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Section 1: Calculation of Error Reduction Resulted from Feature 
Swap 
 

A calculation that the IGTD algorithm repetitively conducts is the error reduction resulted 
from swapping two features. Supplementary Fig. 1 is an illustration of swapping the positions of 
two features 𝑖 and 𝑗. The error function is calculated based on the lower triangle of the feature 
distance rank matrix. Only elements on the orange and blue line segments are affected by feature 
swap, while all other elements in the lower triangle (blank areas) are not changed. The error 
reduction can be calculated by the following equation. 
 
err(𝑹,𝑸) − err+𝑹,∼., 𝑸/ = 	err_v+𝒓,,5:(,75), 𝒒,,5:(,75)/ + err_v+𝒓.,5:(,75), 𝒒.,5:(,75)/ 

+err_v+𝒓.,(,:5):(.75), 𝒒.,(,:5):(.75)/ + err_v+𝒓(,:5):(.75),, , 𝒒(,:5):(.75),,/ 
+err_v+𝒓(.:5):;,, , 𝒒(.:5):;,,/ + err_v+𝒓(.:5):;,., 𝒒(.:5):;,./ 
−err_v+𝒓.,5:(,75), 𝒒,,5:(,75)/ − err_v+𝒓,,5:(,75), 𝒒.,5:(,75)/ 
−err_v+𝒓,,(,:5):(.75), 𝒒.,(,:5):(.75)/ − err_v+𝒓(,:5):(.75),., 𝒒(,:5):(.75),,/ 
−err_v+𝒓(.:5):;,., 𝒒(.:5):;,,/ − err_v+𝒓(.:5):;,, , 𝒒(.:5):;,./ 

 
where err_v(∙,∙) is the error function defined for two input vectors of the same length, which is 
the summation of the differences between the corresponding elements in the input vectors 
calculated using the given diff(∙,∙) function. 
 
   
 

 
Supplementary Figure 1    Illustration of feature swap on the feature distance rank matrix. 
Feature 𝑖 (i.e. row 𝑖 and column 𝑖) and feature 𝑗 (i.e. row 𝑗 and column 𝑗) are indicated by solid 
lines and dashed lines, respectively. (a) The situation before feature swap. (b) The situation after 
feature swap. 
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Section 2: Details of Data and Data Preprocessing 
 
Drug Screening Data 
 

We applied the IGTD algorithm for anti-cancer drug response prediction. Two 
benchmark in vitro drug screening datasets, the Cancer Therapeutics Response Portal v2 
(CTRP)1 and the Genomics of Drug Sensitivity in Cancer (GDSC)2, were used to train the 
prediction models and to evaluate the prediction performance. Supplementary Table 1 shows the 
numbers of CCLs, drugs, and treatments (i.e. pairs of drugs and CCLs) in the two datasets. The 
drug response values in the CTRP and GDSC datasets are measurements of tumor cell viability 
over multiple doses. We used the three-parameter logistic function (hill slope model) to fit the 
multi-dose data and generated the dose response curve. The area under the dose response curve 
(AUC) was calculated for the dose range of [10−10M, 10−4M] as a dose-independent efficacy 
measure. The AUC value was then normalized by the dose range, so that its value is between 0 
and 1, where small values indicate response and large values indicate non-response. Because a 
pair of drug and CCL may have been tested multiple times in a study, we took an average AUC 
value for such cases. The numbers of treatments (pairs of drugs and CCLs) in Supplementary 
Table 1 indicate the numbers of unique combinations of drugs and CCLs in the datasets. 
 
 
 
Supplementary Table 1    Numbers of CCLs, drugs, and treatments (pairs of drugs and CCLs) in 
the datasets.  
 

Dataset # CCLs # Drugs # Treatments 
GDSC 659 238 125,712 
CTRP 812 494 318,040 

 
 
 
Gene Expression Data of Cancer Cell Lines 
 

The gene expression data of CCLs were retrieved from the Cancer Cell Line 
Encyclopedia (CCLE)3 online resource, which provides RNA-seq data of all CCLs used in the 
CTRP and GDSC studies, except 11 GDSC CCLs that were thus excluded from our analysis. 
Combining the two datasets, a total of 882 CCLs from various cancer types were included in our 
analysis. Based on the RNA-seq data, TPM (transcripts per kilobase million) values were 
calculated and a log2 transformation was taken to generate the gene expression values. The 
resulted transcriptome data included 17,739 genes. Without loss of generality, we chose the 
2,500 genes with the largest expression variations across CCLs for analysis. The expression 
values of each gene were normalized using the follow equations 
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𝑥A,,. =
𝑥,,. − 𝑣CDE
𝑣CFG − 𝑣CDE

 

𝑣CDE = min
J∈{5,…,N}

𝑥J,.  

𝑣CFG = max
J∈{5,…,N}

𝑥J,. 

 
where 𝑥,,. is the expression value of the 𝑗th gene in the 𝑖th CCL and 𝑥A,,. is its normalized value. 
After normalization, each gene had a maximum value of 1 and a minimum value of 0. 
 
Drug Molecular Descriptors 
 

The drugs were represented by chemical descriptors calculated using the Dragon (version 
7.0) software package (https://chm.kode-solutions.net/products_dragon.php) based on the drug 
molecular structure. The package calculated various types of descriptors, such as the simplest 
atom types, functional groups and fragment counts, topological and geometrical descriptors, 
estimations of molecular properties, and drug-like and lead-like indices. Molecular descriptors 
were calculated for a total of 651 drugs used in the two drug screening datasets. We kept 3,837 
molecular descriptors that did not have missing values. Without loss of generality, we chose the 
2,500 descriptors with the largest variations across drugs for analysis. Each drug descriptor was 
normalized by its minimum and maximum values across drugs in the same way as what was 
done for normalizing gene expression data. 
 
 
 
Section 3: Details of Prediction Models and Model Training Process 
 
CNN Models 
 

We performed drug response prediction using CNN models trained on the image 
representations of CCL gene expression profiles and drug molecular descriptors. Fig. 4 in the 
main text shows the structure of the CNN model. For both CCLs and drugs, a subnetwork of 
three convolution layers, each of which has 5 × 5 kernels and subsequent batch normalization, 
ReLU activation, and 2 × 2 maximum pooling layers, accepts the image representations as the 
model input. The output feature maps from the subnetworks are flattened, concatenated, and 
forwarded to a fully connected network to make predictions. The fully connected network 
includes five hidden layers with 1,000, 500, 250, 125, and 60 nodes. The hidden layers except 
the last one has the dropout mechanism for regularization. The dropout rate is the same for all the 
layers, which is the only hyper-parameter tuned in the model training through cross-validation. 
The dropout rate was selected from 0, 0.1, 0.25, 0.45, and 0.7 based on the validation loss. The 
stride used for moving the convolution kernel was always 1, except that it was changed to 2 for 
training CNNs on DeepInsight images to accommodate the much larger input images. The Adam 
optimizer with default parameter setting was used for model learning 4. The learning rate was 
initialized at 0.001 and was reduced by a factor of 10 if the reduction of validation loss was 
smaller than 0.000001 in 10 epochs. The training process would stop early if the reduction of 
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validation loss was smaller than 0.000001 in 20 epochs; otherwise the full training process would 
take 100 epochs. The analysis pipeline was implemented using the Keras package 
(https://keras.io/) with Tensorflow (https://www.tensorflow.org/) backend.  
 
Other Prediction Models 
 

We also compared CNNs trained on IGTD images with prediction models trained on the 
original tabular data. Four prediction models, including LightGBM5, random forest6, single-
network DNN (sDNN), and two-subnetwork DNN (tDNN), were included for the comparison. 
For LightGBM, we used the LightGBM python package 
(https://LightGBM.readthedocs.io/en/latest/index.html) to implement the analysis pipeline. The 
training of LightGBM model would stop early to avoid overfitting if the validation loss did not 
reduce in 200 boosting steps; otherwise the whole training process will take 10,000 boosting 
steps. Default values were used for all other parameters. For random forest, we used the 
implementation from Scikit-Learn (https://scikit-learn.org/). The prediction model included 
1,000 decision trees and default values were used for all other parameters. sDNN was a fully 
connected neural network of six hidden layers with 2000, 1000, 500, 250, 125, and 60 nodes. 
tDNN was also a neural network with dense hidden layers, but it included two subnetworks for 
the input of gene expression profile and drug molecular descriptors separately. Each subnetwork 
included three hidden layers with 1000, 500, and 250 nodes. The outputs of the two subnetworks 
were concatenated and forwarded to three hidden layers with 250, 125, and 60 nodes to make 
prediction. In both sDNN and tDNN models, ReLU was the activation function; all hidden layers 
except the last one used the dropout mechanism and the dropout rate was the same for the layers. 
Notice that although sDNN and tDNN had the same total number of nodes in corresponding 
layers, tDNN had much fewer trainable parameters due to the subnetwork structure. All other 
parameters and model training mechanism of sDNN and tDNN were the same as those used for 
the training of CNN models, such as the candidate values of dropout rate, the optimizer and loss 
function used in model training. For a fair comparison, all prediction models were trained and 
tested through 20 10-fold cross-validation trials, with the same data partitions (i.e. training, 
validation, and testing sets) used for the cross-validation of CNNs with image representations. 
 
 
 
Section 4: Sensitivity Analysis of Hyper-parameters 
 

We applied the IGTD algorithm on the gene expression profiles of cancer cell lines and 
molecular descriptors of drugs with different hyper-parameter settings to study its sensitivity to 
hyper-parameter change. Specifically, we tried 10000, 20000, and 30000 for 𝑆CFG, 200, 350, and 
500 for 𝑆VWE, 0.0001, 0.00001, and 0.000001 for 𝑡VWE. In total, 3 × 3 × 3 = 27 different 
combinations of parameter settings were used to apply the IGTD algorithm. The iterative 
optimization process of IGTD algorithm aims to minimize an error, which is the difference 
between the feature and pixel distance rank matrices. Supplementary Table 2 shows the 
optimization results, which are the obtained errors after optimization. To evaluate the variation 
of error across 27 different parameter settings, we calculated the coefficient of variation for the 
error, which was the ratio of the standard deviation to the mean. The coefficient of variation of 
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error was 0.029% and 0.039% for the analyses of gene expressions and drug descriptors, 
respectively. 
 
Supplementary Table 2    The obtained errors after optimization for the analyses of gene 
expressions of cancer cell lines and drug molecular descriptors, when different hyper-parameter 
settings were used for analysis. 
 

𝑆CFG 𝑆VWE 𝑡VWE Error after optimization 
(gene expressions) 

Error after optimization 
(drug descriptors) 

10000 200 1.00E-04 1.5825E+12 1.8938E+12 
10000 200 1.00E-05 1.5814E+12 1.8925E+12 
10000 200 1.00E-06 1.5814E+12 1.8925E+12 
10000 350 1.00E-04 1.5818E+12 1.8937E+12 
10000 350 1.00E-05 1.5814E+12 1.8925E+12 
10000 350 1.00E-06 1.5814E+12 1.8925E+12 
10000 500 1.00E-04 1.5817E+12 1.8930E+12 
10000 500 1.00E-05 1.5814E+12 1.8925E+12 
10000 500 1.00E-06 1.5814E+12 1.8925E+12 
20000 200 1.00E-04 1.5825E+12 1.8938E+12 
20000 200 1.00E-05 1.5813E+12 1.8923E+12 
20000 200 1.00E-06 1.5810E+12 1.8918E+12 
20000 350 1.00E-04 1.5818E+12 1.8937E+12 
20000 350 1.00E-05 1.5811E+12 1.8921E+12 
20000 350 1.00E-06 1.5810E+12 1.8917E+12 
20000 500 1.00E-04 1.5817E+12 1.8930E+12 
20000 500 1.00E-05 1.5811E+12 1.8920E+12 
20000 500 1.00E-06 1.5810E+12 1.8917E+12 
30000 200 1.00E-04 1.5825E+12 1.8938E+12 
30000 200 1.00E-05 1.5813E+12 1.8923E+12 
30000 200 1.00E-06 1.5810E+12 1.8918E+12 
30000 350 1.00E-04 1.5818E+12 1.8937E+12 
30000 350 1.00E-05 1.5811E+12 1.8921E+12 
30000 350 1.00E-06 1.5810E+12 1.8917E+12 
30000 500 1.00E-04 1.5817E+12 1.8930E+12 
30000 500 1.00E-05 1.5811E+12 1.8920E+12 
30000 500 1.00E-06 1.5810E+12 1.8917E+12 
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