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Supplementary Fig. 1. Gating and sorting strategy of mouse and human naive CD4* T cells.

a. Spleen and lymph nodes were harvested from mice and single cell suspension were prepared.
In the first step, lymphocytes were gated in forward and side scatter (SSC-A vs. FSC-A), and
lymphocytes were further selected as singlets using the size discrimination parameters (FSC-H
vs. FSC-A). Using the CD4, CD25 and CD62L fluorochrome labelled antibodies, CD25* and
CD4- populations were excluded resulting in the selection of CD4" T cells, which was further
sorted into CD4"CD62L" (naive T cells) cells while excluding the CD4"CD62L- population and
the purity of post-sort population, CD4"CD62L" T cells, was determined as indicated. b. Blood
from healthy individuals were collected and PBMCs were subjected to lymphocytes gating
based on the forward and side scatter (SSC-A vs. FSC-A). Cells were further selected as
singlets using the size discrimination parameter (FSC-H vs. FSC-A). Using the fluorochrome

labelled anti-human CD4, CD45RA and CD45RO antibodies, naive CD4"CD45RA™ T cells

FSC-A

CD4-Horizon V450

were sorted with a 99% post-sort purity.
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Supplementary Fig. 2. EGFR inhibition attenuates Th9 cell-mediated anti-tumor response in vivo.

a-h. Naive CD4" T cells from OT-II TCR transgenic mice were in vitro differentiated into Th9 with or
without 1.0 uM gefitinib for 3 days. Cells were then adoptively transferred into B16-OVA tumor
bearing WT mice, randomized into three groups (n=5 mice per group). a-f. Representative FACS
analysis for CD4*, CD8", IFN-y" populations in spleen and tumor draining lymph nodes (dLN). g,h.
Tumor-infiltrating lymphocytes (TILs) were isolated from the tumor followed by FACS analysis of
intracellular staining for CD8IFN-y"and CD4"IFN-y* cell populations. Data are representative from

three independent experiments.
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Supplementary Fig. 3. Blocking EGFR signaling abrogates IL-9 induction in Th2, Th17, iTregs.

a. Naive CD4" T cells from WT mice were in vitro differentiated under Th2, Th17 and iTreg
polarizing conditions with or without 1.0 uM gefitinib; analysis of IL-9 expression was done by
qPCR and ELISA. Data are representative of mean + SEM from three independent experiments.
b,c. Naive CD4" T cells from WT and Egfi™*/*XCd4-cre mice were differentiated under Th9
polarizing conditions for 3 days followed by qPCR and ELISA for IL-10 and IFN-y. Data are
representative of mean + SEM from three independent experiments. a-c. *P < (0.0332, **P <

0.0021, ***P < 0.0002, P = ns (not significant), using two-tailed unpaired student’s t test.
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Supplementary Fig. 4. Areg amplifies IL-9 induction in Th2, Th17, iTregs.

a. Naive CD4*T cells from WT mice were differentiated into ThO and Th9 followed by qPCR
analysis of Tgfa, Egf and Hbegf expression. Data are representative of mean = SEM from three
independent experiments. b. Naive CD4" T cells from WT mice were differentiated into Tho,
Thl, Th2, Th9, Th17, iTregs followed by qPCR analysis of 7/9, Egfr and Areg expression. Data
are representative of mean + SEM from three independent experiments c. Naive CD4* T cells
from WT mice were in vitro differentiated under Th2, Th17 and iTreg polarizing conditions
with or without 100 ng/ml Areg followed by qPCR analysis of Egfr and 119 expression and
ELISA for IL-9. Data are representative of mean + SEM from three independent experiments.
d. Naive CD4" T cells from WT and Areg”- mice were differentiated under Th2, Th17, iTreg
polarizing conditions for 3 days followed by qPCR analysis of //9 and Egfr expression and
ELISA for IL-9. Data are representative of mean + SEM from three independent experiments
e. Naive CD4" T cells from WT mice were cultured as ThO in the presence or absence of 100
ng/ml Areg followed by qPCR analysis of //9 expression. Data are representative of mean +
SEM from three independent experiments. f. Naive CD4" T cells from WT mice were
differentiated in the presence of TGF-B1 or IL-4 or TGF-B1+IL-4 with 100 ng/ml Areg
supplementation followed by qPCR analysis of //9 expression. Data are representative of mean
+ SEM from three independent experiments. g,h. Naive CD4" T cells from WT and Areg”
mice were differentiated under Th9 polarizing conditions for 3 days followed by qPCR and
ELISA for IL-10 and IFN-y. Data are representative of mean + SEM from three independent
experiments. a,c,d,e,g,h. *P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < 0.0001 , P = ns
(not significant), using two-tailed unpaired student’s t test. b,f. *P < 0.0332, **P < 0.0021,
*ExXp < 0.0002, ****pP < (0.0001, using one-way ANOVA followed by Tukey’s multiple

comparison test.
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Supplementary Fig. 5. HIFla binds to IL-9 promoter in Th2, Th17, iTregs.

a. Naive CD4" T cells from WT mice were differentiated to Th9 in the presence or
absence of 100 ng/ml Areg followed by qPCR analysis of Hifla expression. Data are
representative of mean + SEM from three independent experiments. b-d. ChIP analysis of
HIF1a binding to IL-9 promoter in Th2, Th17, iTregs represented as enrichment of HIFla
on IL-9 promoter relative to input. Data are representative of mean + SEM from three
independent experiments. e,f. Naive CD4" T cells from WT and Hifloa® mice were
differentiated under Th9 polarizing conditions for 3 days followed by qPCR and ELISA
for IL-10 and IFN-y. Data are representative of mean + SEM from three independent
experiments. a-f. *P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < (0.0001, P = ns (not

significant), using two-tailed unpaired student’s t test.
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Supplementary Fig. 6. PHD2 and Hypoxia enhances IL-9 induction in Th2, Th17, iTregs.

a. Naive CD4" T cells from WT and Phd2* mice were differentiated under Th2, Th17, iTreg
polarizing conditions with daily treatment of 1.0 pg/ml Dox for 3 days followed by qPCR and
ELISA for IL-9. Data are representative of mean + SEM from three independent experiments.
b. Naive CD4" T cells from WT mice were differentiated into Th2, Th17, iTregs under
normoxic (21% oxygen) or hypoxic (1% oxygen) conditions for 3 days. qPCR analysis of 7/9
expression and ELISA for IL-9 production. Data are representative of mean = SEM from three
independent experiments. a.b. *P < 0.0332, ***P < (0.0002, ****P < 0.0001, using two-tailed

unpaired student’s t test.
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Supplementary Fig. 7. NO augments IL-9 induction in Th2, Th17, iTregs.

a,b. Naive CD4" T cells from WT and Nos2”-mice were differentiated to Th9 followed by qPCR
and ELISA for IL-10 and IFN-y. Data are representative of mean + SEM from three independent
experiments. ¢. Naive CD4" T cells from WT and Nos2” mice were differentiated to Th2, Th17
and iTregs followed by qPCR and ELISA for IL-9. Data are representative of mean + SEM from

three independent experiments. a-c. *P < 0.0332, ***P < (0.0002, P = ns (not significant), using

two-tailed unpaired student’s t test.
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Supplementary Fig. 8. Metabolomics profiling of Th9 cells.
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Naive CD4" T cells from WT and Hiflo*® mice were differentiated under Th9 polarizing

conditions. Cell extracts were prepared and subjected to metabolomics profiling. Heat-maps

showing (a) metabolites of Pentose Phosphate Pathway (PPP), (b) fatty acid intermediates and

(c) amino acids.
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Supplementary Fig. 9. Vigabatrin inhibits HIF1a-mediated Th9 cell differentiation.

Naive CD4" T cells from WT mice were differentiated under ThO and Th9 polarizing

conditions with or without 500 uM vigabatrin followed by a. qPCR analysis of Hifla and 119

expression. Data are representative of mean + SEM from three independent experiments. b.

FACS analysis of intracellular IL-9 and IL-17. *P < 0.0332, ****P < (.0001, using one-way

ANOVA followed by Tukey’s multiple comparison test.
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Supplementary Fig. 10. The effects of aKG and succinate are central to IL-9 and Th9 cells.

a,b. Naive CD4" T cells from WT mice were differentiated under Th9 polarizing conditions
with or without 1.0 mM oKG followed by qPCR and ELISA for IL-10 and IFN-y. Data are
representative of mean + SEM from three independent experiments. c,d. Naive CD4" T
cells from WT mice were differentiated under Th9 polarizing conditions with or without
5.0 mM succinate followed by qPCR and ELISA for IL-10 and IFN-y. Data are
representative of mean + SEM from three independent experiments e. Naive CD4* T cells
from WT mice were differentiated in the presence of TGF-B1 or IL-4 or TGF-B1+IL-4 with
5.0 mM succinate supplementation followed by qPCR analysis of 7/9 expression. Data are
representative of mean + SEM from three independent experiments. f. Naive CD4" T cells
from WT mice were cultured as ThO with or without 5.0 mM succinate followed by qPCR
analysis of /19 expression. Data are representative of mean + SEM from three independent
experiments. a,b,c,d,f. P = ns (not significant), using two-tailed unpaired student’s t test. e.

*ExkP <0.0001, using one-way ANOVA followed by Tukey’s multiple comparison test.



Supplementary Table 1. SYBR Primers for gPCR

5’-GATGTATGAAGGCTTTGGTC-3’
5 TGTGCACTTTTATTGGTCTC-3’

mHifla F 5’-CGATGACACAGAAACTGAAG-3’

mHifla R 5’-GAAGGTAAAGGAGACATTGC-3’

mIl9 F 5’-CTGATGATTGTACCACACGTGC-3’

5.GCCTTTGCATCTCTGTCTTCTGG-3’
mIl10 F 5.CAGGACTTTAAGGGTTACTTG-3’
mIl10 R 5. ATTTTCACAGGGGAGAAATC-3’

5’ TGAGTATTGCCAAGTTTGAG-3’
mlfny R 5’-CTTATTGGGACAATCTCTTCC-3’
mSpil F 5-CATGAGGTGAAATGTGAGAG-3’
mSpil R 5. AGTTGGTTGAAATGGATCAC-3’
mIrfd F 5’-ACGCTGCCCTCTTCAAGGCTT-3

mIrf4 R 5-TGGCTCCTCTCJdCAATTCC-3’
5 TATTAACAGACCCCTGACTATG-3’

mGata3 R 5>-CACCTTTTTGCACTTTTTCG-3’
mBatf F 5’-AAAATGACAAGTCAACCCTG-3’

5’ TTAGAAAACTATCCACCCCC-3’

5’-TCTGTATAACCTACAGGTGTC-3’

5°- CAGACTGTTCAAAGAGCTTC -3’

5" TCTTCAAGGATGTGAAGTGTG-3’

5-TGTACGCTTTCGAACAATGT-3'
mAreg F 5°-GCCATTATGCAGCTGCTTTGGAGC-3’

5-TGTTTTTCTTGGGCTTAATCACCT-3’

5’- GGTTGCTCTGTTCTGGAGAGAT-3’
mII33r R 5°-CTGCATCTTGCCCAGGTAAC-3’

5 - TTTTGCATGACACTCTTCAC-3’
mNos2 R 5°-ACTGGTTGATGAACTCAATG-3’
mEglnl F 5°-CCAAATGGAGATGGAAGATG-3’
mEglnl R 5°-AGAATACCTCCACTTACCTTG-3’
mTgfa F 5-AGCCAGAAGAAGCAAGCCATCACT-3’
mTgfa R 5°-CTCATTCTCGGTGTGGGTTAGCAA-3’
mEgf F 5°-AGATGAGTGTGTGCTGGCTAGATC-3’

5°.TCCGAGTCCTGTAGTAGTAAGTCC -3’
mHbegf F 5°-CTCCCACTGGATCCACAAAC-3’

5°-GGCATGGGTCTCTCTTCTTC-3’

5’-TGCACCACCAACTGCTTAGC-3’
5’-GGCATGGACTGTGGTCATGAG-3’

5’- GTGCCACTGCAGTGCTAATGT-3’
hIl9 R 5°.CTCTCACTGAAGCATGGTCTGG-3’

5" GCCAAGGCACGAGTAACAAGC-3'

5-AGGGCAATGAGGACATAACC-3'




Supplementary Table 2. SYBR Primers for ChIP-PCR

5-TGCTGTAACCACTGAGCCAT-3’
5-GTGACAGCAGACAAGAGCAG-3’
IL9P HIFlo. site 2 RP 5. ACTGCGGTGGGATATGTAGG-3’
5. GAAGTGTGAGAGCAACGTGG-3’
5. TGCCAGTGTATCAGTCAGGG-3’
5’ AGAATATGCATGCCTGGTGG-3’
IL9P HIFlo. site 4 RP 5’-ACCACAGACCAGAGTTAGGC-3’

IL9P HIF1o site 4 LP 5’>-CTCTCCCCTTCTACCTGCTG-3’
Nos2P_HIF1a_site 1 RP 5’-CATGCAAGGCCATCTCTTCC-3’

Nos2P_HIF1a_site 1 LP 5’-TCCGTGCCCAGAACAAAATC-3’




