestion is well-taken. We have fixed the grammar.

Reviewer #3:

1. Overview

The authors applied metabolomics to find that STBD1 knockdown cells have increased 

glucose utilization as indicated by: 1) increased abundances and 13C-labeling of 

glycolytic intermediates, PPP intermediates, and nucleotides; and 2) decreased in 

media glucose. This is a straightforward application of metabolomics with clear results 

that complement the rest of the paper. Based on expert review, addressing the comments 

below will improve the results and discussion of Figure 6, Supplementary Figure 10, 



and Supplementary Data 8.

Ans: Thank you very much for your excellent suggestions. Based on your comments, 

we have re-analyzed the data of targeted metabolomic profiling and isotope tracing 

analysis, and changed the original Fig. 6 and Supplementary Data 8, as well as the 

legend of Fig. 6. The first paragraph of the section “STBD1 depletion promotes 

glycolysis in cancer cells” in Page 20 has been carefully re-phrased. 

2. Major comments 

• Fig 6b: Is the heatmap displaying ratio of averages? It would be better to display 

individual samples; otherwise barplots with error bars should be used instead to give 

some indication of the variance in the data. Additionally, this heatmap appears to 

combine data from both metabolite profiling and 13C-labeling experiments; this makes 

it rather confusing to interpret. The authors should consider separating data for the 

metabolite profiling and 13C-labeling experiments into two figures. Also, for 13C 

labeling data, the specific labeled isotopologs (M1, M2 etc) should be indicated. 

Ans: In the revision, data from metabolic profiling and isotope labeling analysis is 

separated. The metabolites detected by the targeted metabolomic profiling are shown 

in Fig. 6b for several major pathways including glycolysis, tricarboxylic acid (TCA) 

cycle, purine metabolism, and pyrimidine metabolism. In the heatmap, the levels of 

metabolites are shown for individual samples, after a z-score normalization. For 13C6-

glucose labeling data, barplots are shown in Fig. 6c-f for key metabolites in the above 

4 pathways, and the specific labeled isotopologues which represent specific pathways 

have been indicated. We added corresponding descriptions on the z-score method by 

revising the manuscript as below: 

Page 46, paragraph 1, added, 

“…For plotting the heatmap, the original expression levels of each metabolite in the 6 

samples are normalized using the z-score transformation, one of the mostly used 

normalization methods 73. The mean expression value μ and standard deviation (SD) δ

are calculated. For the metabolite i with the expression level of xi, its normalized z-

score is calculated as below: 

�� =
�� − �

�

” 

3. Fig 6d: Specific labeled isotopologues should be indicated. 



Ans: Specific labeled isotopologues have been added in Fig. 6c-g.  

4. Fig 6g and 6h: Strictly speaking, MTT assays measure reducing power and the results 

may be influenced by differences in metabolic activity/NADH production in the cells. 

This is especially relevant here since the authors found STBD1 depletion to influence 

metabolism. This caveat should be mentioned in the discussion. 

Ans: Suggestions are well-taken. We have included a paragraph in the discussion 

section to emphasize the caveat of MTT assay when metabolic states of cells are altered. 

We used both the MTT assay and Ki67 to measure cell proliferation in our experiments. 

This information will be valuable for the whole community. 

Page 26, paragraph 1, added, 

“…We show that STBD1 suppression promotes cancer cell proliferation, detected by 

the MTT assay and the proliferation marker Ki67. It should be noted that the MTT assay 

measures reducing power, in particular, NADH in mammalian cells. Therefore, cautions 

must be taken to use the MTT assay when metabolic states of cells are altered. Other 

methods of detecting cell proliferation, such as detection of Ki67 and/or BrdU labeling, 

should be used at the same time.” 

5. The authors additionally found that STBD1 knockdown cells have decreased TCA 

cycle metabolites. This is interesting and should be discussed further. If STBD1 

knockdown cells have enhanced glycolysis and consume more glucose, but do not 

produce more lactate, one would expect glycolytic intermediates to be feeding into the 

TCA cycle but this does not seem to be the case. Where are the products of increased 

glycolysis going? Is the glucose all being shunted into nucleotide biosynthesis? 

Ans: Thanks for the suggestion of separating data for the metabolite profiling and 13C-

labeling experiments. Now the conclusion about glucose metabolism is much more 

straightforward. Since isotope labeling data is more interpretable and precise to explain 

pathway regulation in cancer cells, in the revision, we mainly referred data from 13C-

glucose labeling experiments. We did conclude that in STBD1 knockdown cells 

glycolysis intermediates fed into both TCA cycle and nucleotide biosynthesis, 

indicating oxidative phosphorylation and generation of RNA/DNA are more active in 

shSTBD1 cells. We revised the manuscript as below: 

Page 20, paragraph 2, changed, 

“The above findings suggest that STBD1 depletion potentially leads to metabolic 

reprogramming. To probe such changes, we first perform a targeted metabolomic 



profiling of shControl and shSTBD1 HCT116 cells, each with three biological 

replicates (Fig. 6a, Supplementary Data 8). More than 200 metabolites in various 

metabolic pathways, including glycolysis, tricarboxylic acid (TCA) cycle, purine 

metabolism, pyrimidine metabolism, and amino acids, are observed (Fig. 6b, 

Supplementary Data 8). To trace the glycolytic flow in cancer cells, we further perform 

an isotope tracing analysis using stable 13C6-glucose labeling (Fig. 6c-f, Supplementary 

Data 8). Knockdown of STBD1 leads to increased glycolytic intermediates, as 

represented by 3-Phosphoglycerate/2-Phosphoglycerate (3-PG/2-PG) m + 3, 

phosphoenolpyruvate (PEP) m + 3, and pyruvate m + 3 in the glycolysis pathway (Fig. 

6c). Meanwhile, enhanced glucose metabolism into TCA cycle, e.g. citrate m + 2, 

aconitate m + 2, isocitrate m + 2, and α-ketoglutarate (α-KG) (Fig. 6d), is observed, as 

well as nucleotide biosynthesis through pentose phosphate pathway, e.g., AMP m + 5 

in purine metabolism and UMP m + 5 in pyrimidine metabolism (Fig. 6e-f). The 

unchanged intracellular level of lactate m + 3 (Fig. 6c) further confirms the 

enhancement of glucose metabolism is biased into oxidative phosphorylation and 

nucleotide biosynthesis, and the latter is required to make RNA and DNA in 

proliferating cells in shSTBD1 cells. The results are highly consistent with our 

observation in the transcriptomics (Fig. 6g). In contrast, most essential amino acids are 

not altered by knockdown of STBD1, based on the targeted metabolomic profiling 

(Supplementary Fig. 10a). Taken together, depletion of STBD1 leads to substantial 

reprogramming of glucose metabolism in cancer cells through enhanced glycolysis.”

6. In the Methods section, the following information should be included: 

How many cells were seeded, and how long were they cultured (e.g. 24 h) before 

extraction? 

Ans: Thanks for the suggestion, we have added these information. 

Page 45, paragraph 2, added, 

“HCT116 cells stably expressing shControl or shSTBD1 established as described above 

are cultured in DMEM supplemented with 10% FBS for 24 h. Then shControl and 

shSTBD1 HCT116 cells (1 x 107) are harvested and extracted using pre-chilled 80% 

(v/v) methanol.”

Page 46, paragraph 1, added, 

“For 13C6-labeled metabolites analysis, shControl and shSTBD1 HCT116 cells are 

cultured in glucose-free DMEM (Gibco) supplemented with 2.25 g/L 13C6-glucose and 

2.25 g/L unlabeled-glucose for 12 h. The cells (1 x 107) are then harvested, and

extracted using pre-chilled 80% (v/v) methanol as above.”



7. How was metabolite data normalized? 

Ans: Samples were normalized using cell numbers when re-dissolved using 80% 

MeOH prior to LC-MS/MS analysis. The injection volume of all sample was 3 L. In 

this case, all metabolites were measured under the same cell numbers for comparison. 

And we have added this information in the methods. 

8. What do ‘relative concentrations’ mean: was absolute quantification performed for 

either intracellular metabolites or media glucose and lactate levels, then normalized to 

control samples? Or do relative concentrations simply mean relative peak areas? 

Ans: Thanks a lot！The lactate and glucose concentration was first normalized to the 

cell protein concentration, and the relative concentration was then normalized to the 

shControl HCT116 cells. And we have added this information in the methods and figure 

legends.

9. Minor comment 

• Page 21, lines 8-10: “Subsequently, more 13C6-glucose is incorporated into the 

purine (AMP and GDP) and pyrimidine (UMP, CDP and CTP) ring, required to make 

RNA and DNA in proliferating cells in shSTBD1 cells (Fig. 6b).” It is confusing to bring 

in 13C labeling results here, since both preceding and following paragraphs are 

concerning metabolite levels. This should be moved to later in the paragraph, e.g. after 

“These results are further supported by metabolic flux analysis using stable 13C6-

glucose labeling.” 

Ans: The first paragraph of the section “STBD1 depletion promotes glycolysis in cancer 

cells” in Page 20 has been considerably revised. 


