Supporting Information

Bromine Radical Catalysis by Energy Transfer Photosensitization

Dian-Feng Chen, Cameron H. Chrisman, and Garret M. Miyake*

Department of Chemistry, Colorado State University, Ft Collins, Colorado 80523, United States

Table of Contents

1.	General Considerations	S2
2.	Substrate Synthesis and Characterization	S3
2.1 A	lkene Synthesis	S3
	inylcyclopropane Synthesis	
3.		
4.	General Reaction Setup and Experimental Procedures	S11
5.	Mechanistic Study	S12
5.1 T	EMPO-trapping experiment	S12
	nvestigation of alternative precatalysts	
	adical epimerization experiment	
	Syclic voltammetry	
	tern-Volmer quenching experiment	
	On/off" experiment	
	Determination of quantum yield (Φ)	
	Characterization of Products	
7.	Reference	S46
8.	NMR Spectra	S47

1. General Considerations

Commercial reagents and anhydrous solvents were purchased from *Millipore-Sigma*, *Alfa* and *TCI*, and were used as received unless otherwise indicated. All catalytic reactions were carried out under N₂ with oven-dried vials. Thin layer chromatography was performed on SiliCycle® 250 um, 60A plates. Column chromatography was performed on *SiliCycle®SilicaFlash®* P60, 40-63 um, 60A. Visualization was accomplished with I₂-silica.

 1 H, 13 C, and 19 F NMR spectra were recorded on a Bruker 400 Hz (101 Hz, 162 Hz and 376 Hz for 13 C, 31 P and 19 F, respectively) spectrometer at ambient temperature. All NMR spectra are referenced to the residual solvent (CHCl₃) signal. Data for 1 H, 19 F and 31 P NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration. Data for 13 C NMR are reported as follows: chemical shift (δ ppm).

Mass spectra (MS) were obtained from Colorado State University Central Instrument Facility on an Agilent 6224 Time of flight (TOF) LC-MS spectrometer using ESI+/DART+ ionization model.

2. Substrate Synthesis and Characterization

2.1 Alkene Synthesis

$$\begin{array}{c} H \\ N \\ N \\ N \\ O \\ Me \end{array} + \begin{array}{c} K_2CO_3 \\ DMF, \ rt \end{array} \begin{array}{c} O \\ N \\ N \\ N \\ O \\ Me \end{array}$$

To a solution of theophylline (0.90 g, 5.0 mmol, 1.0 equiv) in 15.0 mL of anhydrous DMF, 4-vinylbenzyl chloride (1.15 g, 7.5 mmol, 1.5 equiv) and K_2CO_3 (1.38g, 10.0 mmol, 2.0 equiv) were added sequentially. The slurry was vigorously stirred at room temperature for 12h. The white solid was filtered off, and the filtrate was diluted with EtOAc (100 mL), washed with H₂O (50 mL × 3), brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was subjected to silica gel chromatography using hexane/acetone (10:1 to 5:1) as the eluent, giving **S1** as a white solid (1.31g, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.46 – 7.35 (m, 2H), 7.30 – 7.26 (m, 2H), 6.68 (dd, J = 17.6, 10.9 Hz, 1H), 5.74 (dd, J = 17.6, 0.8 Hz, 1H), 5.48 (s, 2H), 5.27 (dd, J = 10.9, 0.8 Hz, 1H), 3.58 (s, 3H), 3.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 151.7, 148.9, 140.8, 138.0, 136.0, 134.7, 128.2, 126.9, 114.8, 107.0, 50.1, 29.8, 28.0. **DART-TOF-LC/MS** m/z calcd. for C₁₆H₁₇N₄O₂ [M+H⁺] 297.1352, found 297.1351.

$$\begin{array}{c} \text{Me} \quad \text{Me} \\ \text{O} \quad \text{O} \\ \text{O} \quad \text{O} \\ \text{O} \quad \text{OH} \\ \text$$

To a solution of protected uridine $S2^1$ (1.42 g, 5.0 mmol, 1.0 equiv) in 15.0 mL of anhydrous DMF, 4-vinylbenzyl chloride (1.15g, 7.5 mmol, 1.5 equiv) and K₂CO₃ (1.38g, 10.0 mmol, 2.0 equiv) were added sequentially. The slurry was vigorously stirred at room temperature. After 12 h, the solid was filtered off. The filtrate was diluted with EtOAc (100 mL), washed with H₂O (50 mL × 3), brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was subjected to silica gel chromatography using hexane/acetone (10:1 to 5:1) as the eluent, giving S3 as a colorless oil (1.41g, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 13.3 Hz, 1H), 6.63 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 (d, J = 8.0 Hz, 1H), 5.66 (dd, J = 17.6, 1.0 Hz, 1H), 5.48 (d, J = 2.9 Hz, 1H), 5.17 (dd, J = 10.9, 0.9 Hz, 1H), 5.08 – 4.88 (m, 4H), 4.23 (q, J = 3.1 Hz, 1H), 3.89 – 3.81 (m, 1H), 3.74 (ddd, J = 12.0, 7.5, 3.3 Hz, 1H), 2.70 (dd, J = 7.5, 3.3 Hz, 1H), 1.52 (s, 3H), 1.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 151.0, 140.7, 137.1, 136.4, 135.9, 129.5, 126.2, 114.3, 114.0, 102.2, 97.0, 86.9, 83.8, 80.3, 62.7, 43.9, 27.3, 25.3. ESI-TOF-LC/MS m/z calcd. for C₂₁H₂₅N₂O₆ [M+H⁺] 401.1713, found 401.1710.

To a solution of desloratadine (1.0 g, 3.2 mmol, 1.0 equiv) in 5.0 mL of anhydrous pyridine at 0 °C, 4-vinylbenzoyl chloride (0.54g, 3.2 mmol, 1.0 equiv) was added dropwise. The mixture was stirred at 0 °C for 30 min, then was warmed up to room temperature and stirred for 12h. The reaction was quenched by addition of sat. NH₄Cl (20 mL), then diluted with CH₂Cl₂ (100 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 2). The combined organic phase was washed with H₂O (50 mL × 3), brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was subjected to silica gel chromatography using hexane/acetone (5:1 to 3:1) as the eluent, giving the final product as a while solid (1.12g, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (brs, 1H), 7.48 – 7.33 (m, 5H), 7.22 – 7.01 (m, 4H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.77 (dd, J = 17.6, 0.8 Hz, 1H), 5.29 (J = 10.9, 0.8 Hz, 1H), 4.18 (brs, 1H), 3.64 (brs, 1H), 3.45 – 3.13 (m, 4H), 2.92 – 2.73 (m, 4H), 2.70 – 2.15 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 156.8, 146.7, 139.6, 138.9, 137.6, 136.9, 136.1, 135.2, 134.7, 133.4, 133.0, 130.5, 129.0, 127.3, 126.2, 122.4, 115.2, 31.7, 31.5. **ESI-TOF-LC/MS** m/z calcd. for C₂₈H₂₆ClN₂O [M+H⁺] 441.1734, found 441.1735.

To a solution of O-methylated aspartame² (0.72 g, 2.0 mmol, 1.0 equiv) in 4.0 mL of anhydrous pyridine at 0 °C, 4-vinylbenzoyl chloride (0.33g, 2.0 mmol, 1.0 equiv) was added dropwise. The mixture was stirred at 0 °C for 30 min, then was warmed up to room temperature and stirred for 12h. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 2). The combined organic phase was washed with H₂O (50 mL×3), brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was subjected to silica gel chromatography using CH₂Cl₂/MeOH (20:1 to 1:1) as the eluent, giving the final product as a colorless oil (0.73g, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.18 – 7.02 (m, 6H), 6.76 (dd, J = 17.6, 10.9 Hz, 1H), 5.87 (d, J = 17.5 Hz, 1H), 5.39 (d, J = 10.9 Hz, 1H), 5.00 (ddd, J = 7.9, 6.4, 3.8 Hz, 1H), 4.80 (td, J = 7.3, 5.3 Hz, 1H), 3.73 (s, 3H), 3.72 (s, 3H), 3.22 – 2.98 (m, 3H), 2.67 (dd, J = 17.0, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 171.4, 170.1, 166.7, 141.2, 135.9, 135.6, 132.2, 129.2, 128.5, 127.5, 127.1, 126.4, 116.3, 53.5, 52.4, 52.2, 49.3, 37.7, 34.9. DART-TOF-LC/MS m/z calcd. for C₂4H₃0N₃O₆ [M+NH₄⁺] 456.2135, found 456.2133.

2.2 Vinylcyclopropane Synthesis

Procedure A: To a suspension of 60% NaH (1.0 g, 25.0 mmol, 2.5 equiv) in 25.0 mL of anhydrous THF at 0 °C, trans-1,4-dibromo-2-butene (2.1 g, 10.0 mmol, 1.0 equiv) was added in one portion. Appropriate activated methylene compounds (10.0 mmol, 1.0 equiv) was added dropwise over 10 min. The reaction was then vigorously stirred at room temperature. Conversion was assessed by TLC (10% EtOAc in hexanes). Upon completion, the reaction was cooled to 0 °C with an ice bath and carefully quenched by slow addition of sat. NH₄Cl (10 mL). The mixture was then diluted with H₂O (30 mL) and ether (100 mL). The layers were separated, and the aqueous phase was extracted with ether (30 mL × 3). The combined organic phasewas washed with H₂O (50 mL × 2), brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel chromatography using hexane/EtOAc as the eluent.

(a): Procedure A
$$RO_2C$$
 CO_2R EtO_2C R PhS SPh Me Me Me $R = Me, Et, Ph$ $R = CN, PO(OEt)_2$ Me $R = Me, Ph$ $R = H, CO_2H, CONHPh CH_2OH, NHBoc CO_2Et R $R = Me, Ph$ $R = Me,$$

Figure S1. Known vinylcyclopropanes synthesized according to **Procedure A** or methods in literature.³

HO
$$\downarrow$$
 OH \downarrow Con. H₂SO₄ \downarrow toluene, reflux CI \downarrow CI \downarrow CI \downarrow CI \downarrow CI \downarrow S6

A solution of malonic acid (4.0 g, 38.5 mmol), 2-chloroethanol (13.0 mL, 206 mmol) and concentrated H₂SO₄ (0.5 mL) in anhydrous toluene (20.0 mL) was heated to reflux for 3 h. After cooling to room temperature, the reaction was carefully quenched by slow addition of 10% NaHCO₃. The layers were separated, and the aqueous phase was extracted with ether (50 mL × 3). The combined organic phase was washed with 5% NaHCO₃ (50 mL × 2), H₂O (50 mL × 2) and brine (50 mL), dried over anhydrous Na₂SO₄, concentrated *in vacuo* to give crude **S6** as a colorless oil (5.2 g), which was used without further purification. **S7** was then synthesized according to **Procedure A**. Colorless oil, 4.34 g, 40% yield for two steps. ¹H NMR (400 MHz, CDCl₃) δ 5.48 (ddd, J = 17.0, 10.2, 8.1 Hz, 1H), 5.32 (dd, J = 17.0, 1.5 Hz, 1H), 5.17 (dd, J = 10.2, 1.5 Hz, 1H), 4.50 – 4.28 (m, 4H), 3.90 – 3.40 (m, 4H), 2.65 (dd, J = 9.0, 7.7 Hz, 1H), 1.79 (dd, J = 7.7, 5.0 Hz, 1H), 1.64 (dd, J

= 9.0, 5.0 Hz, 1H). 13 C NMR (101 MHz, CDCl₃) δ 169.0, 166.7, 132.4, 119.2, 65.1, 65.0, 41.3, 41.2, 35.6, 31.8, 20.8. **DART-TOF-LC/MS** m/z calcd. for C₁₁H₁₈Cl₂NO₄ [M+NH₄⁺] 298.0613, found 298.0611.

To a solution of 2-fluoroethanol (1.41 mL, 24.0 mmol) in anhydrous Et₂O (100 mL) at 0 °C, malonyl chloride (2.82 g, 38.5 mmol) was added dropwise. The reaction was vigorously stirred at room temperature. After 12h, the reaction was carefully quenched by slow addition of 10% NaHCO₃. The layers were separated, and the aqueous phase was extracted with ether (50 mL × 2). The combined organic layer was washed with 5% NaHCO₃ (100 mL), H₂O (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, concentrated *in vacuo* to give crude **S8** as a colorless oil, which was used without further purification. **S9** was then synthesized according to **Procedure A**. Colorless oil, 2.89 g, 57% yield for two steps. ¹**H NMR** (400 MHz, CDCl₃) δ 5.47 (ddd, J = 17.0, 10.1, 8.1 Hz, 1H), 5.36 – 5.28 (m, 1H), 5.19 – 5.15 (m, 1H), 4.68 – 4.62 (m, 2H), 4.56 – 4.52 (m, 2H), 4.51 – 4.26 (m, 4H), 2.65 (dd, J = 9.0, 7.9 Hz, 1H), 1.79 (dd, J = 7.7, 5.0 Hz, 1H), 1.64 (dd, J = 9.0, 5.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.2, 166.9, 132.4, 119.2, 81.9 (d, J = 12.2 Hz), 80.2 (d, J = 12.2 Hz), 64.5 (d, J = 14.7 Hz), 64.2 (d, J = 14.7 Hz), 35.6, 31.8, 20.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -224.7, -224.9. **DART-TOF-LC/MS** m/z calcd. for C₁₁H₁₈F₂NO₄ [M+NH₄⁺] 266.1204, found 266.1207.

Procedure B: To a solution of 1-(ethoxycarbonyl)-2-vinylcyclopropane-1-carboxylic acid^{3b} (1.1 equiv.) in anhydrous DCM (0.2 M) at 0 °C, appropriate alcohol (1.0 equiv), DMAP (0.10 equiv.), and DCC (1.3 equiv.) was sequentially added. The mixture was then vigorously stirred at room temperature for 12h. The white precipitate was filtered off and the filtrate was concentrated *in vacuo*. The residue was purified by silica gel chromatography using hexane/EtOAc as the eluent.

Synthesized from 1-(ethoxycarbonyl)-2-vinylcyclopropane-1-carboxylic acid and 1 kDa monocarbinol terminated polydimethylsiloxane (5.0 mmol scale). Colorless oil, 5.23g, 88% yield. 1 **H NMR** (400 MHz, CDCl₃) δ 5.44 (ddd, J = 17.0, 10.2, 8.3 Hz, 1H), 5.29 (dd, J = 17.2, 1.6 Hz, 1H), 5.13 (dd, J = 10.1, 1.7 Hz, 1H), 4.35 – 4.07 (m, 4H), 3.62 (t, J = 5.0 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 2.60 (q, J = 8.3 Hz, 1H), 1.71 (dd, J = 7.6, 4.9 Hz, 1H), 1.64 – 1.50 (m, 3H), 1.36 – 1.16 (m, 7H), 0.92 – 0.78 (m, 3H), 0.59 – 0.46 (m, 4H), 0.09 – 0.03 (m, 89H). 13 C NMR (101 MHz, CDCl₃) δ 168.6, 166.2, 132.0, 117.5,

73.1, 67.2, 63.7, 60.4, 34.8, 30.3, 25.3, 24.4, 22.4, 19.5, 16.9, 13.1, 13.0, 12.8, 0.4, 0.1, 0.0, -0.4, -0.9, -1.0. M_n (NMR) = 1.4 kDa.

Synthesized from 1-(ethoxycarbonyl)-2-vinylcyclopropane-1-carboxylic acid and PEG 550 (5.0 mmol scale). Colorless oil, 5.23g, 88% yield. 1 **H NMR** (400 MHz, CDCl₃) δ 1 **H NMR** (400 MHz, Chloroform-d) δ 5.43 (ddd, J = 17.0, 10.1, 8.2 Hz, 1H), 5.28 (dd, J = 17.1, 1.6 Hz, 1H), 5.13 (dd, J = 10.0, 1.7 Hz, 1H), 4.33 – 4.13 (m, 4H), 3.68 (t, J = 4.9 Hz, 2H), 3.65 – 3.61 (m, 34H), 3.55 – 3.52 (m, 2H), 3.37 (s, 3H), 2.58 (q, J = 8.3 Hz, 1H), 1.70 (dd, J = 7.6, 4.9 Hz, 1H), 1.56 (dd, J = 9.0, 4.9 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). 13 C **NMR** (101 MHz, CDCl₃) δ 1169.6, 167.2, 133.0, 118.6, 71.9, 70.63, 70.60, 70.57, 70.51, 68.8, 64.6, 61.5, 59.0, 35.8, 31.3, 20.5, 14.2. M_n (NMR) = 625.

Synthesized from 1-(ethoxycarbonyl)-2-vinylcyclopropane-1-carboxylic acid and cinnamyl alcohol (2.0 mmol scale). Colorless oil, 0.49 g, 82% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.14 (m, 5H), 6.59 (d, J = 15.8 Hz, 1H), 6.24 – 6.13 (m, 1H), 5.36 (dd, J = 10.0, 8.1 Hz, 1H), 5.23 (dd, J = 17.0, 1.6 Hz, 1H), 5.07 (dd, J = 10.0, 1.6 Hz, 1H), 4.80 – 4.65 (m, 2H), 4.24 – 4.05 (m, 2H), 2.54 (dd, J = 9.0, 7.6 Hz, 1H), 1.66 (dd, J = 7.6, 4.9 Hz, 1H), 1.52 (dd, J = 9.0, 4.9 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 167.3, 136.1, 134.3, 133.0, 128.6, 128.1, 126.6, 122.7, 118.6, 66.1, 61.5, 35.9, 31.3, 20.5, 14.2. **DART-TOF-LC/MS** m/z calcd. for C₁₈H₂₄NO₄ [M+NH₄⁺] 318.1705, found 318.1705.

Synthesized from 1-(ethoxycarbonyl)-2-vinylcyclopropane-1-carboxylic acid and *trans*-4-phenylbut-3-en-1-ol (2.0 mmol scale). Colorless oil, 0.44 g, 70% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.09 (m, 5H), 6.39 (d, J = 15.9 Hz, 1H), 6.07 (dt, J = 15.7, 7.0 Hz, 1H), 5.35 (ddd, J = 16.6, 10.1, 8.3 Hz, 1H), 5.19 (dd, J = 17.0, 1.6 Hz, 1H), 5.04 (dd, J = 10.0, 1.6 Hz, 1H), 4.31 – 4.02 (m, 4H), 2.56 – 2.40 (m, 3H), 1.61 (dd, J = 7.5, 4.9 Hz, 1H), 1.47 (dd, J = 9.0, 4.9 Hz, 1H), 1.14 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 167.3, 137.2, 133.1, 132.6, 128.5, 127.3, 126.1, 125.3, 118.5, 64.7, 61.5, 35.9, 32.3, 31.2, 20.5, 14.2. **DART-TOF-LC/MS** m/z calcd. for C₁₉H₂₆NO₄ [M+NH₄⁺] 332.1862, found 332.1860.

3. Complementary Optimization of Conditions

Table S1. Single-electron oxidation of bromide salts to generate bromine radicals for the [3+2] cycloaddition of 1 and styrene. ^a

Entry	[Br]	Solvent	NMR Yield (%) ^b
1	NaBr	MeCN	0
2	KBr	MeCN	0
3	LiBr	MeCN	0
4	TBAB	MeCN	0
5	NaBr	DMSO	0
6	KBr	DMSO	0
7	LiBr	DMSO	0
8	TBAB	DMSO	0
9	NaBr	DMF	0
10	KBr	DMF	0
11	LiBr	DMF	0
12	TBAB	DMF	0
13	LiBr	acetone	0
14	TBAB	acetone	0
15	LiBr	THF	0
16	TBAB	THF	0
17	LiBr	MeOH	0
18	TBAB	MeOH	0

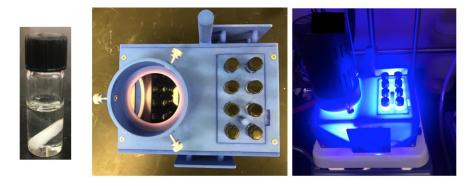
^aGeneral reaction conditions: **1** (0.2 mmol), styrene (0.4 mmol), **4** (0.5%), bromide salt (5.0 %), anhydrous solvent (1.0 mL), 34 W Kessil blue LED. ^bTrimethoxybenzene was used as an internal standard. TBAB = tetrabutylammonium bromide

Table S2. Solvent effect in the [3+2] cycloaddition of 1 and styrene using cinnamyl bromide as the precatalyst.^a

Entry	Solvent	NMR Yield (%) ^b
1	MeCN	< 5
2	acetone	< 5
3	DMF	11
4	THF	0
5	MeOH	0
6	benzene	0
7	DMSO	95
8	NMP	22
9	DCM	0
10	DCE	0
11	PhC1	< 5

^aReaction conditions: **1** (0.2 mmol), styrene (0.4 mmol), **4** (0.5%), cinnamyl bromide **3** (2.0 %), anhydrous solvent (1.0 mL), 34 W Kessil blue LED. ^bTrimethoxylbenzene was used as an internal standard.

Table S3. Examination of precatalyst (3) loading in the [3+2] cycloaddition of 1 and styrene.^a


$$\begin{array}{c} \textbf{MeO}_2\textbf{C} \\ \textbf{CO}_2\textbf{Me} \\ \textbf{Styrene (2.0 equiv)} \\ \textbf{DMSO (0.2M), N}_2 \\ \textbf{34 W blue LED, \sim30 °C, 12h} \\ \textbf{2} \\ \textbf{Ph} \\ \textbf{2} \\ \textbf{Ir(dF-CF}_3\textbf{ppy})_2(dtbpy)\textbf{PF}_6 \textbf{(4)} \\ \end{array}$$

Entry	X	NMR Yield % ^b
1	2.0	95
2	5.0	95
3	1.0	94
4	0.5	77
5	0.1	41
11	0.01	< 5

^aReaction conditions: **1** (0.2 mmol), styrene (0.4 mmol), **4** (0.5%), **3** (x mol%), anhydrous DMSO (1.0 mL), 34 W Kessil blue LED. ^bTrimethoxylbenzene was used as an internal standard.

4. General Reaction Setup and Experimental Procedures

Procedure C: In a N₂-filled glovebox, an oven-dried vial (0.5 dram) equipped with a magnet stir bar was charged with vinyl- or ethynylcycloproane (0.2 mmol, 1.0 equiv.), appropriate alkene (2.0 equiv.), 50 uL stock solution of cinnamyl bromide **3** in DMSO (40 mM for 1.0 mol%; 80 mM for 2.0 mol%), anhydrous DMSO (1.90 mL for 0.1 M; 0.90 mL for 0.2 M; 0.40 mL for 0.4 M), and 50 uL stock solution of 4CzIPN **7** in DMSO (0.2 mM for 50 ppm; 2.0 mM for 500 ppm). The vial was then tightly capped and removed out of glovebox. The reaction was placed into a photoreactor (HeptatoChem HCK 1006-01-004) equipped with a blue LED (Kessil, 34 W). The reaction was cooling by air flow that the temperature was ~30 °C). After 12 h, the reaction mixture was diluted with water (10 mL) and extracted with ether (20 mL × 3). The combined organic phase was washed with H₂O (20 mL × 3), brine (30 mL), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The residue was then subjected to silica gel chromatography for purification.

Figure S2. Reaction setup (HeptatoChem HCK 1006-01-004 with Kessil 34 W H-150 blue LED).

5. Mechanistic Study

5.1 TEMPO-trapping experiment

In a N₂-filled glovebox, an oven-dried vial (0.5 dram) equipped with a magnet stir bar was charged with cinnamyl bromide **3** (39.4 mg, 0.2 mmol), TEMPO (93.8 mg, 0.6 mmol), anhydrous DMSO (1.0 mL) and 4CzIPN **7** (1.6 mg, 0.002 mmol). The vial was then tightly capped and removed out of glovebox. The reaction was placed into a photoreactor (HeptatoChem HCK 1006-01-004) equipped with a blue LED (Kessil, 34 W). The reactor was cooling by air flow that the temperature was ~30 °C). After 2 h, an aliquot of 10 uL was taken for ESI-TOF LC/MS analysis. The reaction mixture was diluted with water (10 mL) and extracted with ether (20 mL × 3). The combined organic phase was washed with H₂O (20.0 mL × 2), brine (30 mL), dried over anhydrous Na₂SO₄, concentrated *in vacuo*. 32.0 mg (81% yield) cinnamyl bromide was recovered through silica gel chromatography.

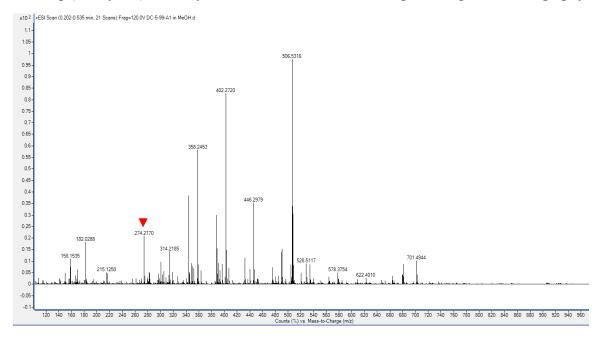
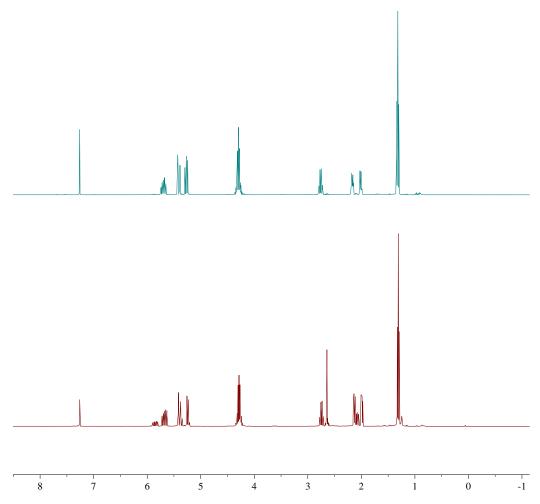


Figure S3. ESI-TOF LC/MS spectrum of aliquot taken from TEMPO-trapping experiment

5.2 Investigation of alternative precatalysts

n a N₂-filled glovebox, an oven-dried vial (0.5 dram) equipped with a magnet stir bar was charged with vinylcycloproane **1** (0.2 mmol, 1.0 equiv.), styrene (46.0 uL, 0.4 mmol), 50 uL stock solution of 7 in DMSO (0.2 mM), anhydrous DMSO (0.90 mL), and 50 uL stock solution of precatalyst in DMSO (40 mM). The vial was then tightly capped and removed out of glovebox. The reaction was placed into a photoreactor (HeptatoChem HCK 1006-01-004) equipped with a blue LED (Kessil, 34 W). The reactor was cooling by air flow that the temperature was ~30 °C). After 12 h, the vial was opened to the air and 1,3,5-trimethoxylbenzene (16.8 mg, 0.1 mmol) was added as an internal standard. An aliquot of 0.10 mL was taken for direct ¹H NMR analysis to determine the yield.


Table S4. Results of [3+2] cycloaddition of 1 and styrene using alternative precatalyst.^a

Entry	precatalyst	7	light	NMR Yield (%) ^b
1	allyl bromide	$\sqrt{}$	$\sqrt{}$	0
2	cinnamyl chloride	$\sqrt{}$	$\sqrt{}$	0
3	NBS	$\sqrt{}$	$\sqrt{}$	41
4	NBS	$\sqrt{}$	×	0
5	NBS	×	$\sqrt{}$	0
6	NBS	×	×	0
7	Br_2	$\sqrt{}$	$\sqrt{}$	26
8	Br_2	$\sqrt{}$	×	0
9	Br_2	×	$\sqrt{}$	16
10	Br_2	×	×	0

^aReaction conditions: **1** (0.2 mmol), styrene (0.4 mmol), **7** (50 ppm), precatalyst (1.0 %), anhydrous DMSO (1.0 mL), 34 W Kessil blue LED, 12h. ^bTrimethoxylbenzene was used as an internal standard.

5.3 Radical epimerization experiment

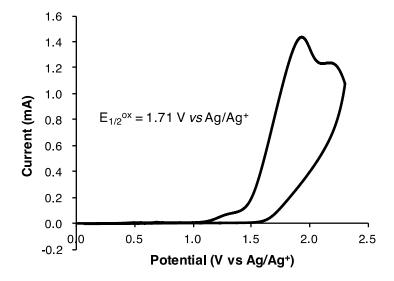
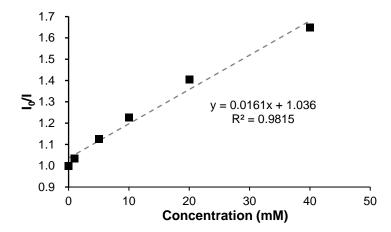

In a N₂-filled glovebox, an oven-dried vial (0.5 dram) equipped with a magnet stir bar was charged with *cis*-1-(ethoxycarbonyl)-2-vinylcyclopropane-1-carboxylic acid (36.8 mg, 0.2 mmol), 50 uL stock solution of cinnamyl bromide **3** in DMSO (40 mM), anhydrous DMSO (0.90 mL), and 50 uL stock solution of 4CzIPN **7** in DMSO (0.2 mM). The vial was then tightly capped and removed out of glovebox. The reaction was placed into a photoreactor (HeptatoChem HCK 1006-01-004) equipped with a blue LED (Kessil, 34W). The reaction was cooling by air flow that the temperature was ~30 °C). After 12 h, the reaction mixture was diluted with water (10 mL) and extracted with CH₂Cl₂ (20 mL × 3). The combined organic phase was washed with brine (30.0 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. Crude ¹H NMR was taken to determine the cis/trans ratio.

Figure S4. Comparison of ¹H NMR spectra before (teal, top) and after (bottom) radical epimerization

5.4 Cyclic voltammetry

Cyclic voltammetry (CV) was performed on an Interface 1010B Potentiostat (*Gamry Instruments*) with a scan rate of 0.10 V/s. A solution of Ag/AgNO₃ (0.01M) and 0.1 M Bu₄NPF₆ in MeCN was used as the reference electrode (*Gamry Instruments*, part no. 930-00059). A 0.1 M Bu₄NPF₆ in MeCN was used as the electrolyte for cinnamyl bromide solution (0.05M). A platinum disk was used for the working electrode (*Gamry Instruments*, part no. 932-00024) and a platinum wire was used as the counter electrode (*Gamry Instruments*, part no. 990-00193).


Figure S5. CV spectrum of cinnamyl bromide ($E_{1/2}^{ox} = 1.71 \text{ vs Ag/Ag}^+ = 2.01 \text{ V vs SCE}$)

5.5 Stern-Volmer quenching experiment

Stern-Volmer experiments were operated on pectrofluorometer FS5 (*Edinburgh Instruments*) and with different solutions containing 10.0 uM 4CzIPN 7 in DMSO and x mM $\bf 3$ ((x = 1.5, 10, 20, 40)), or vinylcyclopropane $\bf 1$ (x = 10, 20, 30, 50), or styrene (x = 10, 20, 30, 50) in DMSO under irradiation at 380 nm. The luminescence was measured at 560 nm. Averaged data from three different runs were used for graphical representation.

Table S5. Luminescence quenching of 4CzIPN 7 at variable concentration of 3

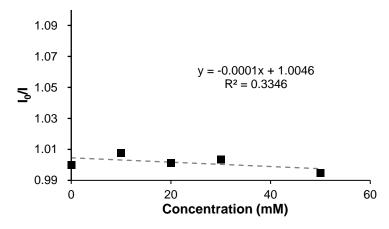

3a (mM)	0	1	5	10	20	40
I_0/I	1.0000	1.0344	1.1250	1.2273	1.4040	1.6488

Figure S6. Stern-Volmer plots of 4CzIPN 7 at variable concentration of 3.

Table S6. Luminescence quenching of 4CzIPN **7** at variable concentration of vinylcyclopropane **1**

1 (mM)	0	10	20	30	50
I_0/I	1.0000	1.0076	1.0013	1.0036	0.9949

Figure S7. Stern-Volmer plots of 4CzIPN **7** at variable concentration of vinylcyclopropane **1**.

Table S7. Luminescence quenching of 4CzIPN 7 at variable concentration of styrene

styrene (mM)	0	10	20	30	50
I_0/I	1.0000	1.0076	1.0013	1.0036	0.9949

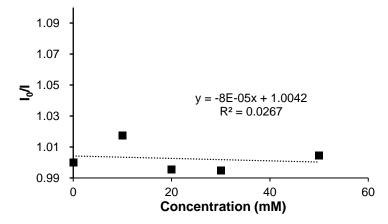


Figure S8. Stern-Volmer plots of 4CzIPN 7 at variable concentration of styrene.

5.6 "On/off" experiment

The reaction was set up in a N₂-filled glovebox according to the **Procedure C**. The reaction mixture was irradiated for an hour. An aliquot of 0.10 mL was taken from the reaction mixture and injected into a vial containing 0.50 mL of CDCl₃ containing trimethoxylbenzene (4.2 mg) as the internal standard. The yield of product was determined by crude ¹H NMR analysis. The reaction mixture was then wrapped by aluminum foil and re-subject to 34 W Kessil Blue LED. The yields later on were determined in the same way after some time light on or off.

Table S8. Results of "on/off" experiment

Entry	Time (h)	NMR Yield (%) ^a
1	0	0
2	1	15
3	2 (off)	15
4	3	27
5	4 (off)	27
6	6	46
7	7 (off)	46
8	9	60

^aTrimethoxybenzene was used as an internal standard.

5.7 Determination of quantum yield (Φ)

In a N₂-filled glovebox, an oven-dried J-Young NMR tube equipped with a micro stir bar was charged with vinylcyclopropane **1** (18.4 mg, 0.10 mmol), styrene (23.0 uL, 0.20 mmol), 25 uL stock solution of cinnamyl bromide **3** in DMSO (40 mM), anhydrous DMSO (0.45 mL), and 25 uL stock solution of 4CzIPN **7** in DMSO (0.2 mM). The sealed NMR tube was removed out of the glovebox and irradiated at 419 nm. After 8 h (t = 28800 s), 8.0 mg trimethoxylbenzene was added to the NMR tube. An aliquot (0.050 mL) was then taken and injected into a HPLC vial containing 0.55 mL of CDCl₃ for direct ¹H-NMR analysis. The NMR yield was determined to be 5.2% (Fig. S8).

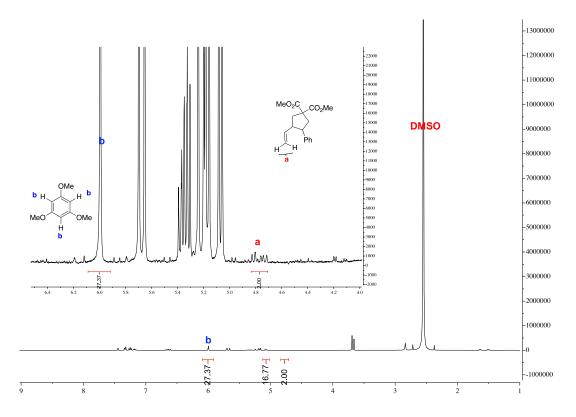


Figure S9. Crude ¹H NMR analysis.

The quantum yield (Φ) can be calculated by using the equation as shown below:

$$\Phi = \frac{\text{mol product}}{\text{photon flux} \cdot \text{f} \cdot \text{t}}$$

The photon flux at 419 nm for the aforementioned setup was previously determined to be 5.2×10^{-9} einstein/s.

Fraction of light absorbed (f) was calculated by $f = 1 - 10^{-A}$. A is the absorbance of PC in a specific solvent and concentration. In this experiment, the concentration of 4CzIPN was 10 uM. A was determined to be 0.09146 at 419 nm for a 10 uM solution of 4CzIPN in DMSO (Fig. S10), therefore, f = 0.1899.

The quantum yield was calculated by:

$$\Phi = \frac{\text{mol product}}{\text{photon flux} \cdot \text{f} \cdot \text{t}}$$
$$= \frac{5.2\% \times 0.1/1000}{5.2 \times 10^{-9} \times 0.1899 \times 28800} = 18.3\%$$

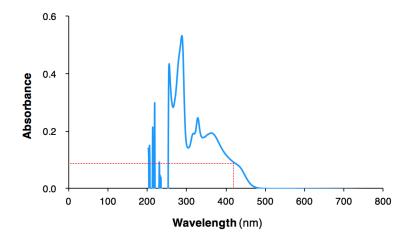


Figure S10. UV-Vis Spectrum of 4CZIPN in DMSO (10 uM)

6. Characterization of Products

MeO₂C
$$CO_2Me$$
 2 $(trans: cis = 70:30)$

Prepared according to *Procedure C*. Colorless oil (50.4 mg, 88% yield) as a mixture of diastereomers (trans : cis = 70:30). $R_f = 0.35$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 6.95 (m, 5H), 5.57 (ddd, J = 16.8, 10.8, 7.0 Hz, 0.30H), 5.29 (ddd, J = 17.1, 10.3, 8.0 Hz, 0.70H), 4.90 – 4.58 (m, 2.0H), 3.80 – 3.55 (m, 6.0H), 3.37 (dt, J = 10.7, 7.5 Hz, 0.70H), 2.94 (p, J = 7.3 Hz, 0.70H), 2.84 – 2.43 (m, 3.30H), 2.38 – 2.21 (m, 1.0H), 2.15 – 2.03 (m, 0.30H).

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 173.0, 172.9, 172.7, 141.5, 140.8, 138.7, 138.2, 128.4, 128.3, 128.1, 127.6, 126.6, 126.3, 115.6, 115.4, 59.0, 58.1, 52.9, 52.8, 51.5, 50.9, 48.0, 47.3, 42.5, 40.3, 39.0, 38.1.

DART-TOF LC/MS m/z calcd. for C₁₇H₂₁O₄ [M+H⁺] 289.1440, found 289.1442.

$$MeO_2C$$
 CO_2Me 8 (trans: cis = 70:30)

Prepared according to **Procedure C**. Colorless oil (60.1 mg, 87% yield) as a mixture of diastereomers (trans: cis = 70.30). $R_f = 0.45$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 2.0H), 7.15 (d, J = 8.3 Hz, 0.60H), 7.08 (d, J = 8.3 Hz, 1.40H), 5.73 – 5.60 (m, 0.30H), 5.39 (ddd, J = 17.1, 10.3, 7.9 Hz, 0.70H), 4.99 – 4.80 (m, 2.0H), 3.82 – 3.70 (m, 6.0H), 3.41 (dt, J = 10.5, 7.4 Hz, 0.70H), 3.05 – 2.96 (m, 0.70H), 2.92 – 2.52 (m, 3.30H), 2.46 – 2.27 (m, 1.0H), 2.21 – 2.11 (m, 0.30H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.2, 173.0, 173.0, 172.7, 149.3, 149.0, 139.0, 138.4, 138.3, 137.6, 128.0, 127.2, 125.3, 124.9, 115.5, 115.3, 59.0, 58.1, 52.9, 52.8, 50.8, 50.4, 47.6, 47.2, 42.6, 40.3, 38.9, 38.2, 34.4, 34.4, 31.4.

DART-TOF LC/MS m/z calcd. for C₂₁H₂₉O₄ [M+H⁺] 345.2066, found 345.2067.

Prepared according to **Procedure C**. Colorless oil (67.3 mg, 92% yield) as a mixture of diastereomers (trans : cis = 70:30). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (dd, J = 8.4, 6.5 Hz, 2.0H), 7.09 (d, J = 8.5 Hz, 0.60H), 7.04 – 6.98 (m, 1.40H), 5.60 (ddd, J = 17.3, 10.3, 7.1 Hz, 0.30H), 5.33 (ddd, J = 17.1, 10.3, 8.1 Hz, 0.70H), 4.94 – 4.79 (m, 2.0H), 3.90 – 3.70 (m, 6.0H), 3.39 (dt, J = 10.7, 7.5 Hz, 0.70H), 3.04 – 2.93 (m, 0.70H), 2.87 – 2.47 (m, 3.30H), 2.40 – 2.26 (m, 1.0H), 2.22 – 2.09 (m, 0.30H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 172.9, 172.8, 172.6, 140.6, 139.8, 138.3, 137.8, 131.5, 131.1, 130.1, 129.4, 120.3, 120.1, 116.0, 115.8, 58.9, 58.1, 53.0, 52.9, 52.9, 52.8, 51.0, 50.9, 47.5, 47.3, 42.2, 40.3, 39.0, 38.1.

DART-TOF LC/MS m/z calcd. for C₁₇H₁₉BrO₄ [M+H⁺] 367.0545, found 367.0541.

Prepared according to **Procedure C**. Colorless oil (52.7 mg, 86% yield) as a mixture of diastereomers (trans: cis = 72.28). $R_f = 0.35$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 - 6.90 (m, 4.0H), 5.59 (d, J = 17.3 Hz, 0.28H), 5.34 (ddd, J = 17.1, 10.3, 8.1 Hz, 0.72H), 4.94 - 4.77 (m, 2.0H), 3.90 - 3.65 (m, 6.0H), 3.41 (dt, J = 10.8, 7.5 Hz, 0.72H), 3.05 - 2.93 (m, 0.72H), 2.89 - 2.47 (m, 2.28H), 2.40 - 2.26 (m, 1.0H), 2.22 - 2.10 (m, 0.28H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 172.9, 172.8, 172.6, 162.8, 162.6, 160.4, 160.2, 138.5, 138.0, 137.2, 137.1, 136.4, 136.4, 129.7, 129.6, 129.0, 128.9, 115.8, 115.6, 115.3, 115.1, 114.9, 114.7, 58.9, 58.0, 52.9, 52.8, 52.8, 51.1, 50.7, 47.4, 47.3, 42.4, 40.2, 38.9, 38.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.6, -117.0.

DART-TOF LC/MS m/z calcd. for C₁₇H₁₉FO₄ [M+H⁺] 307.1346, found 307.1349.

MeO₂C
$$CO_2$$
Me

11

(trans: cis = 72:28)

Prepared according to **Procedure C**. Colorless oil (49.6 mg, 70% yield) as a mixture of diastereomers (trans: cis = 72:28). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.30 (m, 4H), 5.62 (ddd, J = 17.4, 10.4, 7.2 Hz, 0.28H), 5.32 (ddd, J = 17.1, 10.3, 8.2 Hz, 0.72H), 4.96 – 4.76 (m, 2.0H), 3.90 – 3.65 (m, 6.0H), 3.55 – 3.42 (m, 0.72H), 3.17 – 3.00 (m, 0.72H), 2.98 – 2.86 (m, 0.28H), 2.85 – 2.52 (m, 3.0H), 2.45 – 2.30 (m, 1.0H), 2.25 – 2.12 (m, 0.28H).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 172.8, 172.7, 172.5, 142.6, 141.7, 138.2, 137.5, 131.7, 131.7, 131.0, 130.9, 130.8, 130.5, 130.5, 130.2, 129.9, 128.8, 128.5, 125.6, 125.1, 125.1, 125.0, 125.0, 124.4, 124.4, 124.3, 123.5, 123.4, 123.4, 123.2, 123.2, 123.1,

123.1, 122.9, 116.2, 116.1, 58.9, 58.1, 53.0, 52.9, 52.8, 51.1, 51.0, 47.9, 47.3, 42.2, 40.3, 38.9, 37.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.60, -62.61.

DART-TOF LC/MS m/z calcd. for C₁₈H₁₉F₃O₄ [M+H⁺] 357.1314, found 357.1314.

MeO₂C
$$CO_2$$
Me

12

Me (trans: cis = 77:23)

Prepared according to **Procedure C**. Colorless oil (53.9 mg, 89% yield) as a mixture of diastereomers (trans: cis = 72:28). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 – 7.06 (m, 4.0H), 5.63 (ddd, J = 17.4, 10.4, 7.2 Hz, 0.23H), 5.31 (ddd, J = 17.0, 10.3, 8.3 Hz, 0.77H), 4.97 – 4.70 (m, 2.0H), 3.83 – 3.72 (m, 6.0H), 3.58 (ddd, J = 11.0, 8.3, 7.1 Hz, 0.77H), 3.23 – 3.03 (m, 1.0H), 2.95 – 2.55 (m, 3.0H), 2.39 – 2.27 (m, 3.77H), 2.13 (ddd, J = 13.8, 11.3, 2.4 Hz, 0.46H).

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 173.0, 173.0, 172.7, 139.6, 138.6, 138.5, 138.3, 136.5, 136.4, 130.2, 130.1, 126.7, 126.3, 126.2, 126.1, 125.7, 125.6, 115.6, 114.9, 58.8, 58.0, 52.9, 52.8, 50.0, 46.6, 45.0, 43.9, 42.1, 40.0, 39.1, 38.1, 20.1, 19.8.

DART-TOF LC/MS m/z calcd. for $C_{18}H_{23}O_4$ [M+H⁺] 303.1596, found 303.1595.

The boric acid product **S10** was prepared according to *Procedure C*. To a solution of crude **S10** in anhydrous ether (10.0 mL), pinacol (23.6 mg, 0.2 mmol, 1.0 equiv) was added. The reaction was stirred at room temperature for 12h. The solvent was then removed under vacuum, and the residue was purified by silica gel chromatography to give **13** as a colorless oil (69.7 mg, 84% yield, trans : cis = 65:35). $R_f = 0.45$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.66 (m, 2.0H), 7.24 – 7.20 (m, 0.70H), 7.17 – 7.12 (m, 1.30H), 5.62 (ddd, J = 16.7, 10.7, 7.1 Hz, 0.35H), 5.34 (ddd, J = 17.1, 10.3, 8.0 Hz, 0.65H), 4.92 – 4.74 (m, 2.0H), 3.95 – 3.65 (m, 6.0H), 3.50 – 3.40 (m, 0.65H), 3.10 – 2.98 (m, 0.65H), 2.88 (td, J = 11.1, 7.6 Hz, 0.35H), 2.81 – 2.53 (m, 3.0H), 2.44 – 2.30 (m, 1.0H), 2.22 – 2.12 (m, 0.35H), 1.32 (s, 12.0H).

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 172.9, 172.8, 172.6, 144.8, 144.0, 138.6, 138.0, 134.9, 134.6, 127.8, 127.1, 115.7, 115.5, 83.7, 59.0, 58.1, 52.9, 52.8, 52.8, 51.7, 50.9, 48.2, 47.3, 42.3, 40.3, 39.0, 37.9, 24.9, 24.9, 24.8.

DART-TOF LC/MS m/z calcd. for $C_{23}H_{32}BO_6$ [M+H⁺] 415.2292, found 415.2292.

Prepared according to *Procedure C*. Colorless oil (70.1 mg, 96% yield). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 6.75 (m, 10H), 5.37 (ddd, J = 17.1, 10.3, 8.1 Hz, 1H), 5.03 (dd, J = 17.2, 1.4 Hz, 1H), 4.92 – 4.81 (m, 1H), 3.69 (s, 3H), 3.56 (dd, J = 8.6, 6.4 Hz, 1H), 3.47 (s, 3H), 3.44 (d, J = 14.7 Hz, 1H), 2.89 (d, J = 14.7 Hz, 1H), 2.59 (dd, J = 13.8, 6.4 Hz, 1H), 2.14 (dd, J = 13.8, 9.2 Hz, 1H).

¹³C **NMR** (101 MHz, CDCl₃) δ 172.7, 172.6, 148.2, 144.9, 138.5, 129.0, 128.1, 127.6, 127.4, 126.1, 126.0, 116.1, 58.1, 57.8, 53.0, 52.8, 50.2, 46.5, 38.7.

DART-TOF LC/MS m/z calcd. for C₂₃H₂₅O₄ [M+H]⁺ 365.1753, found 365.1758.

$$MeO_2C$$
 CO_2Me 15 (trans: $cis = 60:40$)

Prepared according to **Procedure C**. Colorless oil (50.0 mg, 83% yield) as a mixture of diastereomers (trans: cis = 60.40). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.01 (m, 5.0H), 5.64 (ddd, J = 17.4, 10.5, 7.0 Hz, 0.60H), 5.11 (ddd, J = 17.1, 10.1, 8.5 Hz, 0.40H), 4.99 – 4.72 (m, 2.0H), 3.75 – 3.61 (m, 6.0H), 3.04 – 2.89 (m, 1.0H), 2.72 – 2.58 (m, 1.0H), 2.58 – 2.33 (m, 2.60H), 2.22 (dd, J = 13.8, 8.6 Hz, 0.40H), 1.33 (s, 1.20H), 1.14 (d, J = 0.8 Hz, 1.80H).

¹³C NMR (101 MHz, CDCl₃) δ 173.4, 173.4, 173.0, 172.8, 147.7, 146.0, 138.6, 136.6, 128.2, 127.8, 127.3, 126.1, 126.0, 125.8, 116.5, 115.6, 58.7, 57.5, 55.0, 53.0, 53.0, 52.9, 52.9, 52.8, 49.9, 49.5, 48.8, 45.8, 39.2, 38.3, 29.4, 21.8.

DART-TOF LC/MS m/z calcd. for C₁₈H₂₃O₄ [M+H⁺] 303.1596, found 303.1602.

Prepared according to **Procedure C**. Colorless oil (30.2 mg, 52% yield) as a mixture of diastereomers (trans : cis = 67:33). $R_f = 0.25$ (30% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.44 (m, 1.0H), 7.63 – 7.48 (m, 1.0H), 7.17 – 7.01 (m, 2.0H), 5.67 (ddd, J = 17.1, 10.4, 7.5 Hz, 0.33H), 5.33 (ddd, J = 17.1, 10.2, 8.3 Hz, 0.67H), 4.94 – 4.69 (m, 2.0H), 3.85 – 3.69 (m, 6.0H), 3.56 (dd, J = 8.0, 7.9 Hz, 0.67H), 3.18 – 2.68 (m, 3.33H), 2.62 – 2.43 (m, 1.67H), 2.13 (dd, J = 13.7, 10.7 Hz, 0.33H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 173.1, 172.6, 172.6, 160.8, 160.8, 149.4, 148.9, 138.9, 138.1, 136.2, 135.7, 123.3, 123.0, 121.7, 121.3, 115.5, 115.4, 59.6, 58.4, 53.3, 52.9,

DART-TOF LC/MS m/z calcd. for $C_{16}H_{20}NO_4$ [M+H+] 290.1392, found 290.1393.

52.8, 52.8, 52.7, 50.3, 50.2, 47.7, 40.9, 40.1, 39.1, 37.8.

Prepared according to **Procedure C**. Colorless oil (54.8 mg, 91% yield) as a mixture of diastereomers (trans: cis = 66:34). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 – 7.05 (m, 4.0H), 5.95 – 5.79 (m, 0.34H), 5.35 (ddd, J = 17.1, 10.1, 8.6 Hz, 0.66H), 5.12 – 4.88 (m, 2.0H), 4.01 – 3.71 (m, 6.68H), 3.66 (s, 1.0H), 3.49 (dd, J = 8.5, 7.1 Hz, 0.34H), 3.08 (ddd, J = 16.7, 9.7, 7.9 Hz, 1.0H), 2.91 – 2.72 (m, 1.66H), 2.67 – 2.55 (m, 0.66H), 2.28 – 1.94 (m, 1.66H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 172.3, 171.2, 170.8, 145.2, 142.7, 142.0, 141.7, 140.6, 138.9, 126.9, 126.9, 126.8, 126.7, 125.9, 124.4, 124.1, 123.8, 115.2, 114.7, 64.1, 62.9, 56.5, 52.9, 52.9, 52.7, 52.5, 52.3, 50.2, 50.0, 47.8, 45.5, 41.8, 37.9, 35.9, 34.9.

DART-TOF LC/MS m/z calcd. for $C_{18}H_{21}O_4$ [M+H⁺] 301.1440, found 301.1442.

$$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{CO}_2\text{Me} \\ \\ \text{Me} \end{array}$$
 (cis: trans = 80:20)

Prepared according to **Procedure C**. Colorless oil (19.0 mg, 32% yield) as a mixture of diastereomers (cis: trans = 80:20). R_f = 0.35 (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.87 – 5.60 (m, 1.0H), 5.17 – 5.05 (m, 2.0H), 3.93 – 3.52 (m, 6.0H), 3.40 (d, J = 15.4 Hz, 0.20H), 2.99 – 2.87 (m, 0.80H), 2.83 – 2.57 (m, 2.40H), 2.52 – 2.18 (m, 0.80H), 2.04 (dd, J = 14.0, 9.4 Hz, 0.80H), 1.95 (s, 2.40H), 1.92 (s, 0.60H), 1.52 (s, 0.60H), 1.37 (s, 2.40H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 172.4, 172.4, 172.3, 170.5, 170.3, 136.0, 134.9, 118.1, 117.1, 89.2, 88.6, 57.3, 57.1, 55.5, 52.9, 52.8, 52.7, 51.9, 45.1, 43.5, 38.2, 36.0, 22.0, 22.0, 21.2, 20.0.

DART-TOF LC/MS m/z calcd. for $C_{14}H_{24}NO_{6}$ [M+NH₄⁺] 302.1604, found 302.1604.

$$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{CO}_2\text{Me} \\ \\ \text{N} \\ \text{O} \end{array} \qquad \begin{array}{c} \textbf{19} \\ \text{(trans: cis = 95:5)} \end{array}$$

Prepared according to **Procedure C**. Colorless oil (45.4 mg, 77% yield) as a mixture of diastereomers (trans: cis = 95.5). $R_f = 0.30$ (50% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃) δ 5.77 – 5.62 (m, 1H), 5.07 – 4.91 (m, 2H), 4.59 (q, J = 8.0 Hz, 1H), 3.68 (d, J = 6.3 Hz, 6H), 3.32 (dt, J = 9.3, 7.0 Hz, 1H), 3.24 (dt, J = 9.3, 6.8 Hz, 1H), 2.90 (dddd, J = 9.7, 6.9, 2.8, 1.5 Hz, 1H), 2.60 (ddd, J = 14.4, 8.1, 1.0 Hz, 1H), 2.49 (ddd, J = 13.8, 7.1, 0.9 Hz, 1H), 2.36 – 2.23 (m, 3H), 2.16 (dd, J = 13.7, 9.6 Hz, 1H), 1.93 – 1.78 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 175.2, 172.1, 172.0, 136.0, 116.5, 58.2, 53.7, 53.0, 52.9, 45.7, 45.3, 37.7, 35.5, 31.1, 18.3.

DART-TOF LC/MS m/z calcd. for C₁₅H₂₃NO₅ [M+H]⁺ 296.1498, found 296.1495.

MeO₂C
$$CO_2$$
Me CI OH (cis: trans = 57:43)

Prepared according to *Procedure C*. Colorless oil (28.3 mg, 51% yield) as a mixture of diastereomers (cis: trans = 57:43). $R_f = 0.35$ (50% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.82 - 5.66 (m, 1.0H), 5.23 - 5.00 (m, 2.0H), 3.79 - 3.48 (m, 8.0H), 3.14 - 2.53 (m, 4.0H), 2.38 (dd, J = 13.5, 7.0 Hz, 0.43H), 2.22 - 2.06 (m, 1.57H).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 172.5, 171.9, 171.6, 135.4, 134.2, 118.6, 118.2, 77.4, 77.0, 76.7, 67.8, 67.0, 57.4, 57.0, 54.9, 53.2, 53.2, 53.1, 53.0, 50.6, 46.5, 44.9, 38.2, 37.6.

DART-TOF LC/MS m/z calcd. for C₁₂H₁₈ClO₅ [M+H⁺] 277.0843, found 277.0846.

MeO₂C
$$CO_2Me$$

21

(cis: trans = 50:50)

Prepared according to **Procedure C**. Colorless oil (48.6 mg, 85% yield) as a mixture of diastereomers (cis: trans = 50:50). $R_f = 0.40$ (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.85 – 5.66 (m, 0.50H), 5.66 – 5.55 (m, 0.50H), 5.12 – 4.94 (m, 2H), 3.82 – 3.48 (m, 9.0H), 3.12 – 2.98 (m, 0.50H), 2.91 (d, J = 14.4 Hz, 0.50H), 2.82 (d, J = 14.3 Hz, 0.50H), 2.57 – 2.44 (m, 1.50H), 2.40 – 2.29 (m, 1.0H), 2.28 – 2.11 (m, 1.0H), 1.26 (s, 1.50H), 1.07 (s, 1.50H).

¹³C NMR (101 MHz, CDCl₃) δ 176.5, 175.6, 173.5, 172.5, 172.1, 136.0, 135.7, 117.1, 116.8, 58.7, 57.8, 54.6, 53.0, 53.0, 52.9, 52.9, 52.7, 52.1, 51.9, 51.5, 49.7, 44.8, 44.7, 38.9, 37.5, 22.7, 18.9.

DART-TOF LC/MS m/z calcd. for C₁₄H₂₁O₆ [M+H⁺] 285.1338, found 285.1334.

MeO₂C
$$CO_2$$
Me $\mathbf{22}$ CO_2 Bn $\mathbf{CO_2}$ Bn

Prepared according to **Procedure C**. Colorless oil (64.7 mg, 90% yield) as a mixture of diastereomers (cis: trans = 54.46). R_f = 0.40 (50% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 5.74 (ddd, J = 17.4, 10.5, 7.2 Hz, 0.46H), 5.65 – 5.53 (m, 0.54H), 5.16 – 4.94 (m, 4.0H), 3.81 – 3.55 (m, 6.0H), 3.15 – 3.04 (m, 0.46H), 2.94 (dd, J = 32.8, 14.4 Hz, 1.0H), 2.62 – 2.48 (m, 1.54H), 2.44 – 2.14 (m, 2.0H), 1.32 (s, 1.62H), 1.13 (s, 1.38H).

¹³C NMR (101 MHz, CDCl₃) δ 175.9, 175.1, 173.5, 172.5, 172.4, 171.9, 135.9, 135.8, 135.6, 128.5, 128.4, 128.2, 128.1, 127.9, 117.2, 117.0, 66.6, 66.4, 58.7, 57.9, 54.7, 53.0, 53.0, 52.9, 52.9, 52.7, 51.9, 49.8, 44.8, 44.7, 38.9, 37.6, 22.9, 19.1.

DART-TOF LC/MS m/z calcd. for $C_{20}H_{25}O_6$ [M+H⁺] 361.1651, found 361.1652.

MeO₂C
$$CO_2$$
Me

23
(cis: trans = 66:34)

Prepared according to **Procedure C**. Colorless oil (59.6 mg, 85% yield) as a mixture of diastereomers (cis: trans = 66:34). $R_f = 0.40$ (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (dd, J = 1.9, 0.8 Hz, 1.0H), 6.39 – 6.29 (m, 2.0H), 5.70 (ddd, J = 17.4, 10.5, 7.2 Hz, 0.34H), 5.60 – 5.48 (m, 0.66H), 5.10 – 4.91 (m, 4.0H), 3.70 (dd, J = 8.2, 1.9 Hz, 6.0H), 3.10 – 3.00 (m, 0.34H), 2.95 (d, J = 14.4 Hz, 0.66H), 2.84 (d, J = 14.3 Hz, 0.34H), 2.60 – 2.44 (m, 1.66H), 2.39 – 2.30 (m, 1.0H), 2.27 – 2.12 (m, 1.0H), 1.27 (s, 1.98H), 1.08 (s, 1.02H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 174.8, 173.5, 172.4, 172.4, 171.9, 149.5, 149.4, 143.1, 143.0, 135.8, 135.5, 117.1, 117.0, 110.6, 110.5, 110.4, 58.7, 58.4, 58.0, 57.9, 54.7, 53.0, 53.0, 52.9, 52.7, 52.0, 49.8, 44.7, 44.6, 38.9, 37.5, 22.8, 18.9.

DART-TOF LC/MS m/z calcd. for C₁₈H₂₃O₇ [M+H⁺] 351.1444, found 351.1449.

MeO₂C
$$CO_2$$
Me

24
(cis: trans = 55:45)

Prepared according to *Procedure C*. Colorless oil (50.7 mg, 82% yield) as a mixture of diastereomers (cis: trans = 55:45). $R_f = 0.45$ (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 6.12 – 5.48 (m, 1.0H), 5.40 – 4.94 (m, 4.0H), 4.59 – 4.45 (m, 2.0H), 3.78 – 3.63 (m, 6.0H), 3.14 – 3.02 (m, 0.45H), 2.94 (d, J = 14.4 Hz, 0.55H), 2.86 (d, J = 14.3 Hz, 0.45H), 2.61 – 2.46 (m, 1.55H), 2.42 – 2.30 (m, 1.0H), 2.29 – 2.11 (m, 1.0H), 1.29 (s, 1.65H), 1.10 (s, 1.35H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 174.8, 173.5, 172.4, 172.4, 172.0, 136.0, 135.7, 132.1, 118.2, 118.0, 117.2, 116.9, 65.4, 65.2, 58.7, 57.9, 54.6, 53.0, 52.9, 52.9, 52.7, 51.9, 49.7, 44.8, 44.7, 39.0, 37.5, 22.8, 19.0.

DART-TOF LC/MS m/z calcd. for $C_{16}H_{23}O_6$ [M+H⁺] 311.1495, found 311.1491.

Me
$$O_2$$
C CO_2 Me

25

(cis: trans = 58:42)

Prepared according to **Procedure C**. Colorless oil (58.6 mg, 90% yield) as a mixture of diastereomers (cis: trans = 58:42). $R_f = 0.30$ (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.81 – 5.55 (m, 1.0H), 5.13 – 4.99 (m, 2.0H), 4.39 (ddd, J = 12.3, 4.6, 3.0 Hz, 0.42H), 4.31 (dd, J = 12.2, 3.1 Hz, 0.58H), 3.90 (ddd, J = 12.3, 6.1, 1.5 Hz, 0.42H), 3.81 (ddd, J = 12.3, 6.4, 0.9 Hz, 0.58H), 3.74 – 3.67 (m, 6.0H), 3.21 – 2.73 (m, 3.40H), 2.67 – 2.46 (m, 2.60H), 2.42 – 2.13 (m, 2.0H), 1.28 (s, 1.74H), 1.09 (s, 1.26H).

¹³C NMR (101 MHz, CDCl₃) δ 175.8, 175.7, 174.9, 174.8, 173.4, 172.4, 172.0, 171.9, 135.8, 135.6, 117.3, 117.1, 117.0, 65.3, 65.2, 65.1, 65.1, 58.6, 57.9, 54.5, 54.5, 53.1, 53.0, 52.9, 52.9, 52.8, 52.7, 52.0, 52.0, 49.7, 49.2, 49.1, 49.1, 44.8, 44.7, 44.6, 44.6, 44.4, 44.4, 38.8, 38.8, 37.5, 22.8, 22.8, 19.1, 19.0.

DART-TOF LC/MS m/z calcd. for $C_{16}H_{26}NO_7$ [M+NH₄⁺] 344.1709, found 344.1705.

MeO₂C
$$CO_2$$
Me $\mathbf{26}$ (trans: cis = 76:24)

Prepared according to **Procedure C**. Colorless oil (39.8 mg, 74% yield) as a mixture of diastereomers (trans : cis = 76:24). $R_f = 0.30$ (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.82 - 5.56 (m, 1.0H), 5.16 - 4.90 (m, 2.0H), 3.89 - 3.52 (m, 9.0H), 3.17 - 2.79 (m, 1.76H), 2.74 - 2.31 (m, 4.0H), 1.97 (dd, J = 13.6, 10.8 Hz, 0.24H).

¹³C NMR (101 MHz, CDCl₃) δ 174.0, 173.6, 172.9, 172.3, 172.0, 171.8, 138.3, 136.6, 116.5, 115.9, 59.3, 58.7, 52.9, 52.9, 52.8, 51.8, 51.5, 49.5, 48.0, 47.5, 45.8, 39.9, 38.6, 37.4, 35.9.

DART-TOF LC/MS m/z calcd. for $C_{13}H_{19}O_6$ [M+H⁺] 271.1182, found 271.1180.

MeO₂C
$$CO_2$$
Me

27

(trans: cis = 70:30)

Prepared according to *Procedure C*. Colorless oil (33.3 mg, 58% yield) as a mixture of diastereomers (trans : cis = 70:30). $R_f = 0.35$ (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.84 – 5.49 (m, 1.0H), 5.24 – 4.96 (m, 2.0H), 4.01 – 3.55 (m, 9.0H), 3.28 – 2.69 (m, 3.70H), 2.57 (dd, J = 13.6, 7.7 Hz, 0.30H), 2.51 – 2.42 (m, 0.30H), 2.24 (dd, J = 13.7, 10.0 Hz, 0.70H).

¹³C **NMR** (101 MHz, CDCl₃) δ 171.9, 171.5, 171.1, 171.0, 169.9, 169.8, 169.6, 169.6, 133.8, 133.7, 132.2, 132.1, 119.1, 118.6, 103.7, 103.1, 101.8, 101.1, 57.9, 57.9, 57.8, 53.2, 53.2, 53.1, 53.0, 52.8, 52.7, 52.4, 52.2, 52.0, 44.1, 43.9, 42.8, 42.6, 37.6, 37.6, 37.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -149.0, -170.0.

DART-TOF LC/MS m/z calcd. for C₁₃H₁₈FO₆ [M+H⁺] 289.1087, found 289.1086.

MeO₂C
$$CO_2$$
Me 28 (trans: cis = 65:35)

Prepared according to **Procedure C**. Colorless oil (37.0 mg, 73% yield) as a mixture of diastereomers (trans: cis = 65:35). $R_f = 0.30$ (30% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃) δ 5.71 (ddd, J = 17.0, 10.2, 7.6 Hz, 0.35H), 5.59 (ddd, J = 17.0, 10.1, 9.2 Hz, 0.65H), 5.15 – 4.96 (m, 2.0H), 3.94 – 3.50 (m, 6.0H), 3.22 (td, J = 8.6, 7.1 Hz, 0.65H), 3.08 – 2.96 (m, 0.65H), 2.86 – 2.72 (m, 0.65H), 2.67 – 2.50 (m, 1.35H), 2.48 – 2.22 (m, 2.35H), 2.12 (s, 1.05H), 2.08 (s, 1.95H), 2.02 – 1.89 (m, 0.35H).

¹³C NMR (101 MHz, CDCl₃) δ 208.3, 208.2, 172.9, 172.4, 172.0, 171.9, 139.1, 137.0, 116.6, 116.1, 59.0, 58.7, 57.2, 55.4, 52.9, 52.9, 52.8, 47.0, 45.8, 40.3, 39.4, 36.4, 34.8, 31.0, 30.0.

DART-TOF LC/MS m/z calcd. for C₃₄H₁₉O₅ [M+H⁺] 255.1232, found 255.1233.

MeO₂C
$$CO_2$$
Me CO_2 H (trans: cis = 50:50)

Prepared according to **Procedure C**. Colorless oil (48.7 mg, 90% yield) as a mixture of diastereomers (trans: cis = 50.50). $R_f = 0.40$ (10% MeOH in DCM).

¹**H NMR** (400 MHz, CDCl₃) δ 11.63 (brs, 1.0H), 5.93 - 5.54 (m, 1.0H), 5.19 - 4.98 (m, 2.0H), 3.88 - 3.60 (m, 6.0H), 3.13 - 3.03 (m, 0.50H), 2.95 (d, J = 14.4 Hz, 0.50H), 2.88 (d, J = 14.4 Hz, 0.50H), 2.55 (ddd, J = 12.4, 9.2, 4.8 Hz, 1.50H), 2.44 - 2.33 (m, 1.0H), 2.31 - 2.13 (m, 1.0H), 1.28 (s, 1.50H), 1.10 (s, 1.50H).

¹³C NMR (101 MHz, CDCl₃) δ 182.7, 181.9, 173.4, 172.4, 172.4, 171.9, 135.6, 135.4, 117.7, 117.2, 58.8, 57.9, 54.7, 53.0, 53.0, 53.0, 52.8, 52.8, 51.7, 49.6, 44.8, 44.6, 39.0, 37.6, 22.6, 18.8.

DART-TOF LC/MS m/z calcd. for $C_{13}H_{20}O_6$ [M+H⁺] 271.1182, found 271.1185.

MeO₂C
$$CO_2$$
Me

30
(cis: trans = 60:40)

Prepared according to **Procedure C**. Colorless oil (43.8 mg, 86% yield) as a mixture of diastereomers (cis: trans = 60:40). R_f = 0.40 (20% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 0.40H), 9.43 (s, 0.60H), 5.76 (ddd, J = 17.1, 10.3, 8.0 Hz, 0.40H), 5.60 (ddd, J = 17.1, 10.5, 7.5 Hz, 0.60H), 5.22 – 4.97 (m, 2.0H), 3.93 – 3.55 (m, 6.0H), 2.89 (dd, J = 11.7, 0.9 Hz, 0.60H), 2.78 (dd, J = 25.8, 14.5 Hz, 1.0H), 2.52 (dd, J = 13.6, 6.9 Hz, 1.0H), 2.45 – 2.37 (m, 0.40H), 2.36 – 2.10 (m, 2.0H), 1.24 (s, 1.20H), 1.00 (s, 1.80H).

¹³C NMR (101 MHz, CDCl₃) δ 204.7, 203.1, 172.9, 172.4, 172.1, 171.9, 135.0, 134.4, 118.0, 117.6, 58.4, 58.1, 56.2, 56.1, 53.8, 53.1, 53.0, 53.0, 52.9, 47.5, 41.8, 40.5, 38.9, 38.0, 19.8, 15.8.

DART-TOF LC/MS m/z calcd. for C₁₃H₁₉O₅ [M+H⁺] 255.1232, found 255.1231.

MeO₂C
$$CO_2$$
Me

31
(cis: trans = 77:23)

Prepared according to **Procedure C**. Colorless oil (37.8 mg, 75% yield) as a mixture of diastereomers (trans: cis = 77.23). $R_f = 0.30$ (30% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃) δ 5.90 – 5.62 (m, 1.0H), 5.31 – 5.14 (m, 2.0H), 3.96 – 3.53 (m, 6.0H), 3.05 – 2.90 (m, 1.0H), 2.83 (d, J = 14.4 Hz, 0.77H), 2.62 – 2.48 (m, 1.77H), 2.48 – 2.31 (m, 0.46H), 2.30 – 2.14 (m, 1.0H), 1.38 (s, 0.69H), 1.20 (s, 2.31H).

¹³C NMR (101 MHz, CDCl₃) δ 172.2, 171.7, 171.6, 171.0, 134.4, 133.3, 123.8, 122.0, 119.7, 119.2, 57.7, 57.5, 53.9, 53.3, 53.2, 53.2, 53.2, 51.5, 45.7, 45.2, 43.4, 40.3, 39.2, 36.6, 22.8, 19.7.

DART-TOF LC/MS m/z calcd. for C₁₃H₁₈NO₄ [M+H⁺] 252.1236, found 252.1232.

$$MeO_2C$$
 CO_2Me 32 (cis: trans = 63:37)

Prepared according to **Procedure C**. Colorless oil (27.1 mg, 51% yield) as a mixture of diastereomers (cis: trans = 63:37). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.78 – 5.57 (m, 1.0H), 5.08 – 4.89 (m, 2.0H), 4.85 – 4.69 (m, 2.0H), 4.02 – 3.52 (m, 6.0H), 2.88 – 2.76 (m, 1.0H), 2.71 (dd, J = 14.1, 6.8 Hz, 0.37H), 2.51 – 2.20 (m, 3.63H), 1.77 (d, J = 1.0 Hz, 1.89H), 1.69 (d, J = 1.4 Hz, 1.11H), 1.11 (s, 1.11H), 0.96 (s, 1.89H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 173.4, 173.1, 173.0, 149.7, 149.6, 139.0, 137.0, 116.0, 114.7, 111.0, 110.5, 58.5, 57.4, 53.3, 52.9, 52.9, 52.8, 51.3, 49.9, 49.0, 46.2, 44.0, 38.9, 38.0, 26.2, 21.0, 20.1, 20.0.

DART-TOF LC/MS m/z calcd. for C₁₅H₂₆NO₄ [M+NH₄⁺] 284.1862, found 284.1868.

Prepared according to **Procedure C**. Colorless oil (33.6 mg, 50% yield) as a mixture of diastereomers (cis: trans = 80:20). R_f = 0.45 (10% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃) δ 5.88 – 2.42 (m, 1.0H), 5.24 – 4.88 (m, 2.0H), 3.93 – 3.43 (m, 6.0H), 2.81 – 2.63 (m, 1.0H), 2.60 – 2.42 (m, 2.60H), 2.33 – 2.02 (m, 3.40H), 1.50 – 1.21 (m, 8.0H), 1.19 (s, 0.60H), 0.99 (s, 2.40H), 0.90 – 0.84 (m, 3.0H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 172.8, 172.8, 172.2, 137.6, 136.2, 116.8, 116.4, 85.8, 83.9, 82.5, 80.9, 57.8, 57.7, 55.0, 53.4, 52.9, 52.8, 52.8, 52.6, 48.9, 48.0, 42.5, 40.8, 39.4, 36.8, 31.3, 31.3, 29.0, 28.9, 28.4, 28.4, 25.3, 22.5, 22.0, 18.6, 14.0, 14.0.

DART-TOF LC/MS m/z calcd. for C₂₀H₃₁O₄ [M+H⁺] 335.2222, found 335.2226.

$$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{CO}_2\text{Me} \\ \text{(trans: cis = 70:30)} \\ \\ \text{Me} \end{array}$$

Prepared according to **Procedure C**. Colorless oil (31.2 mg, 58% yield) as a mixture of diastereomers (trans: cis = 70.30). $R_f = 0.45$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.80 – 5.50 (m, 1H), 5.06 – 4.91 (m, 2.0H), 3.76 – 3.66 (m, 6.0H), 2.76 – 2.62 (m, 0.70H), 2.59 – 2.51 (m, 0.30H), 2.47 (dd, J = 13.9, 7.1 Hz, 1.0H), 2.40 – 2.31 (m, 0.70H), 2.23 – 1.89 (m, 3.0H), 1.78 (dd, J = 13.4, 10.8 Hz, 0.30H), 1.67 – 1.05 (m, 6.0H), 0.90 – 0.82 (m, 3.0H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 168.5, 168.4, 168.4, 135.6, 133.6, 110.5, 110.4, 72.6, 72.3, 72.0, 54.2, 53.6, 48.0, 48.0, 45.7, 41.6, 40.5, 38.3, 35.9, 35.6, 34.5, 28.1, 25.6, 25.6, 25.3, 18.1, 18.1, 9.3, 9.2.

DART-TOF LC/MS m/z calcd. for C₁₅H₂₅O₄ [M+H⁺] 269.1753, found 269.1757.

MeO₂C CO₂Me
$$35$$
(trans : cis = 66:34)

Prepared according to **Procedure C**. Colorless oil (39.8 mg, 72% yield) as a mixture of diastereomers (trans: cis = 66:34). $R_f = 0.30$ (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.84 – 5.64 (m, 1.0H), 5.31 – 4.96 (m, 2.0H), 3.90 – 3.45 (m, 6.0H), 3.07 - 2.92 (m, 0.34H), 2.88 - 2.73 (m, 0.66H), 2.61 (dd, J = 27.5, 14.0 Hz, 1.0H), 2.52 - 1.88 (m, 8.0H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 172.5, 172.5, 136.0, 135.7, 122.4, 122.0, 118.4, 118.3, 57.4, 57.3, 52.3, 52.9, 51.5, 51.4, 47.5, 47.3, 47.2, 45.3, 37.9, 37.7, 34.4, 34.4, 33.3, 32.4, 16.9, 16.4.

DART-TOF LC/MS m/z calcd. for C₁₅H₂₃N₂O₄ [M+NH₄⁺] 295.1658, found 295.1656.

Prepared according to *Procedure C* (0.4 mmol). Colorless oil (67.2 mg, 63% yield). $R_f = 0.45$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.78 – 5.60 (m, 1H), 5.08 – 4.91 (m, 2H), 3.70 (s, 3H), 3.69 (s, 3H), 2.57 – 2.31 (m, 3H), 2.19 – 2.01 (m, 2H), 1.65 – 1.13 (m, 8H).

¹³C **NMR** (101 MHz, CDCl₃) δ 173.4, 173.2, 137.6, 116.2, 57.8, 53.7, 52.7, 52.7, 51.8, 47.4, 39.2, 37.2, 32.1, 24.7, 24.4.

DART-TOF LC/MS m/z calcd. for $C_{15}H_{23}O_4$ [M+H⁺] 267.1596, found 267.1600.

Prepared according to **Procedure C**. Colorless oil (43.5 mg, 68% yield) as a mixture of diastereomers (trans: cis = 68:32). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.97 – 5.82 (m, 0.68H), 5.72 – 5.52 (m, 0.32H), 5.09 – 4.81 (m, 2.0H), 3.75 – 3.65 (m, 6.0H), 2.60 (d, J = 14.1 Hz, 0.68H), 2.50 – 2.24 (m, 2.64H), 2.18 (d, J = 14.1 Hz, 0.68H), 2.12 – 1.97 (m, 2.0H), 1.94 – 1.59 (m, 5.32H), 1.45 – 1.22 (m, 1.68H), 1.17 (s, 3.0H), 0.99 (s, 2.04H), 0.97 (s, 0.96H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 173.4, 173.3, 173.3, 139.1, 138.9, 115.9, 114.8, 59.4, 57.8, 55.9, 53.5, 52.8, 52.7, 52.7, 50.6, 50.2, 49.3, 48.4, 47.2, 40.2, 39.8, 39.2, 38.9, 38.3, 37.8, 29.6, 28.1, 27.8, 27.8, 27.6, 25.6, 25.4, 23.9, 23.8, 22.6.

DART-TOF LC/MS m/z calcd. for C₁₉H₃₂NO₄ [M+NH₄⁺] 338.2331, found 338.2326.

Prepared according to *Procedure C*. Colorless oil (50.3 mg, 66% yield). $R_f = 0.30$ (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.63 (ddd, J = 17.0, 10.3, 7.7 Hz, 1H), 5.11 – 4.92 (m, 2H), 3.89 (brs, 2H), 3.70 (s, 3H), 3.70 (s, 3H), 2.93 – 2.67 (m, 2H), 2.57 (d, J = 14.2 Hz, 1H), 2.48 (dd, J = 12.9, 6.0 Hz, 1H), 2.35 – 2.11 (m, 2H), 2.01 (dd, J = 14.1, 1.5 Hz, 1H), 1.64 – 1.50 (m, 1H), 1.41 (s, 9H), 1.34 – 1.13 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 173.0, 154.8, 136.3, 117.1, 79.3, 57.8, 53.6, 52.9, 52.8, 44.3, 41.7, 37.5, 36.1, 29.7, 28.4.

DART-TOF LC/MS m/z calcd. for $C_{20}H_{32}NO_6$ [M+H⁺] 382.2230, found 382.2232.

$$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{39} \\ \text{(trans: cis = 70:30)} \end{array}$$

Prepared according to *Procedure C*. Colorless oil (82.5 mg, 86% yield) as a mixture of diastereomers (trans: cis = 70.30). $R_f = 0.30$ (30% acetone in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (s, 0.30H), 7.51 (s, 0.70H), 7.23 – 7.04 (m, 4.0H), 5.54 (ddd, J = 17.2, 10.5, 7.0 Hz, 0.30H), 5.40 (s, 2.0H), 5.25 (ddd, J = 17.1, 10.3, 8.0 Hz, 0.70H), 4.86 – 4.68 (m, 2.0H), 3.90 – 3.58 (m, 6.0H), 3.49 (s, 3H), 3.42 – 3.26 (m,

3.70H), 3.00 – 2.88 (m, 0.70H), 2.86 – 2.74 (m, 0.30H), 2.72 – 2.41 (m, 3.0H), 2.33 – 2.16 (m, 1.0H), 2.14 – 2.03 (m, 0.30H).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 172.8, 172.7, 172.5, 155.2, 151.6, 148.8, 142.1, 141.4, 140.9, 138.5, 137.8, 133.7, 133.3, 129.0, 128.3, 128.1, 127.8, 115.8, 115.6, 106.9, 106.9, 58.8, 58.0, 52.9, 52.8, 52.8, 50.9, 50.7, 49.9, 49.9, 47.7, 47.3, 42.2, 40.2, 38.9, 38.0, 29.7, 27.9.

DART-TOF LC/MS m/z calcd. for C₂₅H₂₉N₄O₆ [M+H⁺] 481.2087, found 481.2089.

Prepared according to *Procedure C*. Colorless oil (85.2 mg, 73% yield) as a mixture of diastereomers (trans : cis = 70:30). $R_f = 0.30$ (30% acetone in hexane).

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 3.0H), 7.17 – 7.00 (m, 2.0H), 5.73 (dd, J = 8.0, 1.1 Hz, 1.0H), 5.66 – 5.54 (m, 1.30H), 5.33 (ddd, J = 17.1, 10.3, 7.9 Hz, 0.70H), 5.12 – 4.76 (m, 6.0H), 4.28 (q, J = 2.9 Hz, 1.0H), 3.94 – 3.82 (m, 1.0H), 3.81 – 3.69 (m, 7.0H), 3.43 – 3.30 (m, 0.70H), 3.10 – 2.92 (m, 1.70H), 2.88 – 2.77 (m, 0.30H), 2.76 – 2.46 (m, 3.0H), 2.36 (dd, J = 14.0, 6.0 Hz, 0.70H), 2.32 – 2.22 (m, 0.30H), 2.19 – 2.07 (m, 0.30H), 1.55 (s, 3.0H), 1.34 (s, 3.0H).

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 172.9, 172.9, 172.6, 162.6, 151.0, 141.1, 140.5, 140.3, 138.6, 138.1, 134.6, 134.3, 129.3, 128.9, 128.4, 127.6, 115.7, 115.5, 114.2, 102.0, 96.4, 96.4, 86.9, 84.0, 80.4, 62.6, 58.9, 58.1, 52.9, 52.9, 52.8, 51.0, 50.6, 50.5, 47.7, 47.2, 43.9, 42.5, 40.2, 38.9, 38.1, 27.3, 25.3.

ESI-TOF LC/MS m/z calcd. for C₃₀H₃₇N₂O₁₀ [M+H⁺] 585.2448, found 585.2453.

$$\begin{array}{c} \text{MeO}_2\text{C}\\ \text{MeO}_2\text{C} \end{array}$$

Prepared according to **Procedure C**. Colorless oil (50.8 mg, 55% yield) as a mixture of diastereomers (trans: cis = 62:38). $R_f = 0.35$ (20% EtOAc in hexane).

 1 H NMR (400 MHz, CDCl₃) δ 7.24 - 7.15 (m, 1.0H), 7.05 - 6.82 (m, 2.0H), 5.73 - 5.58 (m, 0.38H), 5.49 - 5.32 (m, 0.62H), 5.01 - 4.76 (m, 2.0H), 4.00 - 3.55 (m, 6.0H), 3.44 - 3.27 (m, 0.62H), 3.06 - 2.95 (m, 0.62H), 2.92 - 1.91 (m, 13.76H), 1.74 - 1.37 (m, 6.0H), 0.90 (s, 3.0H).

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 173.0, 173.0, 172.9, 172.7, 138.9, 138.9, 138.4, 138.1, 138.0, 138.0, 137.6, 136.4, 136.4, 136.0, 129.2, 128.8, 128.4, 128.0, 126.0,

125.7, 125.4, 125.4, 125.1, 125.0, 124.8, 115.5, 115.3, 58.9, 58.0, 52.9, 52.8, 50.9, 50.5, 50.3, 50.3, 48.0, 47.5, 47.5, 47.1, 47.1, 44.3, 44.3, 42.7, 42.6, 40.2, 39.0, 38.3, 38.2, 38.1, 35.9, 31.6, 29.7, 29.5, 29.4, 26.6, 25.7, 21.6, 13.9.

DART-TOF LC/MS m/z calcd. for C₂₉H₃₇O₅ [M+H⁺] 465.2641, found 465.2642.

MeO
$$\frac{1}{100}$$
 $\frac{1}{100}$ $\frac{1}{100}$

Prepared according to *Procedure C*. Colorless oil (100.4 mg, 81% yield) as a mixture of diastereomers (trans: cis = 65:35). $R_f = 0.30$ (30% acetone in hexane).

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.54 (m, 3.0H), 7.35 – 6.98 (m, 8.0H), 5.69 – 5.56 (m, 0.35H), 5.34 (ddd, J = 17.1, 10.3, 8.2 Hz, 0.65H), 5.07 – 4.70 (m, 4.0H), 3.83 – 3.76 (m, 6.0H), 3.71 (s, 6.0H), 3.55 – 3.44 (m, 0.65H), 3.19 – 2.53 (m, 8.0H), 2.44 – 2.32 (m, 1.0H), 2.26 – 2.13 (m, 0.35H).

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 173.1, 173.0, 172.9, 172.8, 172.5, 171.4, 170.2, 167.0, 146.2, 145.4, 138.3, 137.7, 135.6, 135.6, 131.5, 131.1, 129.1, 128.6, 128.5, 127.9, 127.4, 127.0, 127.0, 116.1, 115.9, 59.0, 58.2, 53.5, 53.0, 53.0, 52.9, 52.9, 52.4, 52.2, 51.3, 49.3, 47.9, 47.5, 42.1, 40.4, 39.0, 38.0, 37.9, 37.7, 34.8.

ESI-TOF LC/MS m/z calcd. for C₃₃H₄₂N₃O₁₀ [M+NH₄⁺] 640.2870, found 640.2872.

CO₂Me
$$CO_2Me$$

$$CO_2Me$$

Prepared according to **Procedure C**. Colorless oil (92.7 mg, 74% yield) as a mixture of diastereomers (trans: cis = 70.30). $R_f = 0.35$ (30% acetone in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (brs, 1.0H), 7.50 – 6.95 (m, 9.0H), 5.59 (ddd, J = 17.2, 10.5, 6.9 Hz, 0.30H), 5.29 (ddd, J = 17.0, 10.3, 8.0 Hz, 0.70H), 4.89 – 4.74 (m, 2.0H), 4.17 (brs, 1.0H), 3.86 – 3.70 (m, 6.0H), 3.68 – 3.54 (m, 1H), 3.50 – 3.13 (m, 4.30H), 3.05 – 2.94 (m, 0.70H), 2.91 – 2.08 (m, 11.0H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 172.9, 172.8, 172.5, 170.4, 170.4, 146.7, 143.4, 142.7, 139.6, 138.3, 137.8, 137.6, 136.9, 134.7, 134.3, 133.9, 133.4, 133.0, 130.5, 129.0, 128.4, 127.7, 127.1, 126.8, 126.2, 122.3, 115.9, 115.8, 58.9, 58.1, 53.0, 52.9, 52.9, 51.2, 50.9, 47.9, 47.3, 42.3, 40.3, 38.9, 38.1, 31.7, 31.6, 31.5.

ESI-TOF LC/MS m/z calcd. for C₃₇H₃₈ClN₂O₅ [M+H]⁺ 625.2469, found 625.2473.

EtO₂C CO₂Et

$$44$$
trans : cis = 65:35

Prepared according to **Procedure C**. Colorless oil (69.1 mg, 93% yield) as a mixture of diastereomers (trans : cis = 65:35). $R_f = 0.45$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 2.0H), 7.20 – 7.02 (m, 2.0H), 5.68 (ddd, J = 17.3, 10.5, 6.9 Hz, 0.35H), 5.40 (ddd, J = 17.0, 10.3, 7.8 Hz, 0.65H), 4.98 – 4.78 (m, 2.0H), 4.44 – 4.00 (m, 4.0H), 3.45 – 3.33 (m, 0.65H), 3.07 – 2.95 (m, 0.65H), 2.91 – 2.51 (m, 3.35H), 2.44 – 2.25 (m, 1.0H), 2.15 (dd, J = 13.2, 10.5 Hz, 0.35H), 1.39 – 1.16 (m, 15.0H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 172.6, 172.6, 172.3, 149.2, 148.9, 139.1, 138.5, 138.5, 137.8, 128.0, 127.2, 125.2, 124.9, 115.4, 115.2, 61.6, 61.5, 61.5, 59.1, 58.2, 50.9, 50.4, 47.6, 47.3, 42.5, 40.1, 38.8, 38.1, 34.4, 34.4, 31.4, 14.1, 14.0.

DART-TOF LC/MS m/z calcd. for C₂₃H₃₃O₄ [M+H⁺] 373.2379, found 373.2381.

Prepared according to **Procedure C**. Colorless oil (72.5 mg, 82% yield) as a mixture of diastereomers (trans : cis = 66:34). $R_f = 0.45$ (10% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2.0H), 7.19 – 7.05 (m, 2.0H), 5.68 (ddd, J = 16.6, 11.0, 6.9 Hz, 0.34H), 5.41 (ddd, J = 17.1, 10.3, 7.8 Hz, 0.66H), 5.01 – 4.78 (m, 2.0H), 4.68 – 4.20 (m, 4.0H), 3.78 – 3.66 (m, 4.0H), 3.45 (dt, J = 10.5, 7.4 Hz, 0.66H), 3.11 – 2.98 (m, 0.66H), 2.94 – 2.58 (m, 3.34H), 2.51 – 2.32 (m, 1.0H), 2.26 – 2.17 (m, 0.34H), 1.31 (s, 9.0H).

¹³C NMR (101 MHz, CDCl₃) δ 172.1, 171.9, 171.9, 171.7, 149.4, 149.2, 138.8, 138.2, 138.1, 137.4, 128.0, 127.2, 125.3, 125.0, 115.6, 115.5, 65.1, 65.1, 65.0, 59.0, 58.1, 50.9, 50.4, 47.6, 47.3, 42.5, 41.4, 41.4, 40.1, 38.9, 38.2, 34.4, 34.4, 31.4.

DART-TOF LC/MS m/z calcd. for C₂₃H₃₁Cl₂O₄ [M+H⁺] 441.1599, found 441.1602.

Prepared according to **Procedure C**. Colorless oil (74.5 mg, 91% yield) as a mixture of diastereomers (trans: cis = 65:35). $R_f = 0.33$ (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 2.0H), 7.20 – 7.04 (m, 2.0H), 5.78 – 5.61 (m, 0.35H), 5.41 (ddd, J = 17.1, 10.3, 7.8 Hz, 0.65H), 4.99 – 4.81 (m, 2.0H), 4.70 – 4.62 (m, 2.0H), 4.58 – 4.52 (m, 2.0H), 4.46 – 4.43 (m, 2.0H), 4.42 – 4.34 (m, 2.0H), 3.45 (dt, J = 10.6, 7.4 Hz, 0.65H), 3.11 – 2.98 (m, 0.65H), 2.95 – 2.57 (m, 3.35H), 2.51 – 2.32 (m, 1.0H), 2.27 – 2.15 (m, 0.35H), 1.31 (s, 9.0H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 172.2, 172.1, 171.9, 149.4, 149.1, 138.8, 138.2, 138.1, 137.4, 128.0, 127.2, 125.3, 125.0, 115.6, 115.4, 81.8, 80.2, 80.1, 64.6, 64.5, 64.5, 64.4, 64.3, 64.3, 58.9, 58.1, 50.8, 50.4, 47.6, 47.3, 42.5, 40.1, 38.8, 38.1, 34.4, 34.4, 31.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -225.09, -225.10, -225.12, -225.12, -225.16, -225.16.

DART-TOF LC/MS m/z calcd. for C₂₃H₃₄F₂NO₄ [M+NH₄⁺] 426.2456, found 426.2452.

Prepared according to **Procedure C**. Colorless oil (53.0 mg, 92% yield) as a mixture of diastereomers (d.r. = 62:30:4:4). R_f = 0.35 (10% MeOH in DCM).

¹**H NMR** (400 MHz, CDCl₃) δ 11.14 (brs, 1.0H), 7.43 – 6.79 (m, 5.0H), 5.73 – 5.57 (m, 0.30H), 5.46 – 5.32 (m, 0.66H), 5.28 – 5.22 (m, 0.04H), 4.97 – 4.76 (m, 2.0H), 4.37 – 4.12 (m, 2.0H), 3.58 – 3.40 (m, 0.66H), 3.14 – 2.98 (m, 0.66H), 2.97 – 1.93 (m, 4.68H), 1.45 – 1.20 (m, 3.0H).

¹³C NMR (101 MHz, CDCl₃) δ 178.6, 178.3, 178.1, 172.1, 171.8, 141.3, 140.7, 140.6, 138.6, 138.1, 138.0, 128.4, 128.3, 128.1, 127.6, 126.7, 126.3, 115.8, 115.8, 115.5, 115.5, 62.1, 62.0, 59.1, 59.1, 58.1, 51.6, 50.9, 50.9, 48.1, 48.0, 47.4, 42.6, 42.5, 40.4, 40.3, 39.0, 39.0, 38.1, 38.1, 14.0.

DART-TOF LC/MS m/z calcd. for C₁₇H₂₁O₄ [M+H⁺] 289.1440, found 289.1441.

Prepared according to **Procedure C**. Colorless oil (45.1 mg, 84% yield) as a mixture of diastereomers (d.r. = 50:30:20). $R_f = 0.35$ (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 6.99 (m, 5.0H), 5.67 – 5.50 (m, 0.30H), 5.42 – 5.31 (m, 0.20H), 5.25 (ddd, J = 17.1, 10.2, 8.1 Hz, 0.50H), 4.99 – 4.68 (m, 2.0H), 4.40 – 4.10 (m, 2.0H), 3.68 – 3.56 (m, 0.50H), 3.52 – 3.41 (m, 0.20H), 3.20 – 3.12 (m, 0.50H), 3.09 – 2.31 (m, 4.50H), 2.27 – 2.15 (m, 0.30H), 1.36 – 1.21 (m, 3.0H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 169.7, 169.6, 169.1, 140.5, 139.9, 139.7, 139.1, 137.7, 137.2, 137.1, 136.5, 128.7, 128.6, 128.4, 128.3, 128.3, 128.2, 127.6, 127.5, 127.1, 127.0, 126.7, 121.3, 121.2, 121.1, 116.7, 116.7, 116.6, 116.1, 63.1, 51.7, 51.6, 51.2, 50.5, 48.5, 47.8, 47.8, 47.3, 47.0, 45.2, 45.1, 43.3, 43.1, 42.0, 41.6, 41.6, 40.8, 14.0, 14.0.

DART-TOF LC/MS m/z calcd. for $C_{17}H_{23}N_2O_2$ [M+NH₄+] 287.1760, found 287.1758.

Prepared according to **Procedure C**. Colorless oil (67.6 mg, 93% yield) as a mixture of diastereomers (d.r. = 37:35:14:14). $R_f = 0.45$ (30% EtOAc in hexane).

¹H NMR (400 MHz, CDCl₃) δ 8.33 (brs, 0.28H), 8.07 (brs, 0.37H), 7.99 (brs, 0.35H), 7.52 – 7.39 (m, 2.0H), 7.32 – 6.96 (m, 8.0H), 5.70 – 5.49 (m, 0.30H), 5.32 (dddd, J = 17.1, 10.4, 7.9, 1.7 Hz, 0.70H), 4.92 – 4.66 (m, 2.0H), 4.37 – 4.08 (m, 2.0H), 3.46 (dt, J = 10.8, 7.4 Hz, 0.37H), 3.36 (dt, J = 10.6, 7.7 Hz, 0.35H), 3.09 – 2.40 (m, 4.86H), 2.39 – 2.29 (m, 0.28H), 2.22 – 2.12 (m, 0.14H), 1.36 – 1.19 (m, 3.0H).

¹³C NMR (101 MHz, CDCl₃) δ 175.1, 174.8, 174.7, 169.1, 168.7, 168.1, 141.6, 141.0, 140.9, 138.9, 138.8, 138.5, 138.2, 137.9, 137.8, 129.1, 129.0, 128.5, 128.4, 128.3, 128.1, 128.0, 127.7, 127.6, 126.6, 126.6, 126.3, 126.2, 124.5, 124.5, 120.0, 120.0, 119.9, 119.9, 115.6, 115.6, 115.4, 115.3, 62.5, 62.4, 62.3, 61.1, 60.5, 59.3, 52.0, 51.5, 51.3, 51.0, 48.1, 48.0, 47.4, 47.3, 43.1, 42.9, 41.1, 39.5, 39.4, 38.2, 37.7, 14.1, 14.0.

DART-TOF LC/MS m/z calcd. for C₂₃H₂₉N₂O₃ [M+NH₄⁺] 381.2178, found 381.2173.

Prepared according to *Procedure C*. Colorless oil (65.7 mg, 86% yield) as a mixture of diastereomers (d.r. = 37:35:14:14). $R_f = 0.35$ (30% acetone in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.05 (m, 5.0H), 5.56 (ddd, J = 17.2, 9.9, 7.2 Hz, 0.32H), 5.28 (ddd, J = 17.1, 10.2, 8.4 Hz, 0.68H), 4.91 – 4.57 (m, 2.0H), 4.35 – 3.92 (m, 6.0H), 3.52 – 3.15 (m, 0.73H), 3.04 – 2.03 (m, 5.27H), 1.54 – 1.02 (m, 9.0H).

¹³C **NMR** (101 MHz, CDCl₃) δ 172.3, 171.8, 171.7, 141.9, 141.4, 141.3, 139.2, 138.9, 138.5, 137.4, 128.6, 128.4, 128.2, 128.0, 128.0, 127.7, 127.6, 126.6, 126.5, 126.2, 126.1,

115.8, 115.7, 115.4, 114.9, 63.1, 63.0, 62.9, 62.9, 62.9, 62.8, 62.8, 62.7, 61.8, 61.8, 55.0, 53.6, 51.6, 51.5, 51.1, 51.0, 50.8, 50.8, 47.8, 47.7, 47.6, 47.4, 47.2, 41.1, 41.1, 40.2, 38.0, 38.0, 37.6, 37.6, 37.3, 37.3, 16.5, 16.5, 16.4, 16.4, 14.1.

³¹**P NMR** (162 MHz, CDCl₃) δ 27.3, 26.6, 26.1.

DART-TOF LC/MS m/z calcd. for C₂₀H₃₃NPO₅ [M+NH₄⁺] 398.2096, found 398.2100.

Prepared according to **Procedure C**. Colorless oil (75.9 mg, 92% yield) as a mixture of diastereomers (trans: cis = 70.30). $R_f = 0.35$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 6.94 (m, 15.0H), 5.64 (ddd, J = 17.3, 9.9, 7.0 Hz, 0.30H), 5.39 (ddd, J = 17.1, 10.3, 7.9 Hz, 0.70H), 4.95 – 4.76 (m, 2.0H), 3.54 (dt, J = 10.6, 7.4 Hz, 0.70H), 3.17 – 3.04 (m, 0.70H), 3.02 – 2.74 (m, 3.30H), 2.65 – 2.50 (m, 1.0H), 2.45 – 2.31 (m, 0.30H).

¹³C **NMR** (101 MHz, CDCl₃) δ 171.1, 170.6, 150.7, 150.7, 141.2, 140.4, 138.4, 137.8, 129.6, 128.6, 128.4, 128.2, 127.7, 126.8, 126.5, 126.3, 121.2, 121.2, 116.0, 115.9, 59.3, 58.4, 51.6, 50.9, 48.2, 47.6, 42.6, 40.4, 39.1, 38.2.

DART-TOF LC/MS m/z calcd. for C₂₇H₂₈NO₄ [M+NH₄⁺] 430.2018, found 430.2015.

Prepared according to **Procedure C**. Colorless oil (69.4 mg, 78% yield) as a mixture of diastereomers (trans: cis = 75.25). $R_f = 0.40$ (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 6.96 (m, 15.0H), 5.68 – 5.48 (m, 0.25H), 5.27 (ddd, J = 17.6, 10.3, 7.8 Hz, 0.75H), 4.94 – 4.65 (m, 2.0H), 3.46 – 3.31 (m, 0.75H), 3.07 – 2.41 (m, 5.0H), 2.30 (dd, J = 13.8, 10.8 Hz, 0.25H).

¹³C NMR (101 MHz, CDCl₃) δ 196.8, 196.6, 196.5, 196.0, 141.1, 140.4, 138.4, 137.8, 134.8, 134.8, 134.7, 129.8, 129.4, 129.4, 128.5, 128.4, 128.2, 127.6, 127.0, 127.0, 126.8, 126.5, 116.1, 115.8, 74.8, 73.8, 51.3, 50.6, 47.6, 46.9, 42.3, 40.1, 38.8, 38.0.

DART-TOF LC/MS m/z calcd. for C₂₇H₂₈NO₂S₂ [M+NH₄⁺] 462.1561, found 462.1560.

EtO₂C
$$CO_2$$
Et

 $trans : cis = 68:32$

Prepared according to **Procedure C**. Colorless oil (52.0 mg, 79% yield) as a mixture of diastereomers (trans: cis = 68:32). $R_f = 0.35$ (4:1 hex:EtOAc).

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 6.99 (m, 5.0H), 4.64 – 4.50 (m, 2.0H), 4.26 – 4.09 (m, 4.0H), 3.49 – 3.36 (m, 0.68H), 3.06 – 2.64 (m, 2.32H), 2.56 (dd, J = 13.6, 7.4 Hz, 0.32H), 2.49 – 2.34 (m, 2.0H), 2.18 (ddd, J = 25.3, 13.7, 11.6 Hz, 0.68H), 1.56 (s, 0.96H), 1.24 – 1.10 (m, 8.04H).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 172.6, 172.6, 172.1, 145.0, 144.1, 142.4, 142.1, 128.4, 127.8, 127.4, 126.5, 126.1, 112.1, 111.7, 61.6, 61.5, 59.3, 57.9, 53.5, 49.9, 49.1, 46.8, 42.8, 40.1, 39.5, 37.8, 22.7, 19.8, 14.1.

DART-TOF LC/MS m/z calcd. for C₂₀H₃₀NO₄ [M+NH₄⁺] 348.2175, found 348.2171.

Prepared according to **Procedure C**. Colorless oil (63.2 mg, 81% yield) as a mixture of diastereomers (trans: cis = 70.30). $R_f = 0.35$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 – 6.58 (m, 10.0H), 5.10 (d, J = 0.9 Hz, 0.30H), 5.02 (d, J = 0.8 Hz, 0.30H), 4.95 (d, J = 0.9 Hz, 0.70H), 4.75 (d, J = 0.8 Hz, 0.70H), 4.31 – 4.04 (m, 4.0H), 3.64 – 3.51 (m, 0.70H), 3.42 (td, J = 8.7, 5.9 Hz, 0.70H), 3.32 – 3.11 (m, 0.60H), 2.95 (ddd, J = 14.5, 8.6, 1.2 Hz, 0.70H), 2.84 (dd, J = 13.8, 7.5 Hz, 0.30H), 2.75 (dd, J = 13.6, 6.9 Hz, 0.30H), 2.64 (dd, J = 13.2, 12.1 Hz, 0.70H), 2.52 (ddd, J = 13.2, 6.1, 1.2 Hz, 0.70H), 2.38 (dd, J = 14.5, 5.9 Hz, 0.70H), 2.21 (dd, J = 13.8, 10.9 Hz, 0.30H), 2.01 (dd, J = 13.6, 11.2 Hz, 0.30H), 1.34 – 1.08 (m, 6.0H).

¹³C NMR (101 MHz, CDCl₃) δ 172.6, 172.6, 172.3, 172.1, 148.9, 148.0, 142.7, 142.0, 142.0, 141.9, 128.7, 128.4, 128.1, 127.9, 127.5, 127.4, 127.2, 127.1, 126.5, 126.5, 126.3, 125.9, 113.2, 113.2, 61.7, 61.6, 61.6, 61.5, 59.2, 57.7, 50.3, 49.7, 47.0, 46.3, 42.8, 41.7, 40.8, 38.1, 14.1, 14.1, 14.0.

DART-TOF LC/MS m/z calcd. for C₂₅H₃₂NO₄ [M+NH₄⁺] 410.2331, found 410.2330.

Prepared according to *Procedure C*. Colorless oil (38.8 mg, 59% yield) as a mixture of diastereomers (trans : cis = 46:54). $R_f = 0.40$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.05 (m, 5.0H), 5.83 (dd, J = 17.4, 10.7 Hz, 0.46H), 5.46 (dd, J = 17.4, 10.9 Hz, 0.54H), 4.97 – 4.64 (m, 2.0H), 4.26 – 4.05 (m, 4.0H), 3.02 (dd, J = 13.4, 6.6 Hz, 0.46H), 2.92 (dd, J = 13.7, 6.0 Hz, 0.54H), 2.82 (t, J = 13.5 Hz, 0.46H), 2.74 – 2.58 (m, 1.08H), 2.55 – 2.46 (m, 0.92H), 2.41 – 2.28 (m, 1.08H), 2.22 (d, J = 14.1 Hz, 0.46H), 1.24 – 1.14 (m, 6.0H), 1.07 (s, 1.62H), 0.70 (s, 1.38H).

¹³C NMR (101 MHz, CDCl₃) δ 173.2, 172.9, 172.6, 172.4, 146.4, 141.9, 138.4, 138.3, 128.9, 128.5, 127.7, 127.7, 126.7, 126.6, 113.1, 112.4, 61.6, 61.6, 61.5, 57.4, 57.1, 55.4, 53.8, 48.4, 48.3, 47.0, 44.4, 38.0, 37.1, 25.7, 19.0, 14.1, 14.0.

DART-TOF LC/MS m/z calcd. for $C_{20}H_{30}NO_4$ [M+NH₄⁺] 348.2175, found 348.2172.

Prepared according to **Procedure C**. Colorless oil (44.1 mg, 86% yield) as a mixture of diastereomers (trans: cis = 70:30). $R_f = 0.35$ (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 6.97 (m, 5.0H), 5.61 – 5.44 (m, 0.30H), 5.22 (ddd, J = 17.1, 10.3, 7.9 Hz, 0.70H), 4.90 – 4.66 (m, 2.0H), 3.18 (dt, J = 10.6, 7.2 Hz, 0.70H), 2.90 – 2.80 (m, 0.70H), 2.75 (dd, J = 13.2, 7.4 Hz, 0.30H), 2.68 – 2.57 (m, 1.40H), 2.56 – 2.47 (m, 0.30H), 2.45 – 2.22 (m, 2.0H), 2.13 – 2.01 (m, 6.0H), 2.00 (dd, J = 13.3, 11.2 Hz, 0.30H), 1.84 (dd, J = 13.3, 10.8 Hz, 0.30H).

¹³C NMR (101 MHz, CDCl₃) δ 204.9, 204.6, 204.5, 204.5, 141.4, 140.6, 138.7, 138.0, 128.5, 128.2, 128.1, 127.5, 126.7, 126.3, 115.7, 115.6, 74.4, 73.2, 51.2, 50.3, 47.8, 47.3, 39.3, 36.9, 35.5, 34.3, 27.0, 26.4, 26.3, 26.0.

DART-TOF LC/MS m/z calcd. for C₁₄H₂₄NO₂ [M+NH₄⁺] 274.1807, found 274.1804.

Prepared according to **Procedure C**. Colorless oil (44.3 mg, 81% yield) as a mixture of diastereomers (d.r. = 50:20:17:13). $R_f = 0.30$ (30% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 6.96 (m, 5.0H), 5.71 – 5.27 (m, 1.0H), 4.87 – 4.68 (m, 2.0H), 4.24 – 4.09 (m, 2.0H), 3.79 – 3.60 (m, 2.0H), 3.52 (dt, J = 11.8, 7.2 Hz, 0.50H), 3.31 (dt, J = 10.5, 7.4 Hz, 0.17H), 3.12 – 1.45 (m, 6.0H), 1.32 – 1.11 (m, 3.0H), 0.95 – 0.80 (m, 0.33H).

¹³C NMR (101 MHz, CDCl₃) δ 177.7, 177.6, 177.6, 177.4, 142.0, 142.0, 141.3, 141.3, 139.4, 139.3, 139.0, 138.8, 128.4, 128.4, 128.3, 128.1, 128.0, 127.6, 127.5, 126.4, 126.1, 126.1, 115.3, 115.2, 115.2, 115.0, 69.2, 68.1, 68.0, 67.5, 61.2, 61.1, 61.1, 61.1, 54.3, 53.8, 52.8, 52.8, 51.8, 51.3, 51.1, 50.4, 48.2, 48.0, 47.4, 42.5, 41.6, 40.2, 39.1, 38.5, 38.2, 37.6, 36.2, 14.2, 14.1.

DART-TOF LC/MS m/z calcd. for C₁₇H₂₆NO₃ [M+NH₄⁺] 292.1907, found 292.1905.

Prepared according to *Procedure C* (0.4 mmol). Colorless oil (60.9 mg, 62% yield) as a mixture of diastereomers (trans : cis = 35:30:20:15). $R_f = 0.45$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.01 (m, 5.0H), 5.72 – 5.50 (m, 0.55H), 5.42 – 5.22 (m, 0.45H), 4.91 – 4.57 (m, 2.0H), 4.24 – 3.91 (m, 2.0H), 3.45 – 1.74 (m, 7.0H), 1.32 – 1.04 (m, 3.0H).

¹³C NMR (101 MHz, CDCl₃) δ 176.9, 176.4, 176.3, 175.9, 143.2, 142.6, 141.8, 141.5, 140.0, 139.8, 139.3, 138.6, 128.5, 128.4, 128.3, 128.3, 128.0, 128.0, 127.6, 127.5, 126.4, 126.3, 126.1, 114.9, 114.8, 114.6, 60.5, 60.5, 52.6, 52.3, 51.2, 50.8, 49.0, 48.8, 48.1, 48.1, 42.9, 42.0, 41.8, 41.5, 38.7, 38.1, 36.6, 35.7, 34.9, 34.7, 34.2, 33.4, 14.3, 14.3.

DART-TOF LC/MS m/z calcd. for C₁₄H₂₄NO₂ [M+NH₄⁺] 262.1807, found 262.1805.

EtO₂C NHBoc
$$\frac{59}{\text{d.r.}} = 50:25:15:10$$

Prepared according to **Procedure C**. Colorless oil (63.7 mg, 90% yield) as a mixture of diastereomers (trans: cis = 50:25:15:10). $R_f = 0.35$ (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.90 – 5.57 (m, 1.0H), 5.44 – 4.80 (m, 3.0H), 4.28 – 4.04 (m, 2.0H), 3.75 – 3.40 (m, 3.0H), 3.36 – 1.72 (m, 5.0H), 1.58 – 0.92 (m, 15.0H).

¹³**C NMR** (101 MHz, CDCl₃) δ 177.9, 176.6, 175.9, 174.4, 173.4, 173.2, 155.2, 136.3, 136.2, 136.0, 135.9, 116.9, 116.7, 116.6, 65.2, 61.5, 61.4, 61.4, 61.4, 54.2, 54.0, 53.1, 52.5, 52.3, 52.0, 51.8, 51.7, 51.6, 51.0, 49.2, 48.8, 48.0, 42.1, 28.3, 24.9, 22.9, 20.7, 14.1, 14.1, 14.1.

ESI-TOF LC/MS m/z calcd. for C₁₈H₃₀NO₆ [M+H⁺] 356.2073, found 356.2075.

Prepared according to **Procedure C**. Colorless oil (89.2 mg, 58% yield) as a mixture of diastereomers (d.r. = 57:43). $R_f = 0.50$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.81 – 5.55 (m, 1.0H), 5.36 (brs, 1.0H), 5.16 – 4.98 (m, 2.0H), 4.72 – 4.51 (m, 1.0H), 4.29 – 3.97 (m, 4.0H), 3.67 (s, 1.29H), 3.60 (s, 1.71H), 3.12 – 3.01 (m, 0.43H), 2.91 (dd, J = 14.4, 4.7 Hz, 0.57H), 2.83 (dd, J = 14.3, 3.2 Hz, 0.43H), 2.58 – 2.44 (m, 1.57H), 2.41 – 2.14 (m, 6.0H), 2.05 – 0.59 (m, 53.0H).

¹³C NMR (101 MHz, CDCl₃) δ 176.6, 175.7, 173.1, 173.0, 172.8, 172.8, 172.8, 172.1, 172.0, 171.6, 171.5, 139.6, 136.1, 135.9, 122.6, 117.0, 116.8, 73.8, 73.8, 65.5, 65.5, 65.3, 61.7, 61.7, 61.4, 58.9, 58.0, 56.7, 56.1, 54.6, 54.6, 53.0, 52.1, 52.0, 51.5, 51.5, 50.0, 49.8, 49.7, 44.8, 44.7, 44.6, 42.3, 39.7, 39.5, 38.9, 38.8, 38.1, 37.4, 37.0, 36.6, 36.2, 35.8, 34.5, 34.4, 31.9, 31.8, 28.2, 28.2, 28.0, 27.8, 25.4, 25.3, 24.6, 24.6, 24.5, 24.3, 23.8, 22.9, 22.9, 22.8, 22.6, 21.0, 19.3, 19.0, 18.9, 18.7, 14.1, 14.0, 11.8.

ESI-TOF LC/MS m/z calcd. for C₄₇H₇₅O₈ [M+H⁺] 767.5462, found 767.5466.

Prepared according to **Procedure C**. Colorless oil (229.7 mg, 77% yield) as a mixture of diastereomers (d.r. = 62:38). $R_f = 0.50$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.86 – 5.50 (m, 1.0H), 5.15 – 4.91 (m, 2.0H), 4.37 – 4.05 (m, 4.0H), 3.77 – 3.54 (m, 5.0H), 3.46 – 3.32 (m, 2.0H), 3.16 – 3.02 (m, 0.38H), 2.94 (d, J = 14.4 Hz, 0.62H), 2.86 (dd, J = 14.3, 10.6 Hz, 0.38H), 2.61 – 2.47 (m, 1.62H), 2.44 – 2.16 (m, 2.0H), 1.66 – 1.50 (m, 2.0H), 1.38 – 1.19 (m, 9.0H), 1.10 (d, J = 1.4 Hz, 1.0H), 0.92 – 0.82 (m, 3.0H), 0.61 – 0.45 (m, 4.0H), 0.28 – -0.17 (m, 74.0H).

¹³C NMR (101 MHz, CDCl₃) δ 175.5, 174.7, 174.6, 172.0, 171.9, 171.1, 170.8, 170.6, 170.3, 135.1, 134.9, 134.8, 116.0, 116.0, 115.8, 73.1, 73.0, 67.2, 67.2, 63.8, 63.7, 63.6, 60.7, 60.6, 60.4, 57.9, 57.8, 57.0, 53.6, 53.5, 52.0, 52.0, 51.0, 50.9, 50.4, 48.7, 48.7, 43.6, 43.6, 37.8, 36.4, 25.3, 24.4, 22.4, 21.9, 21.8, 17.9, 17.8, 16.9, 13.1, 13.1, 13.0, 12.9, 12.8, 0.4, 0.1, 0.00, -0.4, -0.9, -1.0.

EtO₂C O Me
$$CO_2Me$$

$$d.r. = 58:42$$

Prepared according to *Procedure C*. Colorless oil (108.3 mg, 75% yield) as a mixture of diastereomers (d.r. = 58:42). $R_f = 0.30$ (30% acetone in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 5.82 – 5.54 (m, 1.0H), 5.15 – 4.90 (m, 2.0H), 4.36 – 4.09 (m, 4.0H), 3.81 – 3.48 (m, 44.0H), 3.35 (s, 3.0H), 3.11 – 2.99 (m, 0.42H), 2.90 (d, J = 14.4 Hz, 0.58H), 2.83 (dd, J = 14.3, 5.6 Hz, 0.42H), 2.60 – 2.43 (m, 1.58H), 2.41 – 2.14 (m, 2.0H), 1.35 – 1.17 (m, 4.74H), 1.08 (d, J = 1.8 Hz, 1.26H).

¹³C NMR (101 MHz, CDCl₃) δ 176.5, 175.6, 175.6, 172.9, 172.8, 172.0, 171.8, 171.8, 171.5, 171.3, 136.0, 135.9, 135.8, 117.0, 117.0, 116.8, 71.9, 70.6, 70.6, 70.5, 70.5, 68.8, 68.8, 68.8, 64.7, 64.7, 64.6, 64.5, 61.7, 61.7, 61.7, 61.4, 59.0, 58.8, 58.8, 57.9, 57.9, 54.6, 53.0, 53.0, 52.0, 52.0, 51.9, 51.5, 49.7, 49.7, 44.7, 44.6, 44.6, 38.8, 37.3, 37.3, 22.9, 22.77, 18.9, 18.8, 14.0, 14.0.

Prepared according to **Procedure C**. Colorless oil (25.7 mg, 43% yield) as a mixture of diastereomers (d.r. = 58:42). R_f = 0.30 (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 6.91 (m, 5.0H), 5.56 – 5.43 (m, 0.42H), 5.32 – 5.15 (m, 0.58H), 4.93 – 4.63 (m, 2.0H), 4.58 – 4.07 (m, 4.0H), 3.77 – 1.69 (m, 5.0H), 1.35 – 1.05 (m, 3.0H).

¹³C **NMR** (101 MHz, CDCl3) δ 176.5, 176.4, 171.3, 169.7, 169.4, 169.0, 138.9, 138.9, 138.6, 137.7, 137.1, 136.5, 128.9, 128.5, 128.4, 128.1, 127.8, 127.5, 127.0, 126.8, 116.5, 116.4, 115.1, 72.0, 69.8, 69.4, 62.5, 62.5, 62.4, 61.6, 60.7, 59.3, 57.7, 56.6, 55.9, 55.1, 52.5, 51.8, 50.4, 48.7, 43.4, 38.1, 37.5, 33.6, 14.2, 14.1.

DART-TOF LC/MS m/z calcd. for $C_{18}H_{24}NO_4$ [M+NH₄⁺] 318.1705, found 318.1703.

Prepared according to **Procedure C**. Colorless oil (45.1 mg, 72% yield) as a mixture of diastereomers (d.r. = 46:38:12:4). $R_f = 0.30$ (10% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 6.96 (m, 5.0H), 5.82 (ddd, J = 17.5, 10.2, 7.8 Hz, 0.04H), 5.51 (ddd, J = 17.4, 10.5, 7.1 Hz, 0.46H), 5.40 (ddd, J = 17.0, 10.4, 8.0 Hz, 0.38H), 5.23 (ddd, J = 17.2, 10.2, 8.1 Hz, 0.12H), 4.490 – 4.23 (m, 2.0H), 4.48 – 4.07 (m, 4.0H), 3.77 – 2.71 (m, 3.0H), 2.69 – 1.70 (m, 3.0H), 1.63 – 1.42 (m, 1.0H), 1.32 – 1.20 (m, 3.0H).

¹³C NMR (101 MHz, CDCl3) δ 172.1, 171.7, 171.5, 171.4, 171.2, 170.1, 139.9, 139.5, 138.9, 138.9, 137.8, 137.6, 128.7, 128.7, 128.6, 128.3, 128.3, 127.7, 127.5, 127.2, 126.8, 126.6, 116.0, 115.9, 114.6, 67.9, 67.2, 67.0, 62.6, 62.4, 62.1, 59.5, 59.1, 59.0, 57.6, 56.9, 50.0, 50.0, 49.5, 47.9, 46.5, 45.2, 44.2, 40.7, 39.7, 37.0, 28.0, 27.9, 22.8, 14.1, 14.0, 14.0. **DART-TOF LC/MS** m/z calcd. for C₁₉H₂₆NO₄ [M+NH₄+] 332.1862, found 332.1858.

MeO₂C CO₂Me

68
(cis: trans = 75:25)

Me

$$CO_2$$
Me

Prepared according to *Procedure C*. Colorless oil (37.3 mg, 66% yield) as a mixture of inseparable diastereomers (cis: trans = 75:25). $R_f = 0.30$ (20% EtOAc in hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 3.74 (s, 2.25H), 3.72 (s, 3.00H), 3.71 (s, 0.75H), 3.70 (s, 0.75H), 3.67 (s, 2.25H), 3.34 (ddd, J = 10.0, 7.2, 2.5 Hz, 0.25 H), 2.99 (d, J = 14.5 Hz, 0.75H), 2.81 – 2.66 (m, 2H), 2.60 (dd, J = 13.0, 6.9 Hz, 0.75H), 2.45 (d, J = 14.3 Hz, 0.25H), 2.33 (dd, J = 13.8, 10.2 Hz, 0.25H), 2.20 – 2.10 (m, 1.75H), 1.36 (s, 2.25H), 1.33 (s, 0.75H).

¹³C NMR (101 MHz, CDCl₃) δ 175.8, 175.0, 173.0, 172.0, 171.7, 171.4, 82.1, 81.7, 72.1, 71.5, 58.9, 58.1, 53.7, 53.1, 53.0, 53.0, 52.9, 52.4, 51.8, 43.8, 43.7, 41.4, 39.7, 39.2, 37.9, 29.7, 23.0, 20.5.

DART-TOF LC/MS m/z calcd. for $C_{14}H_{22}NO_6$ [M+NH₄⁺] 300.1447, found 300.1446.

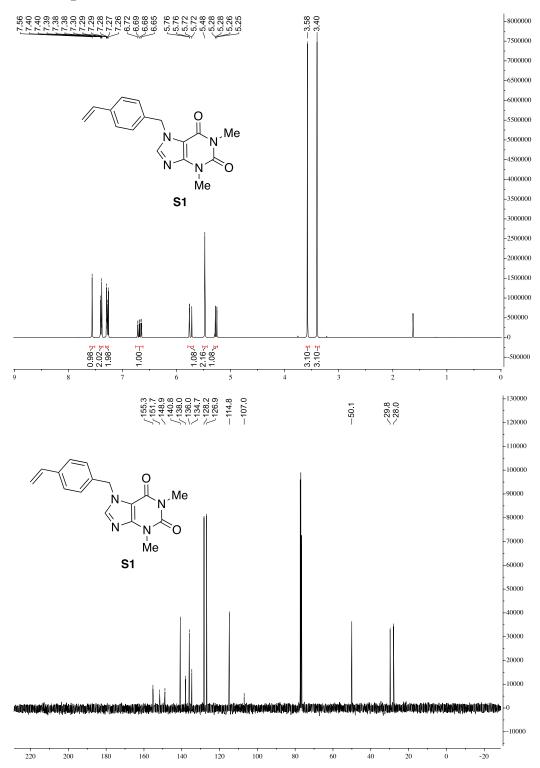
MeO₂C
$$CO_2$$
Me

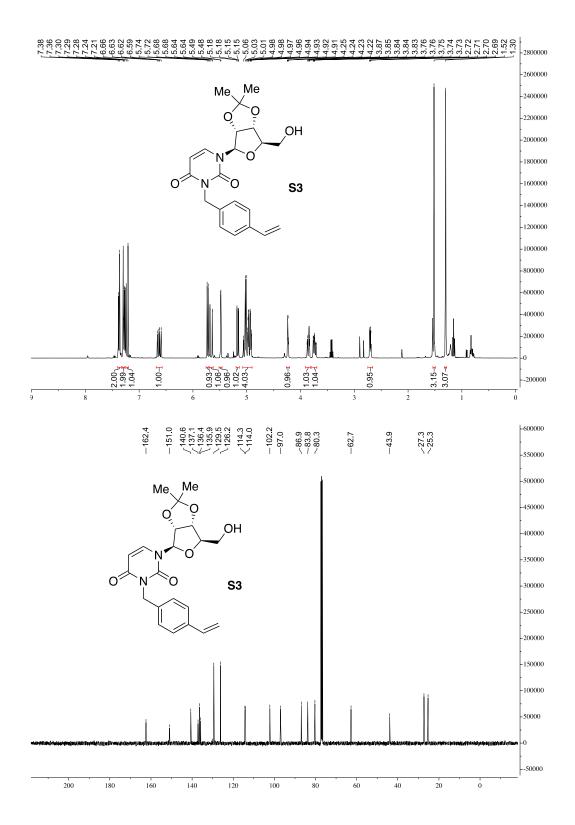
69

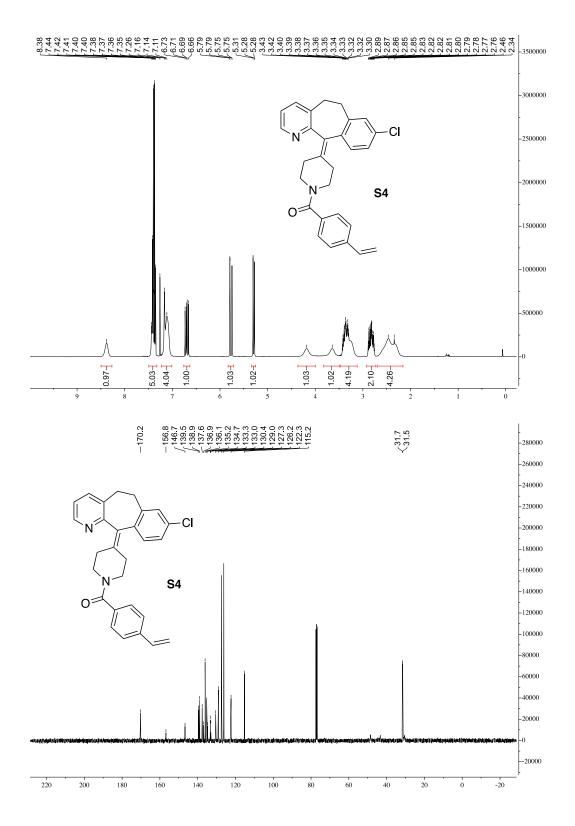
(cis: trans = 70:30)

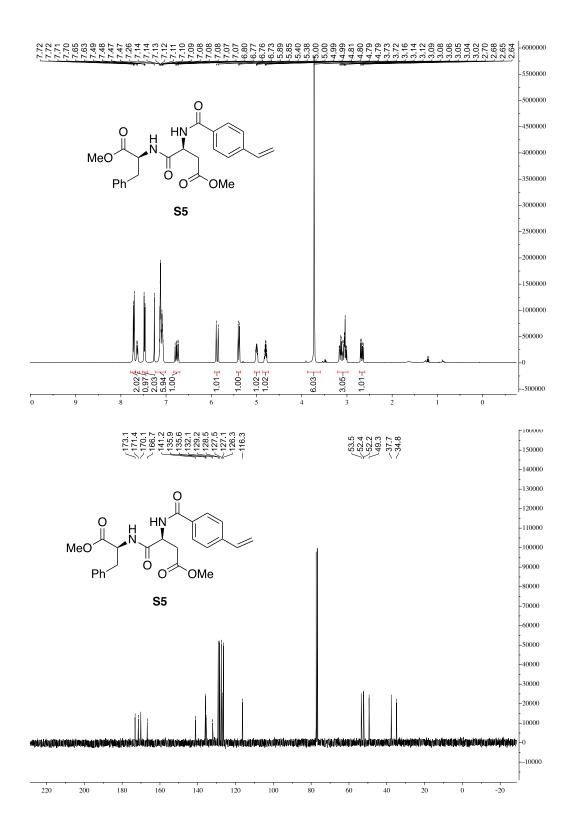
Prepared according to *Procedure C*. Colorless oil (29.8 mg, 48% yield) as a mixture of inseparable diastereomers (cis: trans = 70:30). $R_f = 0.35$ (20% EtOAc in hexane).

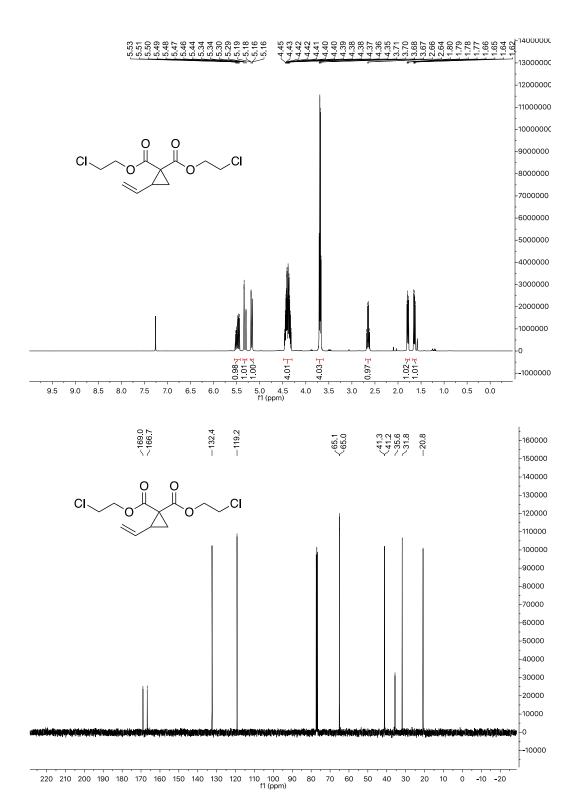
¹H NMR (400 MHz, CDCl₃) δ 5.93 – 5.76 (m, 1.0H), 5.26 (d, J = 17.2, 1.0H), 5.20 – 5.10 (m, 1.0H), 4.59 – 4.44 (m, 2.0H), 3.75 – 3.58 (m, 6.0H), 3.30 (ddd, J = 10.0, 7.2, 2.5 Hz, 0.30H), 2.96 (d, J = 14.5 Hz, 0.70H), 2.77 – 2.62 (m, 2.0H), 2.55 (dd, J = 13.0, 6.8 Hz, 0.70H), 2.41 (d, J = 14.4 Hz, 0.30H), 2.28 (dd, J = 13.7, 10.3 Hz, 0.30H), 2.18 – 2.02 (m, 1.70H), 1.33 (s, 2.10H), 1.30 (s, 0.90H).


¹³C NMR (101 MHz, CDCl₃) δ 174.9, 174.2, 173.1, 171.9, 171.7, 171.4, 132.1, 131.9, 118.2, 118.0, 82.1, 81.7, 72.1, 71.7, 65.7, 65.6, 58.9, 58.1, 53.7, 53.1, 53.1, 53.0, 52.9, 51.9, 43.8, 43.7, 41.4, 39.8, 39.3, 37.9, 29.7, 23.1, 20.5.


DART-TOF LC/MS m/z calcd. for C₁₆H₂₄NO₆ [M+NH₄⁺] 326.1604, found 326.1602.


7. Reference


- 1. Fujihashi, M.; Ishida, T.; Kuroda, S.; Kotra, L. P.; Pai, E. F.; Miki, K. Substrate Distortion Contributes to the Catalysis of Orotidine 5'-Monophosphate Decarboxylase. *J. Am. Chem. Soc.* **2013**, *135*, 17432-17443.
- 2. Ding, S.; Cao, S.; Zhu, A.; Shi, G. Wettability Switching of Electrode for Signal Amplification: Conversion of Conformational Change of Stimuli-Responsive Polymer into Enhanced Electrochemical Chiral Analysis. *Anal. Chem.* **2016**, *88*, 12219 -12226.
- (a) Hashimoto, T.; Kawamata, Y.; Maruoka, K. An organic thiyl radical catalyst for enantioselective cyclization. *Nat. Chem.* 2014, 6, 702-705. (b) Emmett, M. R.; Kerr, M. A. Nucleophilic ring opening of cyclopropane hemimalonates using internal Brønsted acid activation. *Org. Lett.* 2011, *13*, 4180-4183. (c) Seiji, Y.; Akiko, A.; Naoko, K.; Keiko, H.; Hajime, Y.; Yoshiro, H. *Bull. Chem. Soc. Jpn.* 1997, 70, 215-2219. (d) Pierre L. Beaulieu, P. L.; Gillard, J.; Bailey, M. D.; Boucher, C.; Duceppe, J.-C.; Simoneau, B.; Wang, X.-J.; Zhang, L.; Grozinger, K.; Houpis, I.; Farina, V.; Heimroth, H.; Krueger, T.; Schnaubelt, J. Synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid vinyl-ACCA derivatives: key intermediates for the preparation of inhibitors of the hepatitis C virus NS3 protease. *J. Org. Chem.* 2005, 70, 5869-5879. (e) Umeyama, T.; Naka, K.; Chujo, Y. Radical copolymerization of cyclic diarsine with vinyl monomers. *J. Polym. Sci., Part A: Polym. Chem.* 2004, 42, 3023-3028.


8. NMR Spectra

