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ABSTRACT9

The domestic dog is interesting to investigate because of the wide range of body size, body mass, and physique in the many
breeds. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However,
the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative
diseases of the locomotor system (e.g. dysplasia), are not sufficiently understood. Collecting this data through in vivo
measurements/records of joint forces and loads on deep/small muscles is complex, invasive, and sometimes unethical. The use
of detailed musculoskeletal models may help fill the knowledge gap. We describe here the methods we used to create a detailed
musculoskeletal model with 84 degrees of freedom and 134 muscles. Our model has three key-features: three-dimensionality,
scalability, and modularity. We tested the validity of the model by identifying forelimb muscle synergies of a walking Beagle.
We used inverse dynamics and static optimization to estimate muscle activations based on experimental data. We identified
three muscle synergy groups by using hierarchical clustering. The activation patterns predicted from the model exhibit good
agreement with experimental data for most of the forelimb muscles. We expect that our model will speed up the analysis of how
body size, physique, agility, and disease influence neuronal control and joint loading in dog locomotion.
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1 Import our model in OpenSim18

To import our model in OpenSim 4.0 or higher19

• you need to increase first the heap memory of Java in the OpenSim.conf file20

• this file can be generally found under: C:\OpenSim4.X\etc\OpenSim.conf21

• this file can be open with a text editor, in the code part: --brandingopensim-J-Xms24m-J-Xmx1024m22

• change 1024 to 2048 or higher depending on your RAM memory -Xmx1024m->-Xmx2048m (or higher)23

• run OpenSim24

• load the low-resolution model: stark(2021)-beagle-fore_low.osim25

• Done!26

To import our model in OpenSim 3.327

• just load stark(2021)-beagle-fore.osim (high resolution model)28
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2 Mass29

The volume data from Amit et al (2009) and computed tomography (CT) data from Andrada (unpub. data) were used to30

calculate the mass of the segments. The individual segments were calculated as percentages of the total body weight of the31

beagle Simon (13.8 kg).32

3 Inertia33

For the calculation of the moment of inertia, the function "calculate.inertia.points" of the free program cloud2 was used. This34

function determines the symmetric inertia matrix for the individual segments on the basis of the point clouds of the bone35

geometries and the segment masses. A complete segmentation of a calibrated CT data set was not available.36

A) Moment of Inertia about
CoM 10-3 [kg m²]

B) Moment of Inertia about
CoM 10-3 [kg m²]

C) Moment of Inertia about
CoM 10-3 [kg m²]

0.435 0.513 0.005 -0.003 0.332 0.001 0.001
0.329 0.500 0.031 0.256 0.035

0.254 0.044 0.178

Table 1. Moment of inertia of the humerus segment of a beagle based on A) Andrada et al. 2017 B) Bone geometries C)
Segmentation of computed tomography (CT) data.

The influence of asymmetrical mass distribution was tested using the humerus. The humerus with the surrounding37

musculature was segmented and the moment of inertia was calculated with the function "scalar.inertia" of the free software38

imagexd. The comparison showed that the component Izz of the calculation from the bone geometries showed the greatest39

difference (STab. 1). This can be explained by the fact that the real geometries along the x and y axis were neglected. However,40

the main moment is determined by the longitudinal direction (bone length). The change between tensors in simulations did not41

significantly influence either joint-torque nor muscle activation profiles.42

4 Inverse dynamics (3D-Newton Euler Method)43

This method is based on Winter 2010, and has been presented in Andrada et al., 2017. Synchronized 3-D kinematics, kinetics,44

and segmental properties were processed and combined in a customized Matlab program. The 3-D coordinates of marker45

trajectories were smoothed using a fourth-order Butterworth low-pass filter with a cutoff frequency of 6 Hz. To obtain 3-D46

angular kinematics, a Cardan sequence of 3 rotations around the x, y, and z axes was used as described. The transformation47

matrix for the Cardan sequence was as follows:48

x3
y3
z3

=

 c2c3 s3c1 + s1s2c3 s1s3 − c1s2c3
−c2c3 c1c3 − s1s2s3 s1c3 + c1s2s3

s2 −s1c2 c1c2

x0
y0
z0

 (1)

where the indices 1,2,3 indicate the angles θ1,θ2,θ3. For example c1 means cos(θ1). The angles θ1,θ2,θ3 can thus be49

obtained from the trigonometric relations present in the transformation matrix. Those angles and their time derivatives are50

expressed in global coordinates. For the purpose of this study, we were interested in segmental (body-frame) kinematics and51

dynamics. To transform velocities expressed in laboratory frame into body frame, the following transformation matrix was52

used:53

ωx
ωy
ωz

=

 c2c3 s3 0
−c2c3 c3 0

s2 0 1

θ̇1
θ̇2
θ̇3

 (2)

where the angular accelerations in body frame (αx, αy, and αz) are simply the time derivatives of the respective velocities (θx,54

θy, and θz). Then, the force (resp. torque) around the proximal end of each segment was estimated by use of the Newton-Euler55

equations of motion in the centre of motion (CoM) as follows:56

Rxp = Rxd +mẍ (3)
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Ryp = Ryd +mÿ (4)

Rzp = Rzd +mz̈+mg (5)

Mxp = I1αx +(I3 − I2)ωzωy +Ryd ld +Ryplp +Mxd (6)

Myp = I2αy +(I1 − I3)ωxωz +Rxd ld +Rxplp +Myd (7)

Mzp = I3αz +(I2 − I1)ωyωx +Mzd (8)

where m is the mass of the segment, I is the principal moment of inertia of the segment around the CoM, R is the reaction57

force, M is the torque in the proximal (p) and distal (d) ends of the segment, and l is the lever arm of the forces relative to the58

CoM.59
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5 Tables60

Forelimb Torso Hindlimb
M. trapezius pars cervicalis M. longissimus M. psoas major
M. trapezius pars thoracica M. quadratus lumborum M. psoas minor
M. rhomboideus pars thoracica M. iliocostalis M. adductor longus
M. rhomboideus pars cervicalis M. sacrocaudalis Mm. gemelli
M. latissimus dorsi M. gluteus medius
M. brachiocephalicus [1 - 2] M. gluteus profundus
M. serratus [1 - 12] M. gluteus superficialis
M. pectoralis profundus M. iliacus
M. pectoralis superficialis M. obturator externus
M. supraspinatus M. obturator internus
M. infraspinatus M. piriformis
M. subscapularis M. pectineus
M. deltoideus pars scapularis M. sartorius caudalis
M. deltoideus pars acromialis M. sartorius cranialis
M. teres major M. tensor fasciae latae
M. teres minor M. quadratus femoris
M. coracobrachialis M. vastus lateralis
M. biceps brachii M. vastus medialis
M. brachialis M. rectus femoris
M. triceps brachii caput longum M. abductor cruris
M. triceps brachii caput laterale Mm. adductores
M. triceps brachii caput accessorium M. biceps femoris caput longum
M. triceps brachii caput mediale M. biceps femoris caput breve
M. anconeus M. gracilis tractus calcaneus
M. pronator teres M. semimembranosus
M. supinator M. semitendinosus
M. flexor carpi radialis M. gastrocnemius lateralis
M. flexor carpi ulnaris M. gastrocnemius medialis
M. extensor carpi ulnaris M. peroneus longus
M. extensor carpi radialis M. tibialis caudalis
M. abductor pollicis longum M. tibialis cranialis

M. popliteus

Table 2. Complete list of all muscles for the whole model and for the sub-models (fore-, hindlimb and torso). The number of
sub muscles is shown in brackets.
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6 Figures61

Figure 1. Muscle reconstruction (lateral view) based on the German Shepherd dog (GS) model for the fore and hind limbs as
well as some trunk muscles. The figure was created with the software package OpenSim.

Figure 2. Illustration of the muscle parameter set for the tendon length calculation. The figure was created with the software
package LibreOffice.
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Figure 3. Comparison of the different total muscle masses and body weight between the dogs/studies (log. scale) for Shahar
& Milgram (2001 & 2005) and Williams et al. (2008a & 2008b). The figure was created with the software package LibreOffice.

Figure 4. Comparison of the physiological cross-sectional areas (PCSA) and body weight between the dogs/studies (log.
scale) for Shahar & Milgram (2001 & 2005) and Williams et al. (2008a & 2008b). This demonstrates that total leg muscle
PCSA scales with body mass, and enables us to scale data from different breeds for use in our BE-model. The figure was
created with the software package LibreOffice.
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Figure 5. Visualization of the reconstructed bones of the German Shephard (GS) model (grey) and the Beagle (BE) model
(green). The BE model was scaled to the size of the GS model. The figure was created with the software package Blender.

Figure 6. Full simulation model of a Beagle (BE-model with linear muscles – red) with visualization of the local coordinate
systems (black, green, yellow) and the constraints (cyan). The figure was created with the software package OpenSim.
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Figure 7. Simulated forelimb muscle activation in a walking Beagle for 43 muscles or muscle parts. The plot shows how
individual muscles were activated based on consecutive strides of the same trial. The standard deviation is shown as shaded
bands. The muscle groups (#1, #2 & #3) were arranged according to hierarchical clustering (method - ward.d2) and minimal
leaf sorting (main text Fig. 7). The figures were created with the software package R.
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Figure 8. Simulated forelimb muscle activation in a walking Beagle. The plot of the SD values shows how differently
individual muscles in simulations were activated based on consecutive strides of the same trial. The lowest SD values are
plotted in dark blue, the highest activation values in yellow. The muscle groups (colours, main text Fig. 7) were arranged
according to hierarchical clustering (method - ward.d2) and minimal leaf sorting. The figure was created with the software
package R.

10/15



Figure 9. Representation of the muscles according to hierarchical clustering (method – ward.d2) and minimal leaf sorting of
simulated forelimb logarithmic muscle activation in the walking beagle (main text Fig. 7). The figures were created with the
software package OpenSim.
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Figure 10. Comparison between literature and simulated forelimb muscle activation (Heat-map). T: Tokuriki, 1973; D: Deban
et al., 2012, bold: model. The Lowest activation values are plotted in dark blue, the highest activation values in yellow relative
to the stride cycle. Literature data were digitized using WebPlotDigitizer (https://automeris.io/ WebPlotDigitizer/). To permit
comparison, the maximal amplitude of the M. serratus for all data-sets were normalized to 0.5. Thus, for each data set (T, D,
simulation) a different scaling factor was obtained. Every scaling factor was afterwards used to scale all other muscles within
each data set. Simulation data are mean values of eight consecutive strides of the same trial. For the plot, data were logarithmic
transformed (log2). The figure was created with the software package R.

12/15



Figure 11. Dendrogram: Comparison between literature and simulated forelimb muscle activation (T: Tokuriki, 1973; D:
Deban et al., 2012, bold: model). Literature data were digitized using WebPlotDigitizer (https://automeris.io/
WebPlotDigitizer/). To permit comparison, the maximal amplitude of the M. serratus for all data-sets were normalized to 0.5.
Thus, for each data set (T, D, simulation) a different scaling factor was obtained. Every scaling factor was afterwards used to
scale all other muscles within each data set. Simulation data are mean values of eight consecutive strides of the same trial.
Activation groups (colours) were arranged according to hierarchical clustering (method - ward.d2) and minimal leaf sorting.
The dendrogram represents a distance between different activation patterns. The distance is displayed in the dendrogram as
height. We use the largest heights from the root as criteria to separate groups. The figure was created with the software package
R.
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Figure 12. Comparison between literature and simulated forelimb muscle activation (T: Tokuriki, 1973; D: Deban et al., 2012,
bold: model) based on hierarchical clustering. Literature data were digitized using WebPlotDigitizer (https://automeris.io/
WebPlotDigitizer/). To permit comparison, the maximal amplitude of the M. serratus for all data-sets were normalized to 0.5.
Thus, for each data set (T, D, simulation) a different scaling factor was obtained. Every scaling factor was afterwards used to
scale all other muscles within each data set. Simulation data are mean values of eight consecutive strides of the same trial.
Activation groups (colours, see SFig. 11) were arranged according to hierarchical clustering (method - ward.d2) and minimal
leaf sorting. For the plot, data were logarithmic transformed (log2). The Lowest activation values are plotted in dark blue, the
highest activation values in yellow. The figure was created with the software package R.
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Figure 13. Simulated vs. literature forelimb muscle activation patterns at walk. While M. serratus (A), M. biceps brachii (B),
M. rhomboideus (C), and M. latissimus dorsi (D) display a relative good match with literature data, M. pectoralis profundus (E)
does not match. Note also that for the M. latissimus dorsi activation patterns reported by Tokuriki (T: 1973) and Deban et al.
(D: 2012) differs markedly. Simulation results are mean values of eight consecutive strides. The standard deviation is shown as
shaded bands. The figures were created with the software package R. 15/15
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