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S1. Psychometric Reliability as a Measure of Data Quality 

Some studies have quantified ERP data quality using correlation-based measures of 

reliability (e.g., Cronbach’s alpha, split-half reliability). We will call these psychometric 

measures of reliability to distinguish them from metrics of reliability used in other fields (see 

Brandmaier et al., 2018). In this section, we describe three limitations of these measures in the 

context of ERP data quality. 

One key limitation of psychometric reliability (as it is usually computed) is that it 

provides a single value for an entire group rather than providing a separate index of data quality 

for each participant. Thus, it does not meet one of the three key criteria for metrics of data 

quality described in Section 1.1 of the main text. 

A second limitation of psychometric reliability is that it is influenced by factors beyond 

the quality of an individual participant’s data. As discussed in Section 6.2 of the main text, 

psychometric reliability is typically defined as the proportion of total variance across participants 

that is due to true score variance (and therefore not due to measurement error). Consequently, if 

the true score variance decreases but the measurement error remains the same, psychometric 

reliability decreases (i.e., a lower proportion of the total variance is the result of true score 

variance). For example, if you sample from a more homogeneous population, this will decrease 

the true score variance, and this will in turn decrease the reliability. Thus, psychometric 

measures of reliability reflect the properties of the sample of participants and not just the quality 

of the single-participant data. 

A third limitation of psychometric reliability is that its relationship to statistical power is 

not straightforward for comparisons of group or condition means (e.g., in t tests and ANOVAs). 

For example, Hedge et al. (2018) showed that many widely used behavioral paradigms yield low 

psychometric reliability (because of low true score variance) but also produce high statistical 

power for within-subjects effects. Conversely, Thigpen et al. (2017) found that the number of 

trials needed to obtain acceptable reliability in an ERP paradigm was far lower than the number 

of trials needed to obtain satisfactory effect sizes for within-subjects comparisons. Together, 

these studies indicate that when group or condition means are being compared, low reliability 

may be accompanied by large effect sizes, and high reliability may be accompanied by small 

effect sizes. By contrast, the SME can be directly related to effect sizes in these cases (see 

Section 6 of the main text). Thus, although psychometric reliability plays a straightforward and 

important role in correlational studies of individual differences, it is not well suited as a universal 

metric of data quality for averaged ERPs. 

S2. Plotting the SEM at Each Time Point in an Averaged ERP Waveform 

The 𝑆𝐸�̂� is sometimes shown for each time point in a grand average ERP waveform. 

This is illustrated in Figure S1A, which shows the data from the oddball trials in a simple oddball 

experiment with 80 standard trials and 20 oddball trials for each participant (see Section S3 for a 

description of the experimental design). The averaged ERP waveforms from each individual 

participant are shown at the top, and the grand average waveforms across participants are shown 

at the bottom. The grand average at a given point in time is simply the mean of the single-

participant averaged ERP waveforms at that point in time, and the 𝑆𝐸�̂� for that point in time can 

be computed with Equation 1: we simply calculate the 𝑆�̂� of the single-participant voltages at 

that point in time and divide by the square root of the number of participants. The shading 
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around each grand average ERP waveform represents this 𝑆𝐸�̂� value. We call this the single-

point group SEM. 

The single-point group SEM can be useful as a visualization tool, but it is not a good metric of 

data quality because it is influenced by both variability due to noise in the single-participant ERP 

waveforms (because noisier single-participant data will lead to more variability among 

participants in their averaged ERP waveforms). In addition, it does not meet the first two criteria 

described in Section 1.1 of the main manuscript: it tells us about an entire group rather than an 

individual participant, and it tells us about individual time points rather than our dependent 

variable (which might be the time-window mean amplitude or the peak latency between 300 and 

500 ms). 

We can solve the first of these problems by computing the 𝑆𝐸𝑀 ^ at each time point in a 

single-participant averaged ERP waveform rather than in a grand average. This is illustrated in 

Figure S1B, which shows the single-trial EEG epochs from a single participant (top), along with 

the average across trials (bottom). To obtain the 𝑆𝐸�̂� at a given time point using Equation 1, we 

simply find the voltage at that time point on each trial, calculate the 𝑆�̂� across trials, and divide 

by the square root of the number of trials. We call this the single-point single-participant SEM. 

Figure S1. Example of two ways of conceptualizing the standard error of the mean (SEM) for ERP 

waveforms in an oddball experiment. (A) Single-point group SEM. The averaged ERP waveforms 

from the standard and oddball trials are shown for each of the 12 participants at the top, and the grand 
averages of these ERP waveforms are shown at the bottom. The shaded areas around the grand 

averages show the range of voltages that fall within ±1 𝑆𝐸𝑀^ of the mean at each time point. For 

example, the  𝑆𝐸𝑀^ at 500 ms was estimated by measuring the voltage at 500 ms in each of the single-

participant oddball ERPs and applying Equation 1 to these values. (B) Single-point single-participant 

SEM. A subset of the single-trial EEG epochs from a single participant are shown at the top, and the 

averaged ERP waveforms for this participant are shown at the bottom. The shaded region shows ±1  

𝑆𝐸𝑀^ , where the 𝑆𝐸𝑀 ^ is estimated by applying Equation 1 to the single-trial voltages at a given time 

point. Note that the 𝑆𝐸𝑀^ 𝑠 are much smaller in (B) than in (A), and this is partly because the number 

of trials (N in the denominator of Equation 1 for the data in B) is much larger than the number of 

participants (N in the denominator of Equation 1 for the data in A). 
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Unlike the single-point group SEM shown in Figure S1A, the single-point single-

participant SEM shown in Figure S1B reflects trial-to-trial variability with no influence of 

subject-to-subject variability, and it could therefore be used as a metric of data quality. However, 

it does not satisfy the second of our three criteria, because it does not reflect the expected error 

for the actual amplitude or latency score that we will put into our statistical analyses (unless we 

happen to be using the voltage at a single time point as our dependent variable, which would be 

quite unusual). For example, if we quantified P3 amplitude as the time-window mean amplitude 

from 300-500 ms, the error in this score is not the average of the single-point SEM values 

between 300 and 500 ms. In particular, high-frequency noise would have a large impact on the 

single-point SEM values but would have relatively little impact on the time-window mean 

amplitude from 300-500 ms (see Figure 1B). 

S3. Description of Example Oddball Study 

Some of the examples in this paper use data from a previously published oddball 

experiment (Kappenman & Luck, 2010). In this experiment, 12 neurotypical adult participants 

saw a sequence of alphanumeric characters and pressed one of two buttons to indicate whether a 

given stimulus was a letter or a digit. One of these two categories occurred frequently 

(standards, 80% of stimuli) and the other occurred infrequently (oddballs, 20% of stimuli). This 

experiment included an unusually large number of trials, and to simulate a more typical number 

of trials, we used only the first 20 artifact-free oddballs and the first 80 artifact-free standards per 

participant. Note that Cohen and Polich (1997) concluded that 20 trials is sufficient to obtain a 

stable measure of P3 amplitude (but see Boudewyn, Luck, Farrens, & Kappenman, 2018). We 

also provide data in which all the trials are included at https://doi.org/10.18115/D58G91, and 

trials with artifacts are marked so that they can be explicitly excluded during averaging (and 

during calculation of the 𝑆�̂�𝐸). This experiment also manipulated the electrode impedances to 

influence the data quality. Here, we show only the data from the low-impedance electrode sites. 

S4. Overview of Bootstrapping 

Bootstrapping is a simple but powerful approach for estimating standard errors, but it 

seems a little mystical at first. Here, we provide a simple overview. We begin by describing how 

it would work in the case of reaction time (RT), and then we describe how to extend it to ERPs. 

A Reaction Time Example 

Imagine that we are conducting an experiment in which we obtained a single-trial RT 

value on each of 20 trials for a given participant, and we want to know the standard error of the 

mean (SEM) for this participant. We could just use the analytic SEM formula (Equation 1 in the 

main text), but we could also use bootstrapping. And once we understand how bootstrapping 

works for this simple case, we can extend it to other scores for which Equation 1 does not apply. 

 First, however, let’s review what the SEM actually means, which is most naturally 

expressed in terms of the empirical approach to estimating the SEM. Figure S2-A illustrates the 

empirical approach, in which we assume that there is an underlying infinite distribution of RTs 

for a given participant. Every time we run the experiment with this participant, we are sampling 

20 trials from this distribution and computing the mean of those 20 trials. We would repeat the 

https://doi.org/10.18115/D58G91i
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same experiment 10,000 times1 with this participant, each time getting 20 single-trial RTs and 

computing the mean RT of these 20 trials. We would save each of these mean RTs so that we can 

construct the sampling distribution of the mean RT, which is shown as the histogram at the top 

of Figure S2-A. The 𝑆𝐸�̂� is defined as the 𝑆𝐷 ̂ of the 10,000 mean RT values. More generally, 

the standard error of a measure is the SD of the sampling distribution for that measure. 

It is not practical to repeat an experiment over and over again with a given participant, 

and bootstrapping uses a clever trick that allows us to simulate repeating the experiment multiple 

times. The trick is to use the observed set of 20 RTs as an approximation of the infinite 

distribution of RTs. To simulate a single experiment, we would randomly sample 20 single-trial 

RTs with replacement from that set of 20 observed single-trial RTs. We would repeat this 

procedure many times (e.g., 10,000 times) to simulate many experiments, saving the mean RT 

for each simulated experiment. In other words, whereas the empirical approach involves 

randomly sampling 20 trials from a hypothetical infinite distribution of single-trial RTs for each 

of 10,000 actual experiments, we instead randomly sample 20 trials from the set of 20 trials we 

actually have from this participant and then compute the mean RT for each simulated 

experiment. 

To avoid getting the same set of 20 trials (and therefore the same sample mean) on each 

of the iterations, we must sample with replacement from our set of 20 observed single-trial RTs. 

On any given iteration, some of the 20 trials would not get selected, and others would selected 

twice or even more than twice. However, if we believe that we’ve selected 20 trials at random 

from an infinite set of RTs when we collected our actual data2, then these 20 trials will reflect the 

properties of the infinite set of RTs. As a result, if we sample 20 trials with replacement from the 

observed set of 20 RTs, the result will be an approximation of what we would get if we sampled 

20 brand-new trials from the infinite population of RTs. It’s only an approximation, but in 

practice it works well as long as we have a reasonable number of observed trials. A minimum of 

8 trials is recommended to avoid identical random samples on different iterations (Chernick, 

2011). 

As illustrated in Figure S2-B, the process of estimating the SEM with bootstrapping is 

exactly the same as the empirical approach, except that each of our 10,000 iterations involves 

sampling 20 trials with replacement from the 20 observed single-trial RTs (instead of sampling 

from the hypothetical infinite population of RTs). That is, for each iteration, we sample 20 trials 

from our 20 observed single-trial RTs, get the mean of those 20 trials, and save that mean value 

to get the sampling distribution. This gives us a sampling distribution composed of 10,000 mean 

RTs. The 𝑆𝐷 ̂ of these 10,000 mean RTs is then an estimate of the standard error of the single-

participant mean RT. 

You might think that you could just sample 10 of the 20 trials on each of the 10,000 

iterations. However, if we took the mean of 10 trials instead of the mean of 20 trials, the set of 

10,000 means would be more variable than the mean of 20 trials. Thus, the number of trials 

 
1 We are using 10,000 replications in our examples, but there is nothing special about this particular 

number (although it is commonly used in bootstrapping). 
2 When trials are sampled over time from an individual participant, the samples are not independent, and 

there may be sequential dependencies in the samples (e.g., as a result of learning or fatigue). Both the 

bootstrapped SEM and the analytic SEM assume that the samples are independent, so the procedure 

described here is only approximate. This is described in more detail in the Section S6. 
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selected on each iteration must be exactly the same as the number of trials in our observed set of 

single-trial values. 

Although this may seem like an odd approach, it has been very well established and is 

widely used in many areas of science (Boos, 2003; Efron & Tibshirani, 1994). Moreover, when 

applied to the mean across trials it provides an estimate of the same standard error that we would 

get by using Equation 1. That is, if we use bootstrapping to get 10,000 mean RTs, and we take 

the 𝑆𝐷 ̂ of these 10,000 mean RTs, we will get approximately the same value (on average) that 

we would get by taking the 20 observed single-trial RTs and using Equation 1 to estimate the 

standard error of the mean RT. These are just two different ways of estimating the standard error 

from the same data. Indeed, bootstrapping is more directly related to actual meaning of the 

standard error, because it is the 𝑆𝐷 ̂ of a sampling distribution. 

Whereas the analytic SEM formula (Equation 1 in the main text) can be applied only to 

means, bootstrapping can provide an estimate of the standard error of other measures. For 

Figure S2. Example of using the empirical approach (A) and bootstrapping (B) to estimating the 

standard error of the mean of 20 reaction times. 
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example, bootstrapping could be used to estimate the standard error of the median. To do this, 

you would sample 20 RTs with replacement from the observed set of 20 RTs and take the 

median of these 20 RTs (instead of the mean). You would then repeat this 10,000 times, 

calculating the median of a new random sample of 20 RTs on each iteration, and then compute 

the 𝑆𝐷 ̂ of these 10,000 median RTs. This would give you the standard error of the median3. You 

can use bootstrapping to estimate the standard error of virtually any value that is obtained by 

combining data from multiple trials. 

How Bootstrapping Works with ERPs 

Bootstrapping can also be used to estimate the standard error of estimate for virtually any 

ERP amplitude or latency score. First, consider how it would work if we used the time-window 

mean amplitude from 300-500 ms to score P3 amplitude for the oddballs in an experiment with 

20 oddball trials. As shown in Figure S3-A, the empirical approach to estimating the SEM 

involves getting the single-trial EEG epochs for 20 oddball trials from an infinite population of 

single trials, averaging them together to get an averaged ERP waveform, computing the time-

window mean amplitude from 300-500 ms from this averaged ERP waveform, and then saving 

this score. We would then repeat this 10,000 times to get 10,000 P3 amplitude scores. The 𝑆𝐷 ̂ of 

these 10,000 scores would be the standard error of the time-window mean P3 amplitude.  

Because we do not actually have access to an infinite population of single trials, we can 

sample 20 trials with replacement from the set of 20 trials that we actually recorded, as 

illustrated in Figure S3-B. That is, we take our 20 single-trial EEG epochs, randomly sample 20 

of them with replacement (so that we don’t just get the same 20 trials every time), make an 

averaged ERP waveform from these 20 trials, and calculate the time-window mean voltage from 

300-500 ms in this waveform. We then repeat this 10,000 times, taking a new random set of 20 

single-trial EEG epochs to create the averaged ERP waveform for each iteration, and then 

compute the 𝑆𝐷 ̂ of the scores obtained from each of the 10,000 averaged ERP waveforms. This 

gives us the standard error of the time-window mean amplitude. 

For the time-window mean amplitude score, we could instead use Equation 1 to estimate 

the SME, which would be far simpler and faster than bootstrapping. In practice, bootstrapping 

would be used for other types of scores. 

For example, we could score the P3 peak latency (e.g., the latency of the maximum 

voltage between 200 and 800 ms) from the averaged ERP waveform in each iteration of the 

bootstrap procedure. The end result would then be the standard error of the peak latency. 

Moreover, bootstrapping can be applied to scores that require multiple processing steps between 

averaging across trials and obtaining a score. For example, if filtering or averaging across 

channels is performed after averaging but before scoring, Equation 1 cannot be used to estimate 

the SME of the time-window mean amplitude, and bootstrapping would be necessary. Another 

example is scores that must be obtained from combinations of waveforms (e.g., the onset time of 

a component measured from a difference wave). 

 
3 There is also an analytic solution for estimating the standard error of the median from a set of single-

trial values. However, analytic solutions are not available for all measures, and we know of no analytic 

equation for estimating the standard error of common ERP measures such as peak amplitude and peak 

latency. 
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S5. Example SME Values 

To provide concrete examples, we obtained 𝑆𝑀𝐸^  values for the amplitude and latency of 

the P3 wave in each participant in the oddball study described in Section S3. Specifically, we 

obtained both the analytic and bootstrapped 𝑆𝑀𝐸^  values for the time-window mean amplitude 

score, and we obtained bootstrapped 𝑆𝑀𝐸^  values for peak amplitude and peak latency scores. 

The time window was 300–500 ms for all scores. We used 10,000 iterations for each 

bootstrapped 𝑆𝑀𝐸^  calculation. 

The single-participant scores and 𝑆𝑀𝐸^  values are provided in Table 1 of the main paper, 

along with group means, group standard deviations, and RMS(𝑆𝑀𝐸^ ) values. We would like to 

stress that these values are from a small number of participants in a single experimental 

paradigm, and they are not intended to serve as typical or normative values. However, they are 

Figure S3. Example of using the empirical approach (A) and bootstrapping (B) to estimating the 

standard error of the mean of the P3 amplitude score from an ERP waveform constructed by 

averaging together 20 single-trial EEG epochs. 
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useful in illustrating some important properties of the SME. For example, Table 1 shows that the 

analytic and bootstrapped SME values are nearly identical to each other for the time-window 

mean amplitude. 

The data in Table 1 also illustrate how RMS(𝑆𝑀𝐸^ ) values can be compared to sample 𝑆�̂� 

values when assessing the aggregate data quality in an experiment. For the standards, the group 

mean of the time-window mean amplitude scores was 4.38 µV (𝑆�̂�𝑇𝑜𝑡𝑎𝑙 = 2.44) with an 

RMS(𝑆𝑀𝐸^ ) of 1.13 µV for the standards. For the oddballs, the group mean was 7.18 µV 

(𝑆�̂�𝑇𝑜𝑡𝑎𝑙 = 3.78) with an RMS(𝑆𝑀𝐸^ ) of 2.15 µV. Thus, the RMS(𝑆𝑀𝐸^ ) values were 

approximately half as large as the 𝑆�̂�𝑇𝑜𝑡𝑎𝑙 values. Using Equation 7, we can also estimate 

𝑆�̂�𝑇𝑟𝑢𝑒 for these data, yielding a value of 2.16 µV for the standards and 3.11 µV for the 

oddballs.  

 

 

 

The fact that the RMS(𝑆𝑀𝐸^ ) values were lower than the 𝑆�̂�𝑇𝑟𝑢𝑒 values indicates that the 

contribution of measurement error to the observed variability in scores across participants was 

not as great as the contribution of true differences among participants. The power calculator 

Figure S4. ERP waveforms from the parietal electrode sites, averaged separately across either the 

standard or oddball trials. Waveforms are shown for each participant as well as for the grand average 

across participants. 
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provided by Baker et al. (2020) would allow you to determine the extent to which improving the 

data quality (e.g., by increasing or decreasing the number of trials) would increase the estimated 

statistical power given these RMS(𝑆𝑀𝐸^ ) values4. 

Table 1 also shows that the RMS(𝑆𝑀𝐸^ ) values are larger for the peak amplitude than for 

the time-window mean amplitude. This is consistent with previous claims that peak amplitude 

measures are more noise-sensitive than mean amplitude measures (Clayson, Baldwin, & Larson, 

2013; Luck, 2014). 

For both time-window mean amplitude and peak amplitude, the 𝑆𝑀𝐸^  values are 

approximately twice as great for the oddballs as for the standards. As described in Section S6, 

this is consistent with the idea that the signal-to-noise ratio is related to the square root of the 

number of trials, combined with the fact that there were four times as many trials for the 

standards as for the targets. 

Figure S4 shows the averaged ERP waveforms for each individual participant so that the 

visual appearance of the waveforms can be compared with the single-participant 𝑆𝑀𝐸^  values in 

Table 1. Interestingly, the waveforms that “look” noisiest are not the waveforms with the largest 

𝑆𝑀𝐸^  values. For example, the waveforms look smoother for Subject 1 than for Subject 2, but the  

𝑆𝑀𝐸^  value for the time-window mean amplitude was worse (greater) for Subject 1. Similarly, 

the waveforms from Subject 3 look much noisier than the waveforms from Subject 5, but Subject 

3 had a much better (smaller) 𝑆𝑀𝐸^  value than Subject 5. 

Why might there be this dissociation between subjective appearance of noise in the 

waveforms and the objective 𝑆𝑀𝐸^  values? Previous research (Kappenman & Luck, 2010; 

Tanner, Morgan-Short, & Luck, 2015) suggests that low-frequency drifts have a large impact on 

statistical power for slow components like the P3 wave. However, it is difficult to see low-

frequency noise in averaged ERP waveforms (although some drift can be seen in the baseline 

period of Subject 1’s waveforms). To make it possible to visualize differences in low-frequency 

noise, Figure S5 shows the first ten single-trial EEG epochs for the standards in Subjects 1, 2, 3, 

and 5. Subjects 1 and 5 clearly had much larger low-frequency drifts in their data than Subjects 2 

and 3, and this explains why the SME values were worse for Subjects 1 and 5. In other words, 

the low-frequency drifts for Subjects 1 and 5 created substantial trial-to-trial variability in the P3 

time window, making it difficult to estimate the true P3 amplitude for these subjects from their 

averaged ERP waveforms.  

Although these are merely anecdotal examples, they demonstrate how SME values may 

provide valuable objective information that is not obvious from visual inspection of the 

waveforms. Moreover, the 𝑆𝑀𝐸^  values quantify the precision of the actual scores that are used in 

the statistical analyses of a study, whereas the noise that is most visually salient in the 

waveforms does not always have much impact on the statistical power of these analyses. 

 

 
4 Note, however, that a statistical comparison between the standards and oddballs would be a within-

subjects comparison, so the covariance between conditions would also be important. As a result, it may be 

valuable to score the P3 amplitude from oddball-minus-standard difference waves and use bootstrapping 

to estimate the SME for this difference score. 
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S6. SME and the Signal-to-Noise Ratio 

ERP methodology papers and books often note that the signal-to-noise ratio (SNR) of an 

ERP waveform increases as a linear function of the square root of the number of trials being 

averaged together (Luck, 2014; Picton, 2011; Regan, 1977; Thigpen et al., 2017). However, it is 

not always clear what is meant by signal and what is meant by noise. We can now provide a 

precise and flexible definition of the SNR by defining the “signal” as the amplitude or latency 

score we are using as our dependent variable (measured from a single-participant averaged ERP 

waveform) and the “noise” as the measurement error of this score (i.e., the SME for that score). 

We can express this simply as 

𝑆𝑁𝑅 =
𝑆𝑐𝑜𝑟𝑒

𝑆𝑀𝐸
  

which can be estimated as 

𝑆𝑁𝑅^ =
𝑆𝑐𝑜𝑟𝑒^

𝑆𝑀𝐸^
  

If our score is simply the voltage at a single time point in an averaged ERP waveform, 

then this voltage is the “signal,” and the “noise” is the standard error of this signal and can be 

estimated using Equation 1 from the main text (as in Figure 1B). Because the denominator of 

Equation 1 is the square root of the number of observations (in this case, the number of trials), 

the SME will decrease linearly as the square root of the number of trials increases. This is why 

the SNR increases as a linear function of the square root of the number of trials. 

The same is true if we use the time-window mean amplitude to score the amplitude of an 

ERP component. In this case, the signal is the time-window mean amplitude, and the noise is the 

SME of this score. If we use Equation 1 to estimate the SME of this score, then the denominator 

is again the square root of the number of trials, and the SNR will increase as a linear function of 

the square root of the number of trials (all else being equal). 

In this approach, the “noise” portion of the SNR reflects the unreliability of the score of 

interest. This contrasts with other ways of computing the SNR in which the “noise” is quantified 

from the variability of the voltage during the prestimulus baseline period (Thigpen et al., 2017). 

Figure S5. Single-trial EEG epochs from four individual participants. For each participant, the EEG 

epochs are shown for the first ten standard trials. The waveform colors are arbitrary. 
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When bootstrapping is used to estimate the SME, our definition of SNR can be extended 

to virtually any type of ERP score, such as peak latency. For example, the observed peak latency 

of the P3 wave on oddball trials was 459 ms for the participant shown in Figure 6, and the 𝑆𝑀𝐸^  

was 16.6 ms, so the 𝑆𝑁𝑅^  for this peak latency measure was 459/16.6 or 27.6:1. However, 

because we are no longer using Equation 1, we cannot assume that the SNR will increase as a 

linear function of the square root of the number of trials.  This is not a shortcoming of using 

SME to quantify measurement error; it is a consequence of measuring a score from the averaged 

ERP waveform that is not equal to the average of the single-trial scores. Without using the SME 

(or something similar) to quantify the measurement error, we would have no way of quantifying 

the SNR for such scores. 

S7. The Assumption of Independence 

Both the analytic SEM equation and bootstrapping assume that the individual trials are 

independent of each other, but this assumption will typically be violated because the trials are 

obtained consecutively (or nearly consecutively) from an organism that changes systematically 

over time. For example, factors such as mind-wandering may cause the ERPs to be more similar 

on consecutive trials than on nonconsecutive trials, and factors such as learning and fatigue may 

change systematically over the course of a recording session. Here, we address the likely impact 

of violating this assumption and methods for overcoming the lack of independence. 

There are two major ways that violations of the assumption of independence can distort 

the 𝑆𝑀𝐸^ , but they will have opposite effects. First, if the series of values across trials is 

positively autocorrelated, this will lead to an underestimate of the standard error (Bence, 1995). 

Such an autocorrelation could occur in amplitude measurements as a result of low-frequency 

drifts in the EEG. However, baseline correction should eliminate most of this autocorrelation, 

and high-pass filters will further reduce this autocorrelation. There may also be autocorrelation 

of latency values if, for example, participants alternate between periods of attentiveness 

(producing short latencies) and inattentiveness (producing long latencies). However, these 

autocorrelations are like to be small relative to the other sources of noise in the single-trial EEG 

epochs. It will be important for future research to examine the degree of autocorrelation for a 

variety of ERP scores and tasks. If significant autocorrelations are present, they can be quantified 

and an adjustment factor can be applied (Bence, 1995). 

The second possibility is that systematic changes may occur that masquerade as noise. 

For example, imagine that the peak latency of the P3 wave always gets gradually faster over the 

course of an experiment, and the latency is therefore 50 ms earlier by the last 20 trials compared 

to the first 20 trials of an experiment. This will tend to cause the 𝑆𝑀𝐸^  to overestimate the 

amount of measurement error. Imagine that we used the empirical approach to estimating the 

standard error of the peak P3 latency in a given participant, in which we repeat the experiment 

10,000 times and compute the 𝑆𝐷 ̂ of the latency values across those 10,000 experiments from 

this participant. If the participant exhibits this systematic change in P3 latency in every 

replication of an experiment, then this would not create variability across replications. However, 

both Equation 1 and bootstrapping would treat this systematic trial-by-trial variation as random 

noise, and the estimated standard error would therefore be inappropriately large. It seems likely 

that this systematic trial-by-trial variation would be relatively modest compared to the other 

sources of noise that impact the ERPs, but that would need to be established empirically. If this 

violation of the assumption of independence does turn out to have a meaningful impact on 
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estimates of the SME, the impact could potentially be minimized in the bootstrapping process by 

making sure that each set of trials chosen for a given iteration contained an equal number of 

trials from, for example, each quarter of the session.  

Similarly, imagine that we conduct an oddball experiment using X as the oddball and O 

as the standard in some trial blocks, but using O as the oddball and X as the standard in other 

blocks. Further, imagine that the P3 peak latency is slightly faster for the Xs than for the Os. 

Ordinarily, we would collapse across the Xs and Os, making one averaged ERP waveform for all 

of the oddball trials and another for all of the standard trials (see Luck & Gaspelin, 2017 for the 

rationale behind collapsing across factors such as this). However, if we obtained the 𝑆𝑀𝐸^  from 

the entire set of trials, the different latencies for the different stimuli would cause variations in 

the P3 latency scores that would seem like noise but are actually systematic, and our 𝑆𝑀𝐸^  would 

be inappropriately large. Again, this kind of systematic variability is likely to be small relative to 

the sources of random variability, so it would probably have only a small effect on the 𝑆𝑀𝐸^ . 

However, this small error in the estimate of the SME could presumably be eliminated by 

ensuring that every bootstrap iteration contained equal numbers of trials from the two stimuli. 

S8. A Potential Criterion for Defining Extreme SME Values 

Here we provide a potential criterion for excluding participants with extreme 𝑆𝑀𝐸^  

values. The goal is to determine whether the 𝑆𝑀𝐸^  for a given participant is so large that 

including this participant would be expected to decrease the precision of our estimate of the 

group mean for the score of interest. In other words, this criterion states that a participant should 

be excluded if the inclusion of that participant would be expected to increase the standard error 

of estimate of the group mean. This approach assumes that the ultimate statistical tests will 

involve comparisons of group means, in which case larger effect sizes and greater statistical 

power would be expected if the standard errors of the group means are smaller. 

Ordinarily, excluding a participant would increase the standard error of the group mean 

by decreasing the number of participants (N) in the denominator of Equation 1. Consequently, 

one would not want to exclude a participant unless the 𝑆𝑀𝐸^  for that participant was so extreme 

that it outweighed the decrease in N. To determine whether an 𝑆𝑀𝐸^  is this extreme, we first need 

to define the standard error of the group mean in a way that makes the contribution of the 𝑆𝑀𝐸^  

explicit. This can be done by estimating the standard error of the group mean using the estimate 

of  𝑉𝑎𝑟^
𝑇𝑜𝑡𝑎𝑙 in Equation 5, which specifies the contribution of the 𝑆𝑀𝐸^  values. Specifically, we 

can take the square root of this estimate of  𝑉𝑎𝑟^
𝑇𝑜𝑡𝑎𝑙 to convert it into a standard deviation, and 

we can then use this standard deviation as the numerator of Equation 1 to estimate the standard 

error of the group mean (𝑆𝐸�̂�𝐺𝑟𝑜𝑢𝑝): 

𝑆𝐸�̂�𝐺𝑟𝑜𝑢𝑝 = √𝑉𝑎𝑟^
𝑇𝑟𝑢𝑒 + 𝑀𝑆(𝑆𝑀𝐸^ ) √𝑁⁄  (Equation S1) 

To determine whether the 𝑆𝑀𝐸^  for a given participant is so extreme that the participant 

should be excluded, one could compute 𝑆𝐸�̂�𝐺𝑟𝑜𝑢𝑝 with versus without the 𝑆𝑀𝐸^  from that 

participant (i.e., including versus excluding 𝑆𝑀𝐸^  for that participant when computing 

𝑀𝑆(𝑆𝑀𝐸^ ), and adjusting N accordingly). If 𝑆𝐸�̂�𝐺𝑟𝑜𝑢𝑝 is better (smaller) without a given 
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participant, then the group mean would be expected to be closer to the true group mean if that 

participant were excluded. 

There are two caveats to this approach. First, it assumes that the SME is independent of 

the true score (i.e., that participants with noisier data do not differ in their true amplitude or 

latency scores from participants with cleaner data). This could be assessed by determining 

whether the 𝑆𝑀𝐸^  values in a given study are correlated with the scores. If the 𝑆𝑀𝐸^  values are, in 

fact, correlated with the scores, then excluding participants with extreme 𝑆𝑀𝐸^  values would 

likely bias the results and could lead to incorrect conclusions.  

A second caveat is that  𝑆𝑀𝐸^  is only an estimate, and this estimate will be less precise 

when the number of trials is small (which is often the case in studies with extremely noisy data). 

As a result, some participants might be excluded unnecessarily because their estimated SME 

values are substantially higher than their true SME values. Given the potential risks of this (or 

any) criterion for excluding participants, it would be prudent to perform extensive simulations or 

evaluate the criterion across a broad range of previous data sets before applying it to new 

research. 

S9. Reporting SME Values 

In this section, we provide some recommendations for how to report 𝑆𝑀𝐸^  values in 

publications. However, these recommendations are necessarily tentative given the broad range of 

ERP study designs and the newness of the metric. Our recommendations reflect the idea that the 

nature of the reported 𝑆𝑀𝐸^  values should match the nature of the primary statistical analyses so 

that they are informative about the measurement error that actually impacts the effect sizes and 

statistical power in these analyses. 

In a simple between-subjects design with one factor (e.g., P3 peak latency in two groups 

of participants), where the statistical analysis would be something like an independent samples t 

test, you could simply report the RMS(𝑆𝑀𝐸^ ) values for each group (and possibly include a table 

with the single-participant values in supplementary materials).  

In a simple within-subjects design with one factor (e.g., P3 peak latency for rare and 

frequent trials), where the statistical analysis would be something like a paired t test, the key 

factor in determining power is the variability of the difference between the two cells of the 

design. Indeed, a paired t test is identical to making a difference score for each participant and 

entering those values into a one-sample t test that compares the mean difference score against 

zero. Thus, you would want to quantify the 𝑆𝑀𝐸^  of the difference between the scores. This 

would require bootstrapping: On each bootstrap iteration, you would get the two scores and the 

difference between them, and then you would calculate the 𝑆𝑀𝐸^  for this difference score5. One 

of the demonstration scripts at https://doi.org/10.18115/D58G91 provides an example of 

computing this 𝑆𝑀𝐸^  value. You could then report the RMS(𝑆𝑀𝐸^ ) value for the difference score 

(and possibly include a table with the single-participant values in supplementary materials). 

Designs with multiple factors are more complicated. One such design would be a 2-way 

ANOVA with one within-subjects factor with two levels (e.g., rare vs. frequent) and one 

between-subjects factor with 2 or more levels (e.g., patients vs. controls). The interaction term in 

 
5 Note that, unless your score is the time-window mean amplitude, the difference between the two scores 

is not the same thing as obtaining the score from a difference wave.  

https://doi.org/10.18115/D58G91
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this ANOVA is equivalent to obtaining a difference score for each participant for the within-

subjects factor and conducting a one-way between-subjects ANOVA (or an independent-samples 

t test) on the difference scores. Thus, it would typically be sensible to obtain the difference 

scores and report the RMS(𝑆𝑀𝐸^ ) value for this difference score separately for each group. 

Another common design would have a within-subjects factor with two levels (e.g., rare 

vs. frequent) and another within-subjects factor with two or more electrode sites (e.g., Fz, Cz, 

and Pz). If you are mainly interested in the main effect of the factor with two levels, you could 

simply average across electrode sites prior to computing the 𝑆𝑀𝐸^  values. Indeed, we recommend 

not including electrode site as a separate ANOVA factor unless it is essential for testing your 

scientific hypotheses (Luck & Gaspelin, 2017). If you absolutely must test the trial type  

electrode site interaction, and you can limit yourself to two electrode sites (or two clusters of 

electrode sites), you could compute a double difference score (e.g., rare-minus-frequent at Pz 

minus rare-minus-frequent at Cz). The two-way interaction in the main ANOVA would be 

equivalent to a one-sample t test against zero for this double difference score, so the 𝑆𝑀𝐸^  values 

for this score would be a sensible way of quantifying the measurement error that is relevant for 

this interaction. 

When a within-subjects factor must include more than 3 levels, there is no simple way to 

compute a single 𝑆𝑀𝐸^  value that corresponds directly to this factor. Future work may be able to 

come up with a solution for such cases. In the meantime, researchers can simply report the 𝑆𝑀𝐸^  

values for each level of the factor. 

 

S10. References for Supplementary Materials 

 

Baker, D. H., Vilidaite, G., Lygo, F. A., Smith, A. K., Flack, T. R., Gouws, A. D., & Andrews, 

T. J. (2020). Power contours: Optimising sample size and precision in experimental 

psychology and human neuroscience. ArXiv:1902.06122 [q-Bio, Stat]. Retrieved from 

http://arxiv.org/abs/1902.06122 

Bence, J. R. (1995). Analysis of short time series: Correcting for autocorrelation. Ecology, 76, 

628–639. 

Boos, D. D. (2003). Introduction to the bootstrap world. Statistical Science, 18, 168–174. 

Boudewyn, M. A., Luck, S. J., Farrens, J. L., & Kappenman, E. S. (2018). How Many Trials 

Does It Take to Get a Significant ERP Effect? It Depends. Psychophysiology, 55, e13049. 

Brandmaier, A. M., Wenger, E., Bodammer, N. C., Kühn, S., Raz, N., & Lindenberger, U. 

(2018). Assessing reliability in neuroimaging research through intra-class effect 

decomposition (ICED). ELife, 7. https://doi.org/10.7554/eLife.35718 

Chernick, M. R. (2011). Bootstrap Methods: A Guide for Practitioners and Researchers. John 

Wiley & Sons. 



  16 

Clayson, P. E., Baldwin, S. A., & Larson, M. J. (2013). How does noise affect amplitude and 

latency measurement of event-related potentials (ERPs)? A methodological critique and 

simulation study. Psychophysiology, 50, 174–186. 

Cohen, J., & Polich, J. (1997). On the number of trials needed for P300. International Journal of 

Psychophysiology, 25, 249–255. 

Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Boca Raton, FL: 

Chapman & Hall/CRC press. 

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks 

do not produce reliable individual differences. Behavior Research Methods, 50, 1166–

1186. 

Kappenman, E. S., & Luck, S. J. (2010). The effects of electrode impedance on data quality and 

statistical significance in ERP recordings. Psychophysiology, 47, 888–904. 

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, Second Edition. 

Cambridge, MA: MIT Press. 

Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP 

experiment (and why you shouldn’t). Psychophysiology, 54, 146–157. 

Picton, T. W. (2011). Human Auditory Evoked Potentials. San Diego: Plural Publishing. 

Regan, D. (1977). Evoked potentials in basic and clinical research. In EEG Informatics: A 

Didactive Review of Methods and Applications of EEG Data Processing (pp. 319–346). 

North-Holland: Elsevier. 

Tanner, D., Morgan-Short, K., & Luck, S. J. (2015). How inappropriate high-pass filters can 

produce artifactual effects and incorrect conclusions in ERP studies of language and 

cognition. Psychophysiology, 52, 997–1009. 

Thigpen, N. N., Kappenman, E. S., & Keil, A. (2017). Assessing the internal consistency of the 

event‐related potential: An example analysis. Psychophysiology, 54, 123–138. 

 


	S1. Psychometric Reliability as a Measure of Data Quality
	S2. Plotting the SEM at Each Time Point in an Averaged ERP Waveform
	S3. Description of Example Oddball Study
	S4. Overview of Bootstrapping
	S5. Example SME Values
	S6. SME and the Signal-to-Noise Ratio
	S7. The Assumption of Independence
	S8. A Potential Criterion for Defining Extreme SME Values
	S9. Reporting SME Values
	S10. References for Supplementary Materials

