Abscisic acid implicated in differential plant responses of *Phaseolus vulgaris* during endophytic colonization by *Metarhizium* and pathogenic colonization by *Fusarium*

Shasha Hu and Michael J. Bidochka*

Department of Biological Sciences, Brock University, St. Catharines, ON Canada L2S 3A1

*Address correspondence to

Email: mbidochka@brocku.ca

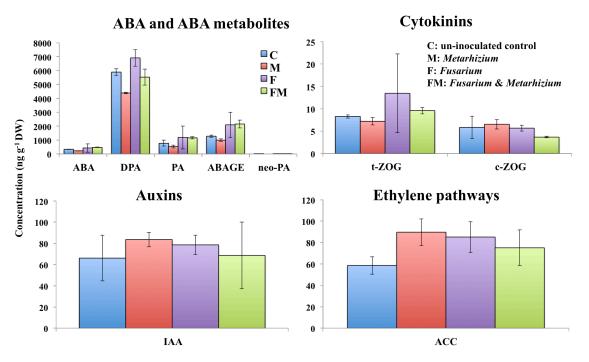
Telephone: +1 905-688-5550

Supplementary Information

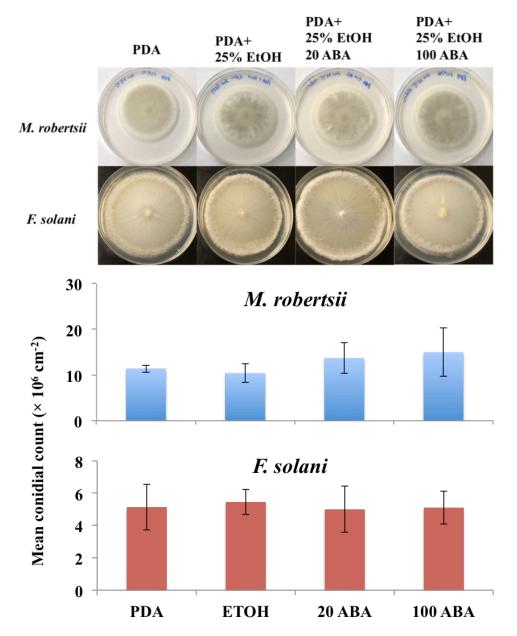
Supplementary Figure S1. The concentration of important plant hormones during endophytic or pathogenic colonization.

Supplementary Figure S2. Colony morphology and conidial production of *M. robertsii* and *F. solani* under different amount of ABA.

Supplementary Figure S3. Analysis of stomatal aperture during the exogenous

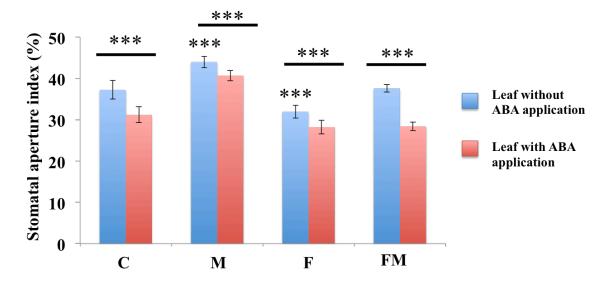

application of ABA on bean leaves.

Supplementary Figure S4. Relative expression of genes involved in ABA biosynthetic pathway in bean leaves and roots.

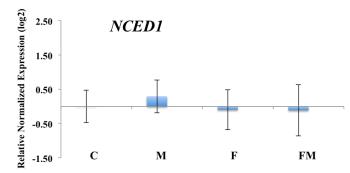

Supplementary Figure S5. CFU of *M. robertsii* or *F. solani* in bean root homogenate after exogenous application of 25% ethanol.

Supplementary Table S1. Plant hormones tested in this study

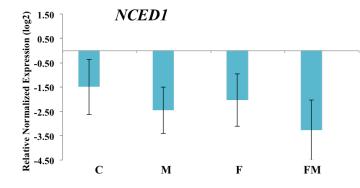
Supplementary Table S2. Primer sequences of *Phaseolus vulgaris* used for RT-PCR analysis.



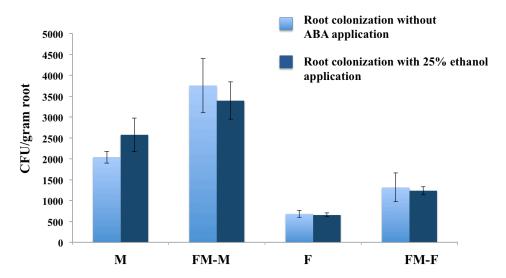
Supplementary Figure S1. The concentration of important plant hormones during endophytic or pathogenic colonization. *cis*-Abscisic acid (ABA), Dihydrophaseic acid (DPA), Phaseic acid (PA), Abscisic acid glucose ester (ABAGE), neo-PA (neo-Phaseic acid), (*trans*) zeatin-O-glucoside (*t*-ZOG), (*cis*) zeatin-O-glucoside (*c*-ZOG), indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC).


Supplementary Figure S2. Colony morphology and conidial production of *M. robertsii* and *F. solani* under different amount of ABA.

ABA, abscisic acid. X-axis represents values of ABA µg per PDA plate.



Supplementary Figure S3. Analysis of stomatal aperture during the exogenous application of ABA on bean leaves. The stomatal aperture index in the bean leaves after 14 days of un-inoculated control (C) and bean colonized by *M. robertsii* (M), *F. solani* (F), and *M. robertsii* together with *F. solani* (FM). Standard deviations are shown. Data were analyzed by one-way ANOVA with Fisher's least-significant difference (LSD) test. Statistical differences shown; * P < 0.05; ** P < 0.01; *** P < 0.001. Asterisks alone indicate statistically significant differences relative to un-inoculated control. Asterisk above black line indicate the significant differences of stomatal aperture index with exogenous ABA application compared to that in corresponding plant without ABA application.


Gene Expression in Bean Leaves

Gene Expression in Bean Roots

Supplementary Figure S4. Relative expression of genes involved in ABA biosynthetic pathway in bean leaves and roots. RNA was extracted at 14 days bean leaf and root in un-inoculated control (C), colonized by *M. robertsii* (M), *F. solani* (F), and *M. robertsii* together with *F. solani* (FM). For each gene, the expression level in un-inoculated control bean leave was set to 1. Standard errors are shown. Figure Data were analyzed with standard t-test in Bio-Rad CFX Manager software. No statistical differences are shown nine-*cis* epoxycarotenoid dioxygenases 1(NCED1).

Supplementary Figure S5. CFU of *M. robertsii* or *F. solani* in bean root homogenate after exogenous application of 25% ethanol. M: *M. robertsii*, F: *F. solani*, FM: *F. solani* and *M. robertsii* treatment group. Standard error bars are shown.

Group		Abbreviation	Full Name	
ABA and	ABA	ABA	cis-Abscisic acid	
metabolites		ABAGE	Abscisic acid glucose ester	
		DPA	Dihydrophaseic acid	
		PA	Phaseic acid	
		7'OH-ABA	7'-Hydroxy-abscisic acid	
		neo-PA	neo-Phaseic acid	
		t-ABA	trans-Abscisic acid	
Auxins		IAA	Indole-3-acetic acid	
		IAA-Asp	N-(Indole-3-yl-acetyl)-aspartic acid	
		IAA-Glu	N-(Indole-3-yl-acetyl)-glutamic acid	
		IAA-Ala	N-(Indole-3-yl-acetyl)-alanine	
		IAA-Leu	N-(Indole-3-yl-acetyl)-leucine	
		IBA	Indole-3-butyric acid	
Cytokinins		t-ZOG	(trans) Zeatin-O-glucoside	
·		c-ZOG	(cis) Zeatin-O-glucoside	
		t-Z	(<i>trans</i>) Zeatin	
		c-Z	(cis) Zeatin	
		dhZ	Dihydrozeatin	
		t-ZR	(<i>trans</i>) Zeatin riboside	
		<i>c</i> -ZR	(cis) Zeatin riboside	
		dhZR	Dihydrozeatin riboside	
		iP	Isopentenyladenine	
		iPR	Isopentenyladenosine	
		KIN	Kinetin	
		ACC	1-aminocyclopropane-1-carboxylic acid	
Gibberellins		GA1	Gibberellin 1	
		GA3	Gibberellin 3	
		GA4	Gibberellin 4	
		GA7	Gibberellin 7	
		GA8	Gibberellin 8	
		GA9	Gibberellin 9	
		GA19	Gibberellin 19	
		GA20	Gibberellin 20	
		GA24	Gibberellin 24	
		GA29	Gibberellin 29	
		GA34	Gibberellin 34	
		GA44	Gibberellin 44	
		GA51	Gibberellin 51	
		GA53	Gibberellin 53	

Supplementary Table S1 Plant hormones tested in this study

Gene	NCBI Sequence ID	Size (bp)	Forward Sequence	Reverse Sequence
Act	XM 007162263	126	CACCGAGGCACCGC	CGGCCACTAGCGTA
	AWI_007102203		TTAATC	AAGGGAA
ERF1	XM 007144028	161	CGCTCTCAAGAGGA	TGAATCAGAAGGAG
	<u>MWI_007144020</u>		AACACTCC	GAGGGAAT
ERF5	XM 007157197	151	GGCTCCAAGTGGAT	TCAGAATCAGATAA
	<u>AWI_007137177</u>		TGAGAAC	CTACAAAGCACAA
HPL	XM 007149930	153	TCAAGGCTACATTT	TGGTGCACATTTCTT
	<u>AWI_007147750</u>		GTATTTCCA	AGTAGCAA
PR1	XM 007154263	98	TGGTCCTAACGGAG	TGGCTTTTCCAGCT
	<u>AWI_007134203</u>		GATCAC	TTGAGT
PR2	XM 007154264	246	GTGAAGGACGCCGA	
	<u>AWI_007134204</u>		TAACAT	CGATTG
PR3	XM 007137247	111	TGGAGTTGGTTATG	ATTCTGATGGGATG
	<u>AWI_007137247</u>		GCAACAA	GCAGTGT
PR4	XM 007147114	140	CGCAGTGAGTGCAT	TGGTGCACATTTCTT
			ATTGCT	AGTAGCAA
NCED1	AF190462	162	CTCCTTTTCTACGCT	GGTGGTTAAGTCGC
	/// 1/0+02		CGCAG	CGTTAG
PvCYP707A1	DQ352541	111	GCCTTTTGGCAGTG	GCACCCACAACAG
	DQJJ2JTI		GGATTCAT	ACCACCT
PvCYP707A3	DQ352543	121	AGACTACCACACTC	GCCATCACCCCAAG
	DQ332343		GCCTCA	AGTTCA

Supplementary Table S2 Primers sequences of *Phaseolus vulgaris* used for RT-PCR

analysis