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Supplementary note 1: Data collation and analysis

The influenza laboratory test positive rate for each epidemic week was used to

define the intensity of influenza activity. Influenza activity intensity levels were

determined by the epidemic weeks in the winter-spring seasons in China and

the United States (US). Epidemiological characteristics of influenza vary

across China due to geographical differences between the North and the

South1. Data integrity and availability also varied by province. We conducted

analyses for the South part (Jiangsu, Anhui, Zhejiang, Shanghai, Hubei,

Hunan, Jiangxi, Fujian, Tibet, Yunnan, Guizhou, Sichuan, Chongqing, Guangxi,

Guangdong, Hainan) and the North part (Shandong, Henan, Shanxi, Shaanxi,

Gansu, Qinghai, Xinjiang, Hebei, Tianjin, Beijing, Inner Mongolia, Liaoning,

Jilin, Heilongjiang, Ningxia) of mainland China.

Intensity of winter-spring influenza activity in 2011-2019 was divided into three

levels: high, moderate, and low, corresponding to high (positive rate ≥25%),

moderate (20%–25%), and low (<20%) positive rates of influenza tests,

respectively (see the criteria in Methods). Three typical pre-COVID-19

epidemic levels in the North and South of China and two levels in the US were

selected for comparison of the observed activity in winter-spring epidemic

weeks of 2019-2020, the season that overlapped COVID-19.
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Supplementary note 2: Polynomial curves fitting

Curve fitting is the process of constructing a curve or mathematical function

that has the best fit to a series of data points, subject to constraints. The order

of the equation is a third degree polynomial:

y=ax3+bx2+cx+d

First, the influenza test positive rate in 2011-2019 winter-spring epidemic week

was calculated to determine the season corresponding to high, moderate, and

low activity intensities described above.

Second, curve fitting functions in SPSS22.0 and SAS JMP Pro 14 were used

to fit influenza activity levels at each intensity for southern China, northern

China, and the US (Supplementary Fig. 1 and Table S1).
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Supplementary note 3: ARIMA model for influenza test positive rate

prediction

The ARIMA model was used to predict typical winter-spring epidemic weekly

curves that would have occurred in the North and South in 2019-2020 in the

counterfactual scenario of no COVID-19 and related NPIs. The observed

(actual) curve for the 2019-2020 season was compared with the counterfactual

curve to evaluate NPI effectiveness. The model we obtained has the form:

ΦP (퐵푠)φp (B)훻푠
퐷훻푍푡

푑 = θq (B)ΘQ (퐵푠)at

where

ΦP (퐵푠)=(1-Φ1퐵푠-…-ΦP퐵푠P) is the seasonal AR operator of order P;

φp = (1 − φ1B - ... -φpBP) is the regular AR operator of order p;

훻푠
퐷 = (1 − 퐵푠)퐷 represents the seasonal differences and represents the

seasonal differences and ∇d=(1 − B)dthe regular differences;

ΘQ (퐵푠)= (1-Θ1퐵푠-…-ΘQ퐵푠Q) is the seasonal moving average operator of

order Q;

θq (B)= (1-θ1B-…-θq퐵푞) is the regular moving average operator of order q;

at is a white noise process.

Basic principles

The data sequence formed by the predicted object over time is regarded as a

non-random sequence. A time series is a group of time-dependent variables3.

The dependence or auto-correlation of this group of variables represents the

continuity of the development of the predicted object. Once this autocorrelation

is described by the corresponding mathematical model, the future value can be

predicted from the past and present values of the time series4.

Formula

The general expression of the ARIMA model is ARIMA (p, d, q) (P, D, Q) s,
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where p and q are the auto-regressive (AR) and moving average (MA) orders,

and P and Q seasonal auto-regression and moving average order, d, D are the

difference order and seasonal difference order, s is the seasonal period5,6.

Modeling steps

① Sequence stationarity and randomness. ARIMA should be built on a

stationary sequence. The time series auto-correlation function was used to

judge the stationarity7 of the data in the epidemic week from 2011 to 2019

(Supplementary Fig. 3) and determine the difference d (Fig. S4), D and the

seasonal periods8. If the auto-correlation function of the time series was

greater than 3 and falls within the confidence interval and gradually

approaches zero, then the time series is stationary. There is no stationarity if it

falls outside the confidence interval, in which case we need to smooth the data

to be a stationary by making a difference9. A non-stationary series with

seasonality into a stationary one by using the transformation:

푊푡=∇푠
퐷∇푍푡

푑

where D is the number of seasonal differences and d is the number of regular

differences.

With a 1-time non-seasonal difference and a 1-time seasonal difference, the

sequence non-stationarity was eliminated with white noise. Ljung-Box test

determined the Sequence to be non-random (p<0.05).

② Model identification. We determined the model parameters, referring to the

sequence scatter plot, auto-correlation function (ACF) plot, and partial

auto-correlation function (PACF) plot (Figs. S7–S8). We used Akaike

information criterion (AIC) and decision coefficient R2 from all candidate

models to identify the best p and q values, and then determined the

parameters P and Q step-by-step10.

③ Model estimation and validation. We performed a Q test on the residuals to

check the autocorrelation of the residuals (Supplementary Fig. 9). If the

residuals have no autocorrelation, the model fits well11.
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④ Model fitting and prediction. Based on the data from 2011 to 2019, we

observed, fitted and predicted changes in the positive rate of influenza testing

and the number of influenza-like cases under the counterfactual scenario of no

COVID-19 and related non-pharmaceutical interventions. The goodness-of-fit

to the ARIMA model was evaluated by determining the coefficient R2 (0–1) and

AIC. The larger the R2, the smaller the AIC, the better the fit (Table S2).
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Supplementary note 4: Evaluating the impact of COVID-19 outbreaks and

NPIs on influenza

The percent decrease in influenza activity = (estimated area under the

epidemic curve when no NPIs were taken - area under the observed epidemic

curve with NPIs) / Estimated area under the number curve without any NPIs *

100%. Graphpad prism8.0 was used to calculate the area under the curve to

evaluate the impact of the measures. The uncertainty of estimates is defined

as:

Upper bound = (the area formed by the upper limit of the estimates by ARIMA

model and the X axis - the area formed by the observed value and the X axis) /

the area formed by the upper limit of the estimated value of the model and the

X axis.

Lower bound = (the area formed by the lower limit of the estimates by ARIMA

model and the X axis - the area formed by the observed value and the X axis) /

the area formed by the lower limit of the estimated value of the model and the

X axis.
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Supplementary Figures

Supplementary Fig. 1. Influenza epidemic levels by region across 2011-2019.

The fitted curve (red line) for each intensity level by region is presented with the lower

and upper bounds (shaded pink color). The colored lines represent the observations

of influenza activities in different years. a High epidemic intensity level in Southern

China. b Moderate epidemic intensity level in Southern China. c Low epidemic

intensity level in Southern China. d High epidemic intensity level in Northern China. e

Moderate epidemic intensity level in Northern China. f Low epidemic intensity level in

Northern China. g High epidemic intensity level in the US. h Moderate epidemic

intensity level in the US.
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Supplementary Fig. 2. Actual and predicted positive rate from 2011 to 2019.
The red lines represent the three processes of the ARIMA model's prediction

degree. The blue shaded areas indicate actual and predicted positive rates in

2019 to identify the reliability and predictivity of the model. a Southern China. b
Northern China. c the US.
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Supplementary Fig. 3. Stationarity test.

ACF plots are used to identify non-stationary time series. Only non-stationary series

can be used for ARIMA models. Supplementary Fig. 3 shows that the ACF of

non-stationary data decreases slowly while the ACF of a stationary time series will

drop to zero relatively quickly, which supports that the time series is non-stationary. a

Positive rate of influenza tests in Southern China. b Positive rate of influenza tests in

Northern China. c Positive rate of influenza tests in the US. d Number of influenza-like

cases in Southern China. e Number of influenza-like cases in Northern China.
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Supplementary Fig. 4. Difference.

As the sequence is non-stationary series, an initial differencing step can be applied to

eliminate the non-stationarity of the mean function. The “difference” order is the

integration order. It represents the number of times need to integrate the time series to

ensure stationarity. After 1-time general difference and 1-time seasonal difference, the

mean value fluctuates around zero as white noise. a Positive rate of influenza tests in

Southern China. b Positive rate of influenza tests in Northern China. c Positive rate of

influenza tests in the US. d Number of influenza-like cases in Southern China. e

Number of influenza-like cases in Northern China.
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Supplementary Fig. 5. Seasonal adjustment factors (SAF).

The SAF refers to the seasonal factors decomposed from the series, in which the

variable values are likely repeated according to the seasonal cycle. a Positive rate of

influenza tests in Southern China. b Positive rate of influenza tests in Northern China.

c Positive rate of influenza tests in the US. d Number of influenza-like cases in

Southern China. e Number of influenza-like cases in Northern China.
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Supplementary Fig. 6. Seasonal Decomposition.

The ERR (error sequence) refers to the sequence left after removing seasonal factors,

long-term trends, and cyclic changes from the time series - that is, the sequence

composed of irregular changes in the original sequence. SAS (Seasonal adjusted

series) refers to the correction sequence after removing the seasonal factors in the

original sequence. STC (Trend-cycle) refers to the sequence consisted of long-term

trends, and cyclic changes. a Positive rate of influenza tests in Southern China. b

Positive rate of influenza tests in Northern China. c Positive rate of influenza tests in

the US. d Number of influenza-like cases in Southern China. e Number of

influenza-like cases in Northern China.
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Supplementary Fig. 7. Auto-correlation function (ACF).

The ACF plot is a bar chart of the coefficients of correlation between a time series and

self-lag. a Positive rate of influenza tests in Southern China. b Positive rate of

influenza tests in Northern China. c Positive rate of influenza tests in the us. d

Number of influenza-like cases in Southern China. e Number of influenza-like cases in

Northern China.

Supplementary Fig. 8. Partial auto-correlation function (PACF).
The PACF plot is a plot of the partial correlation coefficients between the series and

self-lag. a Positive rate of influenza tests in Southern China. b Positive rate of

influenza tests in Northern China. c Positive rate of influenza tests in the US. d
Number of influenza-like cases in Southern China. e Number of influenza-like cases in
Northern China.
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Supplementary Fig. 9. Partial auto-correlation function.
The ACF and PACF of residuals locate in the confidence interval and the mean value

fluctuates around 0, which means that the ARIMA model is reasonable. If there is a

correlation between residual of ACF and PACF, then there is still information left that

can be used in the prediction. a Positive rate of influenza tests in Southern China. b
Positive rate of influenza tests in Northern China. c Positive rate of influenza tests in

the US. d Number of influenza-like cases in Southern China. e Number of

influenza-like cases in Northern China.
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Supplementary Tables

Supplementary Table 1. Polynomial fitting formula and goodness-of-fit for influenza

activities.
Activity level Southern China R2 Northern China R2 the US R2

High y=4.36+7.24x-0.

44x2-0.01x3
0.971 y=0.19+12.08x-

1.07x2+0.03x3
0.972 y=1.92+8.6x+-0.75

x2+0.02x3
0.969

Moderate y=8.64+2.56x-0.

06x2-0.01x3
0.923 y=1.56+11.07x-

1.32x2+0.04x3
0.961 y=6.59+5.05x+-0.3

8x2+0.00715x3
0.961

Low y=7.80+4.14x-0.

45x2+0.01x3
0.952 y=9.22+5.96x-0.

71x2+0.02x3
0.831 - -
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Supplementary Table 2. Parameterization and comparisons of ARIMA models.
Indicators Forecasting influenza

test positive rate
Forecasting ILI cases

Southern
China

Northern
China

The US Southern
China

Northern
China

Parameters# (1, 1, 3)
(1, 1, 1)

(1, 1, 2)
(0, 1, 2)

(1, 1, 2)
(0, 1, 2)

(1, 1, 0)
(0, 1, 1)

(1, 1, 2)
(0, 1, 2)

Parameters 1 (1, 1, 2)
(1, 1, 1)

(1, 1, 2)
(1, 1, 1)

(1, 1, 2)
(1, 1, 1)

(1, 1, 1)
(0, 1, 1)

(1, 1, 2)
(1, 1, 1)

Parameters 2 (1, 1, 3)
(0, 1, 2)

(1, 1, 2)
(0, 1, 1)

(1, 1, 2)
(0, 1, 1)

(1, 1, 0)
(0, 1, 2)

(1, 1, 2)
(1, 1, 2)

AIC 1811.6 1719.9 1422.9 8027.8 7407.1
AIC1 1811.8 1720.3 1423.4 8029.7 7407.3
AIC2 1812.4 1720.6 1424.1 8029.8 7408.0
R2 0.951 0.969 0.976 0.945 0.969
R21 0.951 0.969 0.976 0.945 0.969
R22 0.951 0.969 0.976 0.945 0.969
ILI: influenza-like illness.
#The optimized model parameters are listed in the table, and the top three models

with best performance selected from multiple candidate models

(https://zenodo.org/record/4573183#.YD5JWGgzZdg) are presented for comparisons.

In this study, the optimal model was selected according to the principle of minimum

AIC and maximum R2.
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