
Supplementary Material

Variational inference

We rewrite p(Xi(t)|zi(t),σ2,ψ) as p(Xi(t)|zi(t0), θODE ,σ
2,ψ). Assuming independence between subjects, the marginal

log-likelihood writes as:

L =

N∑
i

log
[
p(Xi(t)|θODE ,σ

2,ψ)
]

=

N∑
i

log
[ ∫

p(Xi(t)|zi(t0), θODE ,σ
2,ψ)p(zi(t0))dzi(t0)

]
.

(1)

For ease of notation, we drop the i index, and dependence on t and t0 is made implicit. Within a Bayesian framework,
we wish to maximize L in order to obtain a posterior distribution for the latent variable z. Since derivation of this
quantity is generally not tractable, we resort to stochastic variational inference to tackle the optimization problem. We
assume a N(0, I) prior for p(z), and introduce an approximate posterior distribution q(z|X) [1], in order to derive a
lower-bound (ELBO) E for the marginal log-likelihood:

log p(X|θODE ,σ
2,ψ) ≥ Eq(z|X)

[
log p(X|z, θODE ,σ

2,ψ)
]

−D
[
q(z|X)|p(z)

]
= E,

(2)

where D refers to the Kullback-Leibler (KL) divergence. We propose to factorize the distribution q(z|X) across
modalities such that, q(z|X) =

∏
m q(zm|xm), where q(zm|xm) = N( f (xm, φ1

m), h(xm, φ2
m)), is a variational Gaussian

approximation with moments parameterized by the functions f and h. This modality-wise encoding of the data
enables to interpret each coordinate of z as a compressed representation of the corresponding modality. Moreover, the
lower-bound simplifies as:

E =
∑

m

Eq(z|X)

[
log p(xm|z, θODE , σ

2
m, ψm)

]
−D

[
q(zm|xm)|p(zm)

]
. (3)

Details about the ELBO derivation and the computation of the KL divergence are given in sections Lower bound and
KL divergence of this document. A graphical model of the method is also provided in Supplementary figure 1, while
Supplementary algorithm 1 details the steps to compute the ELBO.

Model optimization

Using the reparameterization trick [2], we can efficiently sample from the posterior distribution q(z(t0)|X(t0)) to
approximate the expectation terms. Moreover, thanks to our choices of priors and approximations the KL terms can be
computed in closed-form. In practice, we sample from q(z(t0)|X(t0)) to obtain a latent representation z(t0) at baseline,
while the follow-up points are estimated by decoding the latent time-series obtained through the integration of the
ODEs of Eq ?? (in the main manuscript). The model is trained by computing the total ELBO for all the subjects at all
the available time points. The parameters ψ,φ1,φ2, θODE ,σ are optimized using gradient descent, which requires to
backpropagate through the integration operation.

In order to enable backpropagation through the ODEs integration we need to numerically solve the differential equation
using only operations that can be differentiated. In this work, we used the Midpoint method which follows a second
order Runge-Kutta scheme. The method consists in evaluating the derivative of the solution at (ti+1 + ti)/2, which is the
midpoint between ti at which the correct z(t) is evaluated, and the following ti+1:
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∫ ti+1

ti
g(z(x))dx ≈ h · g

(
z(

ti + ti+1

2
)
)

≈ h · g
(
z(ti) +

h
2

g(z(ti))
)
, h = ti+1 − ti.

(4)

Therefore, solving the system of Equation ?? (in the main manuscript) on the interval [t0, ..., t] only requires operations
that can be differentiated, allowing to compute the derivatives of the ELBO with respect to all the parameters, and
to optimize them by gradient descent. Moreover, in order to control the variability of the estimated latent trajectory
z(t) due to the error propagation during integration, we initialized the weights of φ1 and φ2 such that the approximate
posterior of the latent representation for each modality m at baseline was following a N(0, 0.01) distribution. Finally,
we also tested other ODE solvers such as Runge-Kutta 4, which gave similar results than the Midpoint method with a
slower execution time due its more expensive approximation scheme.

Concerning the implementation, we trained the model using the ADAM optimizer [3] with a learning rate of 0.01. The
functions f , h and µm were parameterized as linear transformations. The model was implemented in Pytorch [4], and
we used the torchdiffeq package developed in [5] to backpropagate through the ODE solver.

Lower bound

We provide here the detailed derivation to obtain the ELBO of Equation 3.

log p(X|σ2,ψ) = log
[ ∫

p(X|z, θODE ,σ
2,ψ)p(z)dz

]
= log

[ ∫
p(X|z, θODE ,σ

2,ψ)p(z)
q(z|X)
q(z|X)

dz
]

= log
[
Eq(z|X)

p(X|z, θODE ,σ
2,ψ)p(z)

q(z|X)

]
Jensen
≥ Eq(z|X)

[
log

p(X|z, θODE ,σ
2,ψ)p(z)

q(z|X)

]
= Eq(z|X)

[
log p(X|z, θODE ,σ

2,ψ)
]
−D

[
q(z|X)|p(z)

]
= E.

(5)

Given that:

p(X|z, θODE ,σ
2,ψ) =

∏
m

p(xm|z, θODE , σ
2
m, ψm), q(z|X) =

∏
m

q(zm|X), and, p(z) = N(0, I).

We obtain:

E =
∑

m

Eq(z|X)

[
log p(xm|z, θODE , σ

2
m, ψm)

]
−D

[
q(zm|xm)|p(zm)

]
. (6)

KL divergence

We have that:

q(zm|X) = N( f (xm, φ1
m), h(xm, φ2

m)),
p(zm) = N(0, 1).

(7)
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We use the closed-form formula to calculate the KL divergence between two normal distributions:

D
[
q(z|X)|p(z)

]
=

∑
m

D
[
q(zm|xm)|p(zm)

]
=

1
2

∑
m

[
− log(h(xm, φ2

m)) − 1 + h(xm, φ2
m) + f (xm, φ1

m)2
] (8)

Graphical model

Supplementary figure 1 below provides the graphical model illustrating the method presented in Section Materials and
methods.
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Supplementary figure 1: Graphical model of the proposed method.

Lower-bound computation

Supplementary algorithm 1 below details the steps to compute the lower-bound for a given subject i at time t.

Supplementary algorithm 1 Forward pass to compute the lower-bound for a given subject i at time t.

1: function compute elbo(X(t),X(t0), θODE ,ψ,φ,σ
2)

For ease of notation we drop the i index in the pseudo-code.
2: Sample z(t0) ∼ q(z(t0)|X(t0)) =

∏
mN( f (xm(t0), φ1

m), h(xm(t0), φ2
m)) . Baseline latent representation

(reparameterization trick).
3: Compute z(t) = MIDPOINT (z(t0), g, θODE , t) . Predict latent representation at time t by numerically solving

the ODEs system.
4: Compute Eq(z(t0)|X(t0))

[
log p(xm(t)|z(t), θODE , σ

2
m, ψm)

]
≈ −

Dm
2 log(2πσ2

m) − 1
2σ2

m
||xm(t) − µm(z(t))||2 .

Expectation term Equation 3.
5: ComputeD

[
q(zm(t0)|xm(t0))|p(zm(t0))

]
= 1

2

[
− log(h(xm(t0), φ2

m)) − 1 + h(xm(t0), φ2
m) + f (xm(t0), φ1

m)2
]

. KL
divergence Equation 3.

6: Compute E =
∑

m Eq(z(t0)|X(t0))

[
log p(xm(t)|z(t), θODE , σ

2
m, ψm)

]
−D

[
q(zm(t0)|xm(t0))|p(zm(t0))

]
.

7: Return E
8: end function
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Time-shift comparison and validation

We compared our estimated disease severity (Figure 3 right in the manuscript) with the one obtained applying the
monotonic Gaussian Process (GP) model of [6] from the state-of-the-art (Supplementary figure 2A). While both
methods estimate significant time differences when going from healthy to pathological stages, our approach captures
a larger temporal variability for both earlier and later stages of the disease, as shown in Supplementary figure 2B,
highlighting a stronger separability across clinical stages.
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Supplementary figure 2: A: Distribution of the disease severity estimated by the monotonic GP method [6] on the training set. NL: normal individuals,
MCI: mild cognitive impairment, AD: Alzheimer’s dementia. B: Comparison of the disease severity estimated by SimulAD with respect to the one
estimated by the monotonic GP.

We also assessed the model on an independent testing cohort from the ADNI composed of 130 NL stable, 10 NL
converters, 125 MCI stable, 7 MCI converters, and 12 AD subjects which were not necessarily amyloid positive. It
is important to note that no PET-FDG data was available for these subjects. We provide in Supplementary table 1
socio-demographic and clinical information for the testing cohort across the different clinical groups. Despite the fact
that no FDG data was used to estimate the disease severity, we observe in Supplementary figure 3 that the method
still exhibits good separating performances between clinical stages, coherently with the clinical status of the testing
individuals.

Supplementary table 1: Baseline socio-demographic and clinical information for testing cohort (284 subjects for 2116 data points). Average values,
standard deviation in parenthesis. NL: normal individuals, MCI: mild cognitive impairment, AD: Alzheimer’s dementia. ADAS11: Alzheimer’s
Disease Assessment Scale-cognitive subscale, 11 items. AV45: (18)F-florbetapir Amyloid PET imaging. SUVR: Standardized Uptake Value Ratio.

NL stable NL converters MCI stable MCI converters AD
N 130 10 125 7 12

Age (yrs) 72 (6) 74 (8) 71 (8) 73 (9) 78 (6)
Education (yrs) 17 (2) 16 (2) 16 (3) 14 (3) 17 (2)

ADAS11 5.4 (2.8) 7.7 (4.1) 7.8 (3.3) 14.3 (5.2) 15.0 (6.7)
WholeBrain (cm3) 1063 (103) 1104 (98) 1054 (97) 966 (104) 1010 (108)

AV45 (SUVR) 0.9 (0.1) 1.0 (0.1) 1.0 (0.1) 1.1 (0.2) 1.2 (0.3)

Simulated clinical endpoints

We provide in Supplementary table 2 the estimated values for each clinical score at predicted conversion time for the
normal progression case when performing the simulations presented in Section Simulating clinical intervention.
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Supplementary figure 3: Distribution of the disease severity estimated for the subjects of the testing set, relatively to the long-term dynamics of
Figure 2 panel II) (left) in the manuscript. NL: normal individuals, MCI: mild cognitive impairment, AD: Alzheimer’s dementia.

Supplementary table 2: Estimated mean (standard deviation) of the clinical outcomes at predicted conversion time for the normal progression case by
year of simulated intervention (100% and 50% amyloid lowering interventions). Results in bold indicate a statistically significant difference between
placebo and treated scenarios (p<0.01, two-sided t-test, 100 cases per arm). AD: Alzheimer’s dementia, ADAS11: Alzheimer’s Disease Assessment
Scale, MMSE: Mini-Mental State Examination, FAQ: Functional Assessment Questionnaire, RAVLT: Rey Auditory Verbal Learning Test, CDRSB:
Clinical Dementia Rating Scale Sum of Boxes.

Amyloid lowering intervention 100%
Score per intervention time

Score
Years to AD

−20 −15 −12.5 −10 −5 −3 −2 −1

ADAS11 7.8 (8.9) 13.7 (5.9) 15.9 (5.0) 17.3 (4.5) 18.6 (4.2) 18.8 (4.1) 18.8 (4.1) 18.9 (4.1)
MMSE 28.3 (3.8) 25.7 (2.5) 24.8 (2.1) 24.2 (2.0) 23.6 (1.8) 23.5 (1.8) 23.5 (1.8) 23.5 (1.8)
FAQ 2.3 (7.9) 7.5 (5.2) 9.3 (4.5) 10.5 (4.0) 11.7 (3.7) 11.8 (3.7) 11.9 (3.7) 11.9 (3.7)
RAVLT immediate 39.2 (12.7) 31.0 (8.4) 28.1 (7.1) 26.1 (6.4) 24.3 (5.8) 24.0 (5.7) 23.9 (5.7) 23.9 (5.7)
RAVLT learning 4.9 (2.2) 3.4 (1.5) 2.9 (1.2) 2.6 (1.1) 2.2 (1.0) 2.2 (1.0) 2.2 (1.0) 2.2 (1.0)
RAVLT forgetting 49.9 (29.8) 69.4 (19.7) 76.6 (16.8) 81.3 (15.1) 85.9 (13.7) 86.6 (13.5) 86.9 (13.4) 87.0 (13.4)
CDRSB 1.0 (2.8) 2.9 (1.9) 3.6 (1.6) 4.0 (1.5) 4.4 (1.4) 4.5 (1.3) 4.5 (1.3) 4.5 (1.3)

Amyloid lowering intervention 50%
Score per intervention time

Score
Years to AD

−20 −15 −12.5 −10 −5 −3 −2 −1

ADAS11 14.0 (5.9) 16.6 (4.8) 17.6 (4.5) 18.3 (4.4) 18.9 (4.2) 19.0 (4.2) 19.0 (4.2) 19.0 (4.2)
MMSE 25.6 (2.5) 24.5 (2.1) 24.0 (2.0) 23.7 (1.9) 23.5 (1.8) 23.4 (1.8) 23.4 (1.8) 23.4 (1.8)
FAQ 7.7 (5.2) 10.0 (4.3) 10.8 (4.1) 11.4 (3.9) 11.9 (3.7) 12.0 (3.7) 12.0 (3.7) 12.0 (3.7)
RAVLT immediate 30.5 (8.3) 27.0 (6.8) 25.6 (6.4) 24.7 (6.1) 23.8 (5.8) 23.7 (5.8) 23.6 (5.8) 23.6 (5.8)
RAVLT learning 3.3 (1.5) 2.7 (1.2) 2.5 (1.1) 2.3 (1.1) 2.2 (1.0) 2.1 (1.0) 2.1 (1.0) 2.1 (1.0)
RAVLT forgetting 70.9 (19.5) 79.4 (16.1) 82.7 (15.0) 84.9 (14.3) 87.1 (13.7) 87.4 (13.6) 87.6 (13.6) 87.6 (13.6)
CDRSB 3.0 (1.9) 3.8 (1.6) 4.1 (1.5) 4.3 (1.4) 4.5 (1.4) 4.5 (1.4) 4.6 (1.4) 4.6 (1.4)
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