Supplemental Material for

Identification and characterization of centromeric sequences in Xenopus laevis

Owen K Smith^{1,2}, Charles Limouse¹, Kelsey A Fryer^{1,3}, Nicole A Teran³, Kousik Sundararajan¹, Rebecca Heald⁴, Aaron F Straight^{1*}

¹Department of Biochemistry Stanford University School of Medicine 279 Campus Drive Beckman Center 409 Stanford, CA 94305-5307

²Department of Chemical and Systems Biology Stanford University School of Medicine Stanford, CA 94305

³Department of Genetics Stanford University School of Medicine Stanford, CA 94305-5120

⁴Department of Molecular and Cell Biology University of California Berkeley 142 Life Sciences Addition #3200 Berkeley, CA 94720-3200

Contents:

Supplemental Fig S1-S7

7.70

9.17

0.50 15

20

0.34

3.13

Supplemental Figure 1: A) Workflow of native MNase ChIP-seq protocol B) Overview of the pipeline to identify centromeric *k*-mers and sequences that contain centromeric *k*-mers. There are three inputs. The two at the top are reads that will be compared by *k*-mer content (i.e a ChIP dataset vs an input dataset). The third input, on the left, is a set of sequences that will be sorted by presence of centromeric *k*-mers. C) Scatter plots similar to Figure 1A. Scatter plots of normalized *k*-mer count in Cenpa ChIP (y-axis) vs input (x-axis) for *k*-mer lengths 10bp (left), 15bp (center), and 20bp (right). D) Table of the percentage of reads from Cenpa and Input sequencing libraries with increasingly stringent cutoff based on Cenpa / Input *k*-mer counting. Final column is the fold enrichment of the fraction of reads in Cenpa / Input. Multiples of median absolute deviations (MAD×) above the median enrichment value used for defining enrichment cutoff as described for Fig 3A,B.

Fig S2

С

D

Supplemental Figure 2: A) Alignment of select 150bp reads identified as FCR monomers used for FISH to the Fcr1 sequence. Colored base pairs indicate deviation from Fcr1. Coverage and percent identity of FCR monomers across the Fcr1 sequence plotted above. B) Histogram of GC-content for top 50 FCR monomers used to generate phylogram in Figure 1B (left). Histogram of GC-content for all input reads (right). GC-count per read shown in red and theoretical GC content distribution shown in blue. Plot generated using FASTQC. C) Phylogram of representative repeat monomers identified by TRF in centromeric regions from *Xenopus laevis* genome v10.2 D) Barplot of repeat classes enriched in sequencing reads from Cenpa / Input libraries. RepeatMasker was used to identify repeat classes present in 20M Cenpa and Input sequencing reads. An enrichment value for Cenpa/Input was determined for each repeat class.

Fig S3

FCR monomer 16

Supplemental Figure 3: Scatter plots similar to Figure 2A',B',C'. Scatter plots of background subtracted probe intensities for each centromere from two-color FISH experiments. Pearson coefficients are displayed in the top left corner. These scatter plots have FCR monomer 16 on the x-axis compared to other FCR monomers tested on the y-axis.

Chr1L	Chr1S	Chr2L	Chr2S	Chr3L	Chr3S	Chr4L	Chr4S	Chr5L	Chr5S	Chr6L	Chr6S	Chr7L	Chr7S	Chr8L	Chr8S	Chr9_10L	Chr9_10S
m4	m4	m103	m131	m41	m131	m4	m25	m36	m25	m16	m36	m16	m9	FCR_m19	m25	m103	m41
m41	m41	m3	m36	m16	m15	m41		m6	m19	m19	m6	m19	m41	m131	m9	m3	m19
m10	m10		m6	m4	m216	m19		m216	m41	m41	m216	m25	m16	m15		m9	m16
m16			m216		m36	m16		m15	m9	m6	m15	m41		m216			
			m15		m41			m19			m19	m9		m36			
			m19		m6									m41			
														m6			

D

	a a time to d	his with CA	9/ mith CA
	contromoro	oprichod k	oprichod k
Chromosome	length (hn)	mer	more
Chr1l	1 056 015	31 455	2.98
Chr1S	86.693	23.907	27.58
Chr2L	182,310	52,486	28.79
Chr2S	842,374	107,737	12.79
Chr3L	119,351	16,854	14.12
Chr3S	522,430	1,146	0.22
Chr4L	159,399	7,025	4.41
Chr4S	94,354	1,439	1.53
Chr5L	152,334	7,834	5.14
Chr5S	62,198	974	1.57
Chr6L	102,125	10,792	10.57
Chr6S	51,297	4,400	8.58
Chr7L	196,190	11,230	5.72
Chr7S	20,178	180	0.89
Chr8L	169,395	20,141	11.89
Chr8S	57,730	39	0.07
Chr9_10L	128,980	31,307	24.27
Chr9_10S	114,741	10,037	8.75

Supplemental Figure 4: A) Chromosome overviews showing the entire scaffold for each chromosome in *Xenopus laevis* genome. Top track is alignment of enriched 25bp *k*-mers, defined as 17 Median Absolute Deviations above the median of all Cenpa/Input enrichment values. Bottom track is 50kb genome segments that contain enriched *k*-mers. Most chromosomes have one location where enriched *k*-mers map. Below, table with the FCR monomers expected to be most prevalent on each chromosome based on Fig 4D. B) Expanded genome browser view of the centromeric region on Chromosome 9_10S showing that arrays of repetitive regions identified in this study are interspersed with other sequences. These intervening sequences could be repetitive or non-repetitive, but do not contain Cenpa enriched *k*-mers. C) Barplot of centromere size on each chromosome in kilobases. Exact size of the centromeric repetitive array is estimated by identifying the distance between the first and last base pairs that have a Cenpa enriched *k*-mer aligned per chromosome. These estimates include the intervening sequences between centromeric repetitive arrays shown in Fig S3B, D) Chart of the centromere length (as defined in C), base pairs with Cenpa enriched *k*-mers, and percentage of centromere that contain Cenpa enriched *k*-mers for each chromosome.

Supplemental Figure 5: A) Table showing the observed, expected, and ratio of observed/expected ("fold") for the number of occurrences of the CENPB motif within the regions defined as the centromere, based on the presence of Cenpa enriched *k*-mers (Fig S4D), in *Xenopus laevis* v10.2 genome and in human hg38 genome based on UCSC centromere annotations. B,C) Self dotplots of centromeric regions identified by Cenpa enriched *k*-mers on Chr2S (B) and Chr4S (C). Window size is 150bp. Matches are depicted black and reverse matches are depicted in green. Off-diagonal signal indicates non-unique sequence. Cyan boxes overlay regions with Cenpa enriched *k*-mers and red boxes overlay regions without Cenpa enriched *k*-mers. X and y axis coordinates are bp relative to the start of each centromeric region.

kilobases

Chr8S Cenpa reads region: 50,884,697-50,972,722

Supplemental Figure 6: A) Bar plot of the total number of unique *k*-mers found on each chromosome based on centromeric genome segments. Chromosomes from the L subgenome are shown in red and from the S subgenome are shown in blue. B, C, D) Genome browser views depicting location of genome segments containing Cenpa enriched *k*-mers (top track), alignment of Cenpa enriched *k*-mers (middle track), and a bigwig track depicting the log₂ ratio of Cenpa / Input reads that were only allowed a single alignment (bottom track) for Chr7S (B), Chr8S (C), and Chr4S (D). E) Self dot plot as for Fig S5B,C with 50bp window size. Region with Cenpa enriched *k*-mers on Chr7S (left), region with Cenpa enriched *k*-mers on Chr8S (right).

Clustered heatmap of chromosomes and FCR monomers by alignment of specific *k*-mers

Supplemental Figure 7: Heatmap similar to Figure 4C. Clustered heatmap of counts reported from Bowtie of the number of times any unique *k*-mer from each FCR monomer aligns to each chromosomal contig. Alignment counts were normalized by the number of *k*-mers unique to each FCR monomer.