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Supplementary Figures 

 

 

Supplementary Figure 1: Optical image. Two patterned regions from a sample where MoS2 

was exfoliated onto a Au/Ti coated substrate with pre-etched circular wells. A wide range of 

MoS2 flake thicknesses are available for measurements. Several data points in Figure 1e of the 

main text were acquired from MoS2 drums within this region. 



 

 

Supplementary Figure 2: Sample characterization. (a) Plot showing examples of the Raman 

breathing modes from MoS2 flakes of several different thicknesses taken from the same sample 

as used for pump-probe experiments. Raman spectroscopy was used to obtain high confidence in 

layer identification for samples less than 10-layers thick. (b) Plot comparing the breathing mode 

frequencies measured using the ultrafast pump-probe setup discussed in the main text (black 

circles) to the frequencies of the breathing modes measured via Raman spectroscopy (red stars). 

Data points between the two different measurements are within 5% of each other. 

 

 

 

Supplementary Figure 3: Pump-Probe raw data. Output voltage of the balanced 

photodetector (VPhD) is recorded, which measures the difference in light intensity between the 

reference arm of the probe beam and the probe light reflected from the sample: VPhD = G  (Iref   

Isample). The acquisition time in the ASOPS system is converted to a delay between the pump and 



probe pulses 1. The moment when the pump and probe beams coincide at the sample is marked 

by a sharp change of reflectivity. The slow signal decay is attributed to carrier relaxation in 

MoS2, while the fast oscillations of reflectivity (zoom-in shown in the inset) are caused by 

mechanical vibrations of the MoS2 slab. 

 

 

Supplementary Figure 4: Optical images. (a) The MoS2 drum (10 m diameter) with a 

monolayer step that was measured in Figure 2 of the main text and (b) the MoS2/h-BN bi-layer 

structure measured in Figure 3 of the main text. 

 

 

Supplementary Figure 5: Co-vibrating laterally-abutted, step-separated cavities. Snap-shots 

taken from the animation (see Supplementary Movie 1 and Supplementary Note 2), which shows 

time evolution of the out-of-plane displacement pattern for a MoS2 plate excited by a sharply 

focused (R1/e= 0.5 m), ultrafast laser pulse. The MoS2 plate shown here features a monolayer 

step that separates half-planes of 18L (left) and 19L (right) thicknesses. Comparison with more 

refined 2D FEM simulations (not shown) suggests that the ripples on the plate surface, which are 

visible in the movie, signify Lamb waves generated by the relative displacements of the abutted 

cavities at the monolayer step. 



 

Supplementary Figure 6: Frequency Comb generator. The results of time-domain finite 

element modeling for the bilayer MoS2/h-BN system. (a) FFT spectrum of the oscillating ZZ 

strain component calculated for the point at the intersection of the MoS2 layer’s middle plane 

(dotted black line shown in MoS2 in the inset) and the out-of-plane axis of symmetry. (b) A 

snapshot of the strain pattern: ZZ component at 20ps after the initial pump pulse. The modeling 

approach is described in Supplementary Note 3. 

 

 

 

 

Supplementary Figure 7:  Sound wave propagation in h-BN/MoS2 bilayer. Snap-shots from 

the 1D animation (see Supplementary Movie 2) showing time evolution of the ZZ component of 

the elastic strain in the h-BN(44nm)/ MoS2 (14L or 8.7nm) bilayer along the axis of symmetry 

(central axis of the pump beam) for the first 50 picoseconds after the pump pulse. Examples of 

these strain profiles are shown in Figure 3d of the main text. The modeling approach is described 

in Supplementary Note 3. 



 

Supplementary Figure 8: Eigenmode analysis for h-BN/MoS2 bilayer. FEM results for the 

elastic energy distribution in a 1D model of vibrating h-BN(44 nm, top)/ MoS2(14L or 8.7 nm, 

bottom) bilayer structure. Modes at (a) 29 GHz, (b) 101 GHz, and (c) 199 GHz, matching the 

modes with the strain distributions depicted in Figure 3c of the main text are shown. Notably, the 

mode at 199 GHz (c) shows the energy distributions that is closest to the configuration of the 

energy deposited in the MoS2 layer (bottom) by the pump laser beam. Accordingly, the 

amplitude of this mode in the vibrational spectrum (Figure 3c in the main text) is the highest. It 

is also one of the modes with the high MoS2 partition index MoS2 (see Supplementary Table 1 

below). 

 

 

 

Supplementary Figure 9: Ring-down time measured for monolithic MoS2 flakes and for 

stacked MoS2/MoS2 structures. The stacked cavities were fabricated by a sequential transfer of 

an additional MoS2 flake on a top of a previously exfoliated MoS2 flake, while the monolithic 

flakes were produced by a single exfoliation. 



 

Supplementary Figure 10: Optical images. Individual flakes and completed stack for the 

MoS2/h-BN/MoS2 tri-layer structure are shown. Multiple data points were acquired from this 

region including drums comprised of: i) MoS2/h-BN/MoS2, ii) MoS2/MoS2 (bottom/top), and iii) 

MoS2 alone (top or bottom). The measured frequency for the fundamental mode of the 

independent MoS2 flakes provides high confidence in their layer thickness based on the thickness 

dependence plot in Figure 1 of the main text. The image contrast of the ‘Middle h-BN’ image 

was adjusted to better highlight the flake extent. 

 

 

Supplementary Figure 11: Eigenmode analysis for MoS2/h-BN/MoS2 tri-layer. Elastic 

energy distribution in a 1D model of the vibrating MoS2/h-BN/MoS2 tri-layer structure. Modes at 

(a) 71 GHz, (b) 158 GHz, and (c) 216 GHz corresponding to the modes with the elastic strain 

depicted in Figure 3c of the main text are shown. 

 



 

Supplementary Figure 12: Three-phonon scattering. Depiction of allowed three-phonon 

scattering processes with + corresponding to coalescence of two phonons into a third higher 

frequency phonon and – corresponding to phonon decay into two lower frequency phonons.  The 

details of calculating phonon lifetimes are presented in Supplementary Notes 7, 8. 

 

 

 

Supplementary Figure 13: Cartoon depiction of a monolayer hexagonal lattice. Atoms (red 

circles) are shown with nearest neighbor interatomic forces represented by orange springs.  Small 

arrows represent atom perturbations required to calculate anharmonic interatomic force constants 

(IFC) Φఈఉఊ
଴௞,௟ᇲ௞ᇲ,௟ᇲᇲ௞ᇲᇲ

. 

 



 

 

Supplementary Figure 14: Calculated phonon dispersions. Black lines show the results of 
calculations for the phonon dispersion in (a) MoS2, (b) MoSe2, and (c) h-BN. Red circles in (a) 
and (c) represent inelastic neutron scattering data from references 2 and 3, respectively. Measured 
MoSe2 Raman data 4 is also shown in (b). 

 

 

 

Supplementary Figure 15: Phonon lifetimes projected on dispersion curves. Anharmonicity-

limited phonon lifetimes projected on the phonon dispersions for (a) MoS2, (b) MoSe2, and (c) h-

BN. 

 



 

Supplementary Figure 16: Frequency dependence of the phonon lifetimes for different 2D 

materials. Phonon lifetimes through the full Brillouin zones and for all polarizations for (a) 

MoS2, (b) MoSe2, and (c) h-BN including three-phonon and phonon-isotope scatterings. 

 

 

 

Supplementary Figure 17: Model comparison for phonon lifetimes in MoS2. A comparison 

of ab initio calculations (orange and black points), experimental data (blue hexagons), and 

asymptotic theoretical models (Landau-Rumer, Akhiezer)5. The solid blue line shows the low 

frequency th<< 1 approximation (Akhiezer model) 𝜏ିଵ = 𝐶௏𝑇𝛾ଶωଶ𝜏௧௛/3𝜌𝑣ଶ 5. The magenta 

line was produced by fitting 1/f dependence to the results of DFT calculations above 300 GHz 

and corresponds to Landau-Rumer frequency range  th >> 1. Vertical dotted line marks the 

transition frequency th= 1. 



 

Supplementary Figure 18: Lamb wave dispersion for a 160L-thick MoS2 plate. The 

approach outlined in Ref. 6 was used to calculate frequencies that correspond to given wave 

vectors using FEM eigenmode analysis. For every point shown in the graph, the analysis was 

done for a cut-out slice of the suspended plate and the modes corresponding to S1 Lamb waves 

were identified. The length of the slice (with periodic boundary conditions applied) defines the 

wave vector. The red line shows parabolic fit f = Ak2. 

 

Supplementary Figure 19: Lamb waves escape time in MoS2 plates. The results of time-

domain FEM analysis are shown for the out-of-plane displacement (i.e., dilation) under the 

center of the pump beam for a 40L MoS2 plate (green) and 160L MoS2 plate (maroon). The time 

interval, LWE, counted from the pulse excitation to the point that shows threefold decrease in 

vibrations amplitude is interpreted as a Lamb waves escape time (LWE shown by the arrow for 

the 160L film). The film thickness dependence of LWE is shown in Figures 6a and 6c in the main 

text.  



Supplementary Tables 

 

Mode 
Frequency 

GHz 

MoS2 
Energy 
fraction 
MoS2 

h-BN 
Energy 
fraction 
hBN 

29.5 0.03 0.97 
64.26 0.07 0.93 

101.16 0.1 0.90 
137.6 0.16 0.84 

170.54 0.29 0.71 
199 0.28 0.72 

230.44 0.14 0.86 
266.42 0.09 0.91 
303.41 0.11 0.89 

 

Supplementary Table 1: Energy partitioning coefficients for different vibrational modes of h-

BN (44nm, top)/ MoS2 (14L or 8.7nm, bottom) bilayer structure, discussed in Figure 3 of the 

main text. 

 

 

Mode 
Frequency 
GHz 

MoS2 
Energy 
fraction 
MoS2 

h-BN 
Energy 
fraction 
hBN 

70.7 0.73 0.27 
158 0.99 0.01 
216 0.8 0.2 

 

Supplementary Table 2: Energy partitioning coefficients for different vibrational modes of 

MoS2(17ML)/h-BN(5ML)/MoS2(15ML) tri-layer structure, discussed in Figure 4 of the main 

text. 

 

 



 Lattice parameters 

a (Å) c (Å) c/a 

MoS2 3.155 (3.160) 12.222 (12.296) 3.873 (3.891) 

MoSe2 3.282 (3.299) 12.839 (12.939) 3.912 (3.922) 

h-BN  2.502 (2.505)  6.674 (6.653) 2.656 (2.667) 
 

Supplementary Table 3: Calculated in-plane (a) and cross-plane (c) lattice parameters of MoS2, 

MoSe2, and h-BN. The values in the parenthesis are measured lattice parameters for MoS2 and 

MoSe2 7 and for h-BN 8. 

 

Supplementary Notes 

 

Supplementary Note 1: Coupled oscillators model 

In applying a 1DOF coupled oscillator model to the longitudinal vibrations of the MoS2 step-

cavities (Figure 2 main text) and tri-layer MoS2/h-BN/MoS2 (Figure 4 main text) systems, we 

follow the approach developed in Refs 9, 10. Two oscillators are considered, such that in the 

absence of coupling would have eigenfrequencies 𝜔஺
଴ = ට𝑘஺

𝑚஺
ൗ  and  𝜔஻

଴ = ට𝑘஻
𝑚஻

ൗ . The 

equations of motion in the presence of coupling  are given as: 

𝑚஺𝑥̈஺ +  𝑘஺𝑥஺ +   (𝑥஺ −  𝑥஻  ) = 0                                             (1) 

𝑚஻𝑥̈஻ +  𝑘஻𝑥஻ −   (𝑥஺ −  𝑥஻ ) = 0                                            (2) 

The solution of the form 𝑥௜(𝑡) =  𝑥௜
଴ exp[−𝑖𝜔±𝑡 ] exists for mixed-mode frequencies 

𝜔±
ଶ =  

ଵ

ଶ
 ቂ𝜔஺

ଶ + 𝜔஻
ଶ ± ඥ(𝜔஺

ଶ − 𝜔஻
ଶ)ଶ + 4𝛤ଶ𝜔஺𝜔஻ቃ         (3) 

where 𝜔஺ = ට(𝑘஺ + )
𝑚஺

ൗ , 𝜔஻ = ට(𝑘஻ + )
𝑚஻

ൗ  , and   is anticrossing splitting: 

𝛤 =
ට ௠ಲൗ ට ௠ಳൗ

√ఠಲఠಳ
                                                                (4) 



Abutted MoS2 plates in the case of step-cavities (Figure 2 main text), as well as each of the outer 

MoS2 layers in MoS2/h-BN/MoS2 tri-layer stack (Figure 4 main text) are considered as 

oscillators with the effective mass defined as 

𝑚஺,஻
௘௙௙

= 𝐴 ∫ 𝜌𝑤(𝑧)ଶ𝑑𝑧
೓

మ

ି
೓

మ

                                                 (5) 

where 𝑤(𝑧) = sin (𝜋𝑧
ℎൗ ) is the eigenmode displacement,  is density, A is area, and h is the 

plate thickness 11. 

By using the out-of-plane stiffness C33 of MoS2 12, the effective spring constants were assigned 

to each of the oscillators 

𝑘஺,஻ =
஺గమ

ଶ

஼ଷଷ

௛
      (6) 

to match the resonant frequency of the fundamental thickness mode for corresponding plates in 

the uncoupled state (A, B). 

 

Abutted MoS2 cavities separated by a monolayer step: 

For the abutted step-cavities, only an upper estimate is available for the coupling , extracted in 

the assumption that the splitting  does not exceed the half-width of the resonance, 
௙

ଶொ
 . Such an 

estimate leads to  𝑘஺
ൗ  2 ∙ 10ିଷ. 

 

Supplementary Note 2: Step-cavities, time-domain simulations 

Time-dependent finite element modeling (FEM, COMSOL, Structural Mechanics Module 13) 

was used to gain insights into the temporal behavior of strain patterns excited in the 2D acoustic 

hetero-cavities by the ultrafast pump pulses. The external strain option was used to mimic the 

film dilation, driven by photo-excited carriers and the deformation potential 14. Both MoS2 12 and 

h-BN 15 films were modeled as fully anisotropic elastic solids. 

In the Supplementary Movie 1, which examines the MoS2 step-cavity system (Figure 2 of main 

text), the out-of-plane displacement is color coded and shows the “breathing” co-motion of the 

abutted step-cavities with 1L step height difference. The vibrations are activated using an 



external strain pulse with a Gaussian shape both in time (pulse length = 500 fs) and in space 

(rad(1/e) = 0.5 m in X-Y plane). For clarity, the higher overtones are suppressed by assigning 

cos(πZ/h) thickness dependence to the external strain. The mesh is refined to include at least five 

elements across the total thickness (18L). A time step of 50 fs is chosen to ensure that the 

propagation range for longitudinal elastic waves in one step is much smaller than the element 

size. The geometry of the model is a circular plate (10m in diameter) with the laser beam 

positioned at the center and the 1L step extending across the diameter. Due to the symmetry of 

the problem, the 3D model includes only half of the drum space, with the cut plane running 

orthogonal to the 1L step across the circle diameter. A symmetry condition was applied to the 

vertical cut plane. The spatial extent of the MoS2 plate along the symmetry plane shown in the 

movie is 1.4 m. Low reflecting boundary conditions are applied to outer edges of the plate 

(outside of the movie screen). 

The pump-pulse in Supplementary Movie 1 peaks at 10 ps, while the plate is at rest at the start. 

Being spatially centered at the monolayer step, the pump provides equal excitation for both step-

abutted cavities and initiates an in-phase dilation. Phase differences accumulate due to the 

difference in thickness (and therefore in eigenfrequency) and are visible at later stages in the 

movie. 

 

Supplementary Note 3: Frequency comb, h-BN/MoS2 bilayer, time-domain analysis 

The bilayer stack is modeled as suspended, while the perimeter treated as low-reflectivity 

boundary. External strain that imitates the effect of the pump-pulse is applied to the MoS2 layer 

only. The spatial distribution for the “swelling” is Gaussian in the X-Y plane (rad(1/e) = 0.5 m) 

and homogeneous across MoS2 thickness (Z direction, normal to film surface). In an effort to 

reproduce temporal behavior of pump-generated strain, the external strain in the model is given a 

sharp rise (t  200 fs) at the pulse arrival time (t0 = 10 ps), followed by slow exponential decay 

( = 180 ps 16). 

 

Supplementary Note 4: Energy dissipation in MoS2/hBN laminates 

The dissipation in our bilayer structure can be separated into individual contributions from h-BN 

and MoS2 (see for example 17): 



    
ଵ

ொ೟೚೟ೌ೗
=

ଵ

ଶగ

∆ௐ೓ಳಿା∆ௐಾ೚ೄమ

ௐ೓ಳಿାௐಾ೚ೄమ
=

∆ௐ೓ಳಿ

ଶగௐ೓ಳಿ

ௐ೓ಳಿ

ௐ೓ಳಿାௐಾ೚ೄమ
+

∆ௐಾ೚ೄమ

ଶగௐಾ೚ೄ

ௐಾ೚ೄమ

ௐ೓ಳಿାௐಾ೚ೄమ
              (7) 

where WhBN and WMoS2 are the energies stored in the corresponding layers and  WhBN and 

WMoS2 are layer-specific energy losses.  FEM analysis readily provides coefficients for energy 

partitioning hBN = WhBN/(WhBN + WMoS2) and MoS2= WMoS2/(WhBN + WMoS2) (for example, hBN= 

0.9 and MoS2= 0.1 for the 3rd overtone at 101 GHz, see Supplementary Figure 8 and 

Supplementary Table 1). Assuming that h-BN and MoS2 layers are in equilibrium, the total ring-

down time can be expressed as: 

ଵ

ఛ೅೚೟ೌ೗
=

ఈ೓ಳ

ఛ೓ಳಿ
+

ఈಾ೚ೄ

ఛಾ೚ೄమ
                                                 (8) 

Supplementary Equation 8 accounts for the fact that in an asymmetric bilayer structure (e.g. a 

monolayer of MoS2 on top of a 100 nm thick plate of h-BN) the overall ring-down will be 

governed by the losses in the most-represented material (hBN). 

In our data analysis the bilayer ring-down time, Total, was extracted first for each of the bilayer 

(h-BN/MoS2) overtones by applying the corresponding band-pass FFT filters to the time-

dependent reflectivity in Figure 3a in the main text. The relaxation time for boron nitride hBN 

was then calculated from Supplementary Equation 8 using FEM-provided partition coefficients  

and the experimentally measured, frequency-dependent MoS2 ring-down time MoS2 (Figure 1, 6a 

in main text). We note that this procedure accounts for boundary-related contributions to energy 

dissipation in the MoS2 layer (see Discussion in main text). 

 

Supplementary Note 5: Material interfaces 

An important practical issue arises from the fact that in vertical (laminar) heterocavities, the 

surface losses originate from both the outer free surfaces of the suspended slab, as well as from 

the inner materials’ interfaces. In order to quantify the effect of these enclosed junctions (created 

by the sequential layer transfer) on the quality factor, Q, of the composite acoustic cavities, a 

series of samples were prepared by transferring MoS2 layers on top of pre-existing suspended 

MoS2 structures. It was critically important for this effort to find that the mechanical response of 

such stacked cavities comprised of a MoS2/MoS2 bilayer was indistinguishable from that of the 

monolithic MoS2 cavities of an equal thickness prepared by a single exfoliation step. We note 



this finding is in contrast with the behavior of stacked Au nanoparticles prepared by wet transfer, 

where the effect of boundary layer turned out to be prominent, as it provides significant 

mechanical isolation between the stacked nanoparticles 10. 

For some MoS2/MoS2 stacked structures, the added inner interface did not have a distinguishable 

effect on the Q value of the cavity. For others, the Q value decreased by a factor of two. As the 

difference in performance between the MoS2 stacked cavities and the mono-cavities appears 

close to the scatter within the mono-cavities themselves, we interpret this as strong evidence for 

the ability to build intricate 2D material acoustic structures where the interface plays a negligible 

role. 

 

Supplementary Note 6: Coupled cavities in MoS2/h-BN/MoS2 tri-layer 

Coupling, defined as  = 𝛣𝑘஺ (where B is a constant), was used as a fitting parameter to match 

the calculated frequencies of mixed modes 𝜔± with the experimentally observed tri-layer 

overtones that correspond to the anti-symmetric (2nd overtone) and the symmetric (3rd overtone) 

strain distribution across the stack. 

 

For the tri-layer stack the ratio  𝑘஺
ൗ = 𝐵 = 0.35 with the corresponding anti-crossing splitting  

= 47 GHz provided frequencies + = 215 GHz, - = 162 GHz, in good agreement with 

experimental results for 2=158.8 GHz  and 3 = 215 GHz (see Figure 4a in main text). 

 

While interpreting the overtones of the MoS2/h-BN/MoS2 tri-layer as mixed modes (, see 

Supplementary Equation 3) of two distinct MoS2 cavities that are coupled by a h-BN layer, we 

note that even for the prototype described here the =+ - -  frequency split is in the range 

accessible for state-of-the-art electro-optical modulators 18. This opens possibilities for advanced 

techniques of coherent phonon manipulation, including parametric transfer 19 that would enable, 

for example, fast strain manipulation in the h-BN layer. We also emphasize that in contrast to 

EHF coupled systems implemented with solution-based gold nanoparticles, which are separated 

by a polymer layer 20, the MoS2/h-BN/MoS2 sample features a well-defined, single-crystal spacer 

of quantized thickness, and is residue free (within our detection limits). We anticipate these 



features will be critical for low-temperature operation, where a high degree of control and low 

energy loss is necessary. 

 

Supplementary Note 7: Phonon lifetime calculations 

Phonon-phonon scattering:  Lattice anharmonicity gives rise to phonon-phonon scattering, thus 

accounting for a variety of vibrational properties of materials including finite thermal 

conductivities, mechanical dissipation, and temperature-dependent linewidths/lifetimes. Taylor 

expansion of the crystal potential gives a lowest order anharmonic perturbation corresponding to 

three-phonon interactions 21, 22 (see Supplementary Figure 12). 

Each scattering conserves energy and crystal momentum, and its transition probability is 

determined by Fermi’s golden rule: 

𝑊
௤ሬ⃗ ௝,௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ
± =

ଶగ

ℏ
หൻ(𝑛௤ሬ⃗ ௝ − 1)(𝑛௤ሬ⃗ ᇲ௝ᇲ ∓ 1)(𝑛௤ሬ⃗ ᇲᇲ௝ᇲᇲ + 1)ห𝑉ଷ

±ห𝑛௤ሬ⃗ ௝𝑛௤ሬ⃗ ᇲ௝ᇲ𝑛௤ሬ⃗ ᇲᇲ௝ᇲᇲൿห
ଶ

𝛿(ℏ𝜔௤ሬ⃗ ௝ ± ℏ𝜔௤ሬ⃗ ᇲ௝ᇲ − ℏ𝜔௤ሬ⃗ ᇲᇲ௝ᇲᇲ)  

                        (9) 

where 𝑞⃗ and j label a phonon’s wave vector and polarization, 𝜔௤ሬ⃗ ௝ is the angular frequency, 𝑛௤ሬ⃗ ௝ 

are the Bose equilibrium populations, and 𝑉ଷ
± is the anharmonic perturbation constructed from 

anharmonic interatomic forces constants (IFCs) and creation and annihilation operators 21, 22.  

After application of the perturbation and algebraic accounting of combinatorial processes the 

transition probabilities are given by 23: 

𝑊௤ሬ⃗ ௝,௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ
ା =

𝜋ℏ

4𝑁

|Ψି௤ሬ⃗ ௝,ି௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ|ଶ

𝜔௤ሬ⃗ ௝𝜔௤ሬ⃗ ᇲ௝ᇲ𝜔௤ሬ⃗ ᇲᇲ௝ᇲᇲ
(𝑛௤ሬ⃗ ᇲ௝ᇲ − 𝑛௤ሬ⃗ ᇲᇲ௝ᇲᇲ)𝛿(𝜔௤ሬ⃗ ௝ + 𝜔௤ሬ⃗ ᇲ௝ᇲ − 𝜔௤ሬ⃗ ᇲᇲ௝ᇲᇲ)Δ(𝑞⃗ + 𝑞⃗ᇱ − (𝑞⃗ᇱᇱ − 𝐺)) 

                                 (10) 

𝑊௤ሬ⃗ ௝,௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ
ି =

𝜋ℏ

4𝑁

|Ψି௤ሬ⃗ ௝,௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ|ଶ

𝜔௤ሬ⃗ ௝𝜔௤ሬ⃗ ᇲ௝ᇲ𝜔௤ሬ⃗ ᇲᇲ௝ᇲᇲ
(𝑛௤ሬ⃗ ᇲ௝ᇲ + 𝑛௤ሬ⃗ ᇲᇲ௝ᇲᇲ + 1)𝛿(𝜔௤ሬ⃗ ௝ − 𝜔௤ሬ⃗ ᇲ௝ᇲ − 𝜔௤ሬ⃗ ᇲᇲ௝ᇲᇲ)Δ(𝑞⃗ − 𝑞⃗ᇱ − (𝑞⃗ᇱᇱ − 𝐺⃗)) 

                              (11) 

where N is the number of unit cells in the system, 𝐺⃗ is a reciprocal lattice vector, and the 

scattering matrix elements are given by:  

Ψ௤ሬ⃗ ௝,௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ = ∑ ∑
஍ഀഁം

బೖ,೗ᇲೖᇲ,೗ᇲᇲೖᇲᇲ

ඥ௠ೖ௠ೖᇲ௠ೖᇲᇲ
𝜖௞ఈ

௤ሬ⃗ ௝
𝜖

௞ᇲఉ
௤ሬ⃗ ᇲ௝ᇲ

𝜖
௞ᇲᇲఊ
௤ሬ⃗ ᇲᇲ௝ᇲᇲ

ఈఉఊ௞,௟ᇲ௞ᇲ,௟ᇲᇲ௞ᇲᇲ 𝑒௜௤ሬ⃗ ᇲ⋅ோሬ⃗
೗ᇲ 𝑒௜௤ሬ⃗ ᇲᇲ⋅ோሬ⃗

೗ᇲᇲ               (12)                                



where 𝜖௞ఈ
௤ሬ⃗ ௝  is the eigenvector of phonon 𝑞⃗𝑗 for the αth Cartesian component of the kth atom in a 

unit cell, mk is the isotopically averaged mass of the kth atom, 𝑅ሬ⃗ ௟ is the lattice vector locating the 

lth unit cell, and Φఈఉఊ
଴௞,௟ᇲ௞ᇲ,௟ᇲᇲ௞ᇲᇲ

 are third-order anharmonic interatomic force constants linking 

atoms 𝑘 , 𝑘ᇱ, and 𝑘ᇱᇱ in the origin, 𝑙ᇱ, and 𝑙ᇱᇱ unit cells, respectively, as depicted Supplementary 

Figure 13. 

Summing over all possible three-phonon scatterings that conserve energy and momentum then 

gives the inverse phonon lifetime 21: 

1/𝜏௤ሬ⃗ ௝ = ∑ 𝑊௤ሬ⃗ ௝,௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ
ା

௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ +
ଵ

ଶ
𝑊௤ሬ⃗ ௝,௤ሬ⃗ ᇲ௝ᇲ,௤ሬ⃗ ᇲᇲ௝ᇲᇲ

ି                                      (13) 

The 1/2 factor in the second term accounts for double counting of identical processes.  The 

frequencies and eigenvectors that enter this quantum perturbation formalism are determined by 

diagonalization of the dynamical matrix: 

𝐷ఈఉ
௞௞ᇲ

(𝑞⃗) =
ଵ

ඥ௠ೖ௠ೖᇲ
∑ Φఈఉ

଴௞,௟ᇲ௞ᇲ

𝑒௜௤ሬ⃗ ⋅ோሬ⃗
೗ᇲ

௟ᇲ                                          (14) 

where Φఈఉ
଴௞,௟ᇲ௞ᇲ

 are harmonic IFCs.  The harmonic and anharmonic IFCs are determined from 

density functional theory descriptions of the atomic interactions for each system as detailed in 

the next section.  Calculations of the phonon dispersions of bulk MoS2, MoSe2, and h-BN are 

compared with measured data in Supplementary Figure 14. 

 

Phonon-boundary scattering:  Attenuation of phonons due to sample boundaries was modeled 

via the empirical formula 21: 

1/𝜏௤ሬ⃗ ௝
௕௢௨௡ௗ௔௥௬

=
ଵି௣೜೥

ଵା௣೜೥

|௩೜ሬሬ⃗ ೕ೥|

௛
                                                          (15) 

where 𝑣௤ሬ⃗ ௝௭ = 𝜕𝜔௤ሬ⃗ ௝/𝜕𝑞𝑧  is the phonon velocity, h is sample thickness, z is the direction 

perpendicular to the sample surfaces, and 𝑝௤೥
  is the specularity parameter 21: 

𝑝௤೥
= 𝑒ି(ସగఎ/ఒ೥)మ

                                                                    (16) 



Where 𝜆௭ = 2𝜋/𝑞௭ is the wavelength of the incident phonon and η is the root mean square (rms) 

roughness of the surfaces.  To correlate our bulk calculations with the finite sample sizes from 

experiments we define ℎ = 𝜆௭/2.   

 

Other scattering considerations: Phonon lifetimes can also be limited by scattering from higher 

order anharmonic processes (e.g., four-phonon scattering), isotopic mass variance, and from 

sample-specific extrinsic defects (e.g., vacancies, grain boundaries).  Here we briefly comment 

on the potential impact of such mechanisms when comparing calculations (which do not consider 

these) with measurements (which do not quantify these). 

Like the anharmonic scattering calculations discussed above, phonon-isotope scattering can be 

calculated fully using first principles within the context of quantum perturbation theory and 

density functional theory 24, 25.  Phonon-isotope scattering generally scales as ω4, thus for the 

ultralow frequency range considered here this mechanism is unimportant, unlike the situation 

when considering lifetimes of high frequency optic phonons 26.  We verified that phonon-isotope 

scattering was negligible in the ω < 1 THz frequency range for each material, and thus only 

include this scattering mechanism in Figures 5a and 5b of the main text, which considers the 

entire frequency spectrum of each material.   

Similarly, other point defects are expected to have similar low frequency scattering behavior as 

phonon-isotope scattering, scaling as ω4 27, 28.  Thus, we expect that vacancies (which are 

prevalent on Sulfur sites in MoS2 29) and other point defects will not play a significant role in the 

frequency range of our measurements. 

Higher order anharmonic interactions have been shown to play an important role in limiting 

phonon lifetimes, even at room temperature, in strongly anharmonic materials 30, 31 and in 

materials where three-phonon scattering is especially weak 32.  Nonetheless, calculations have 

demonstrated that at room temperature for ω < 1 THz four-phonon scattering is small compared 

to three-phonon scattering in a variety of materials 30, 31, 32, 33, 34.   

  



Supplementary Note 8: Density functional theory and computational details 

Low frequency scattering rates:  The harmonic and anharmonic IFCs were computed within the 

framework of density functional perturbation theory (DFPT) 35 using the generalized gradient 

approximation as implemented in QUANTUM ESPRESSO 36, 37 and the D3Q package 38.  The 

optimized norm-conserving Vanderbilt (ONCV) pseudo-potentials 39, 40 with 14 valence 

electrons for Mo (3s2 3p6 3d4 4s2), 6 for S/Se (3s2 3p4), 3 for B (2s2 2p1), and 5 (2s2 2p3) for N 

were used. The atomic positions and cell parameters were fully optimized until the forces 

between atoms were smaller than 10-5 Ry/Bohr. During structure relaxation the interlayer van der 

Waals (vdW) interactions were incorporated through the semi-empirical DFT-D3 correction with 

Becke-Johnson damping 41, which has been shown to reproduce measured lattice parameters and 

interlayer distances 2, 42.  A comparison between calculated and measured lattice parameters is 

given in Supplementary Table 3. Electronic k-point grids of 12 × 12 × 4 for MoS2 and MoSe2 

and 15 × 15 × 6 for h-BN along with a wave-function cutoff of 120 Ry were used for Brillouin 

zone integrations. An extremely restrictive energy tolerance of 10-16 Ry was used for the starting 

ground state density and wave functions for the DFPT calculations. 

For MoS2 and MoSe2 the harmonic and anharmonic IFCs were computed on 5×5×2 and 4×4×2 q-

point grids, respectively.  For h-BN the harmonic and anharmonic IFCs were computed on 6×6×3 

and 5×5×3 grids, respectively. These IFCs were used to determine phonon lifetimes as limited by 

three-phonon interactions via quantum perturbation theory, i.e., Fermi’s golden rule 21.  Gaussian 

smearing of 10 cm−1 was used to approximate the energy conserving delta functions for three-

phonon interactions. Here, Brillouin zone integrations were performed with a uniform q-point grid 

of 108×108×36 for MoS2/MoSe2 and 100×100×40 for hBN.  These calculations were used to 

characterize the low frequency phonon behaviors presented in Figures 5c, 5d, and 6 of the main text 

and Supplementary Figures 14-16. 

Full Brillouin zone scattering rates:  Monolayer calculations of the harmonic and anharmonic 

IFCs were determined by supercell calculations using the local density approximation 

implemented in QUANTUM ESPRESSO 36, 37 with norm conserving pseudopotentials:  Martin-

Troullier Perdew-Wang for Mo, S, and Se; Bachelet-Hamman-Schluter Perdew-Zunger for B; 

von Barth-Carr Perdew-Zunger for N.  The atomic positions and cell parameters were optimized 

until the forces between atoms were smaller than 10-10 Ry/Bohr. Electronic k-point grid 13 × 13 



× 1 and wave-function cutoff of 80 Ry were used for monolayer MoS2 and MoSe2, while a 16 × 

16 × 1 grid and 120 Ry cutoff were used for monolayer h-BN. Energy tolerances of 10-12 Ry and 

10-13 Ry were used for the starting ground state density and wave functions for MoS2/MoSe2 and 

h-BN, respectively.  Vacuum spaces of 120 Å and 55 Å between layers in MoS2/MoSe2 and h-

BN, respectively, were used to avoid spurious layer interactions.  These DFT parameters gave 

lattice constants a=2.489 Å for monolayer h-BN, a=3.091 Å for MoS2, and a=3.322 Å for 

MoSe2.  The calculated S-S and Se-Se layer distances were 3.096 Å and 3.352 Å, respectively, 

while monolayer h-BN is flat. 

For monolayer MoS2 and MoSe2 the harmonic and anharmonic IFCs were computed with forces 

calculated from perturbed 243 atom supercells with Γ-point-only sampling.  Nearest neighbor 

interactions were included to 13th and 5th shells, respectively.  For monolayer h-BN 162 atom 

supercells were used including 13th and 8th nearest neighbor shell interactions.  For comparison, 

similar LDA bulk calculations were performed for MoS2 and h-BN as described in Ref. 43 and 

Ref. 44, respectively.  Bulk MoSe2 simulations were performed similar to those of MoS2.  These 

calculations were used to characterize all phonon polarizations throughout the Brillouin zones of 

each system as presented in Figs. 5a and 5b of the main text and Supplementary Figure 16 here. 

 

Supplementary Note 9: Lateral spreading of the photogenerated elastic waves 

One strategy to increase the density of elastic energy within the 2D acoustic cavity is to shrink 

the cavity footprint. This is accomplished by employing sharply focused laser beams for exciting 

the vibrations. As the spot size of the diffraction-limited pump beam becomes comparable to the 

film thickness, the in-plane evolution of elastic waves gains significance. Theoretical analysis 45 

shows that spatial variation of the photo-induced elastic strain (defined by the intensity profile of 

the pump beam) gives rise to symmetric S1 Lamb waves with in-plane wavevectors kL  2/Rbeam 

that propagate outward, taking out the energy stored in the cavity. The energy leak rate can 

therefore be governed by the group velocity of the elastic waves (as opposed to internal friction) 

and is defined by the Lamb waves’ dispersion law. In the vicinity of the thickness mode 

resonance, i.e. in the limit k 0 the S1 wave dispersion exhibits parabolic nature ~ k2 (see 

Supplementary Note 10), leading to group velocity proportional to film thickness: 



      𝑣௚௥ =
డఠ

డ௞
~

௛

ோ್೐ೌ೘
                                                           (17) 

A parabolic fit to the FEM-calculated dispersion law 6 in MoS2 plates (Supplementary Figure 18) 

provides a value of vgr(kL= 2/Rbeam)  320 m/s for a 160L-thick film. The resulting escape time 

estimated as  = 2Rbeam/vgr   3 ns is consistent with the ring-down time measured for thicker 

films in Figure 6a of the main text and shows that elastic wave spreading can be a factor 

affecting cavity performance. 

In order to get a more quantitative assessment for the escape time, we use time domain 

simulations that explicitly model the MoS2 plate response to a pulse-like elastic excitation 

(Supplementary Figure 19). The validity of this approach for estimating the Lamb waves escape 

time is limited to structures featuring optical penetration depth that greatly exceeds the film 

thickness, as the symmetric S1 mode is expected to dominate the vibrational spectrum under that 

condition. 

We note that even though the estimates accounting for the lateral spreading of elastic energy 

agree well with our experimental data for relaxation times measured in MoS2 cavities in sub-100 

GHz frequency range, extra effort is needed to make this comparison fully quantitative. A 

different experimental approach (e.g., similar to that described in 46) might be required in order 

to circumvent the timing limitations of our pump-probe setup. The accuracy of measuring ring-

down times in excess of 1 ns is convoluted by the high repetition rate frep  1 GHz, which as  

becomes longer can cause a partial overlap of multiple slowly-decaying traces generated by 

preceding pump pulses. 

 

Supplementary Note 10: Lamb wave dispersion 

Consider the dispersion relation for the symmetric Lamb modes 47, 

୲ୟ୬ (௤೅௛ ଶ⁄ )

୲ୟ୬ (௤ಽ௛ ଶ⁄ )
= −

ସ௞మ௤ಽ௤೅

൫௤೅
మି௞మ൯

మ                             (18) 

where h = layer thickness, and k magnitude of the wavenumber parallel to the layer surface. The 

notation is: 



𝑘் =
ఠ

஼೅
    magnitude of the wavenumber of shear waves 

𝑘௅ =
ఠ

஼ಽ
      magnitude of the wavenumber of longitudinal waves 

𝑞் = ඥ𝑘்
ଶ − 𝑘ଶ wavenumber of shear wave perpendicular to layer surface 

𝑞௅ = ඥ𝑘௅
ଶ − 𝑘ଶ    wavenumber of longitudinal wave perpendicular to layer surface 

                                   - angular frequency 

 

To obtain the solutions ω(k) near k = 0, firstly, expand the dispersion relation in powers of k2 to 

obtain, 

ቀtan 𝑘் ℎ 2 −
௞మ௛

ସ௞೅
 𝑠𝑒𝑐ଶ𝑘் ℎ 2⁄ൗ ቁ ቀcot 𝑘௅ ℎ 2 +

௞మ௛

ସ௞ಽ
 𝑐𝑠𝑐ଶ𝑘௅ ℎ 2⁄ൗ ቁ ≈ −

ସ௞మ௞ಽ

௞೅
య                (19) 

 

where we omit terms of order k4 and higher. With kT and kL proportional to ω, a solution (albeit a 

complicated one) can immediately be written for k in terms of a transcendental function of ω. The 

solutions can be grouped into quasi-longitudinal solutions ωnL and quasi-transverse solutions ωnT. 

We seek an analytical approximation to the inverse solutions ωnL(k). Such a solution was given 

explicitly for the modes ω1L(T)(k) in the case of near degeneracy of the modes ω1L(k) and ω1T(k). 

 

To obtain an analytical solution in general, we follow the same procedure as regards ω: let ω = 

ωnL + δω where 

         𝜔௡௅ =
(ଶ௡ିଵ)గ௖ಽ

௛
                         (20) 

is the eigenfrequency for the nth longitudinal solution for k = 0. To consistently retain terms of 

order k2 we must retain terms of order δω, δω2 (in addition to those of order k2) because the δω 

may be proportional to either k or k2. Define, 

𝑘௡௅ =
௞ಽ௛

ଶ
ቚ

ఠୀఠ೙ಽ

= (𝑛 − 1 2⁄ )𝜋 ,                                            (21) 

𝑘௡் =
௞೅௛

ଶ
ቚ

ఠୀఠ೙ಽ

=
௖ಽ

௖೅
(𝑛 − 1 2⁄ )𝜋 = 𝛼(𝑛 − 1 2⁄ )𝜋               (22) 



where α = cL/cT, the ratio of longitudinal to shear wave speeds. Then we approximate the 

trigonometric functions appearing in the above dispersion relation as 

tan(kTh/2) ≈ tanκnT + αδωd sec2 κnT, 

cot(kLh/2) ≈ −δωd, 

sec(kTh/2) ≈ sec(κnT), 

csc(kLh/2) ≈ (−1)n+1, 

where 𝛿𝜔ௗ =
௛ ఋఠ

ଶ௖ಽ
  is a dimensionless version of the small change in frequency δω. Here we have 

noted that sin(κnL) = (−1)n+1 and cos(κnL) = 0. We have also retained only leading order in the sec 

and csc expansions because of the presence of the factors of k2 in Supplementary Equation 19 

above. Then, substituting the trigonometric expansions into the approximate dispersion relations, 

(Supplementary Equation 19), we obtain to order k2, 

𝛿𝜔ௗ𝑡𝑎𝑛(𝑘௡்) + 𝛼𝛿𝜔ௗ
ଶ𝑠𝑒𝑐ଶ(𝑘௡்) −

௞మ௛మ

ସ௠గ
ቀ𝑡𝑎𝑛(𝑘௡்) +

ଵ଺

௠గ య
ቁ = 0         (21)    

with m = 2n – 1, an odd integer. This result is valid for all symmetric, longitudinal Lamb modes. 

 

For sufficiently small δω (and correspondingly k) one may observe that the dispersion relation is 

always quadratic in k. The curvature may be positive, negative, or nearly vanish depending on the 

quantity κnT and α and this in turn is closely related to the degeneracy of S1L and S1T modes. 

 

We note that the considerations above are given for Lamb waves in isotropic materials. 

However, our numerical calculations (see example of dispersion curve in Supplementary Figure 

18) indicate that the main features – parabolic dispersion at k0 and linear scaling with the film 

thickness h are preserved for transversely isotropic materials, such as MoS2. 
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