

Enriched HALLMARK pathways NES from GSEA

-1 0 1 2 -3 -2 -1 0 Normalized Enrichment Score

-2 -1

HALLMARK_ESTROGEN_RESPONSE_LATE HALLMARK_HYPOXIA HALLMARK_ESTROGEN_RESPONSE_EARLY HALLMARK_ANDROGEN_RESPONSE HALLMARK_ANDROBIOTIC_METABOLISM HALLMARK_CHOLESTEROL_HOMEOSTASIS HALLMARK_MYOGENESIS HALLMARK_MYOGENESIS HALLMARK_COAGULATION HALLMARK_FATTY_ACIO_METABOLISM HALLMARK_EZF_TRARGETS HALLMARK_MTORCF_JSIGNALING HALLMARK_GLYCOLYSIS HALLMARK_BLE_ACID_METABOLISM HALLMARK_PANCREAS_BETA_CELLS HALLMARK_ONDATIVE_PHOSPHORYLATION HALLMARK_PROTEIN_SECRETION HALLMARK_PROTEIN_SECRETION HALLMARK_PEROXISOME HALLMARK_PEROXISOME HALLMARK_PERXISIOME HALLMARK_KRAS_SIGNALING_DN HALLMARK_IL2_STAT5_SIGNALING HALLMARK_UV_RESPONSE_UP HALLMARK_GAM_CHECKPOINT HALLMARK_COMPLEMENT HALLMARK_COMPLEMENT HALLMARK MITOTIC SPINDLE HALLMARK_WITOITS_BENDLISM HALLMARK_HEME_METABOLISM HALLMARK_PI3K_AKT_MTOR_SIGNALING HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY HALLMARK KRAS SIGNALING UP HALLMARK_UNFOLDED_PROTEIN_RESPONSE HALLMARK_UNFOLDED_PROTEIN_RESPONSE_DN HALLMARK_UN_RESPONSE_DN HALLMARK_ANGIOGENESIS HALLMARK APOPTOSIS HALLMARK_P53_PATHWAY HALLMARK_DNA_REPAIR HALLMARK_APICAL_JUNCTION HALLMARK_APICAL_SURFACE HALLMARK_NOTCH_SIGNALING HALLMARK_MYC_TARGETS_V1 HALLMARK_TGF_BETA_SIGNALING HALLMARK_HEDGEHOG_SIGNALING HALLMARK_TNFA_SIGNALING_VIA_NFKB HALLMARK_IL6_JAK_STAT3_SIGNALING HALLMARK_ALLOGRAFT_REJECTION HALLMARK_INFLAMMATORY_RESPONSE HALLMARK_WNT_BETA_CATENIN_SIGNALING HALLMARK MYC TARGETS V2 HALLMARK_INTERFERON_GAMMA_RESPONSE HALLMARK_INTERFERON_ALPHA_RESPONSE

Е

Supplementary Figure 1: Identifying global transcriptional and DNA methylation patterns in androgen driven differentiation. A) Proliferation of HPr1-AR cells treated with DHT (10nM) or vehicle control (EtOH) up to 96hr post-treatment. The data represent experiments performed in biological triplicates. **B)** RT-qPCR assessment of known DHT responsive genes in HPr1-AR cells. **C)** Cytokeratin profiling (immunoblot) of two well established markers of basal cell populations (CK5) and luminal cell populations (CK8). **D)** Heatmap and enrichment plots comparing observed expression changes by RNA-seq (24hr) to those previously reported in HPr1-AR cells by microarray profiling (24hr)[6]. **E)** Summary of all HALLMARK pathway enrichments determined by GSEA analysis (24hr and 96hr relative to 0hr). Normalized Enrichments Scores (NES) are shown on the x-axis. Significant enrichments (p.adj < 0.1) are shown in blue; non-significant enrichments are shown in grey. **F)** Venn diagram depicting number of significantly enriched pathways from complete GSEA analysis between 24hr and 96hr of DHT exposure.

Supplementary Figure 2: Confirmation of whole-genome bisulfite sequencing approach using TruSeq Methyl Capture sequencing A) Hierarchical clustering of WGBS samples. Euclidean distance was used as a measure of similarity. B) Correlation of WGBS methylation calls to those identified in Methyl-Capture seq approach at different levels of sequencing coverage.

Supplementary Figure 3: Enrichment map of significantly enriched pathways associated with androgen induced DNA methylation dynamics. GSEA was performed, using overall variance at TSS loci genome wide, to reveal functional enrichment of genes associated with DNA methylation dynamics. Shown are significantly enriched gene sets (FDR < 0.05). Size of nodes represent normalized enrichment scores, and edges represent an overlap of at least 35% between two gene sets.

 Table S1: Primers sequences used in study

Gene	Forward	Reverse	Amplicon Length
DPP4	GAAGAGAGGATTCCAAACAAC	CATTGTTCCAAACATATGCC	79
S100P	TCTGAATCTAGCACCATGAC	CATCCTTGTCTTTTCCACTC	172
KRT8	ACGAATTTGTCCTCATCAAG	CCGGATCTCCTCTTCATATAG	128
KRT18	GGAAGTAAAAGGCCTACAAG	GTACTTGTCTAGCTCCTCTC	154
STEAP4	TGATTCATATGTGGCTTTGG	CAGTTTGGACTGGACAAATC	124
TMEM56	ATGGAACTCAAGGGTAGTATC	TGGACAAATCAGAAATGAGG	170
KRT5	AGTTTGTGATGCTGAAGAAG	GTTAATCTCATCCATCAGTGC	92
CPA4	AGAAATGGAGACGAGATCAG	GGGAGATTTCCAGAAATTGAG	78

pathway	pval	padj	NES
BOLTON_ANDROGEN_UP	1.40E-04	7.67E-03	3.02
MENSE_HYPOXIA_UP	1.36E-04	7.67E-03	2.33
ZHANG_LUMINAL	1.28E-04	7.67E-03	2.22
PYEON_CANCER_HEAD_AND_NECK_VS_CERVICAL_UP	1.24E-04	7.67E-03	2.20
ELVIDGE_HIF1A_TARGETS_DN	1.37E-04	7.67E-03	2.15
IIZUKA_LIVER_CANCER_PROGRESSION_G2_G3_UP	1.61E-04	8.25E-03	2.15
HSIAO_LIVER_SPECIFIC_GENES	1.29E-04	7.67E-03	2.13
ELVIDGE_HIF1A_AND_HIF2A_TARGETS_DN	1.35E-04	7.67E-03	2.12
DOANE_BREAST_CANCER_CLASSES_UP	1.44E-04	7.67E-03	2.11
QI_HYPOXIA	1.28E-04	7.67E-03	2.11
DEMAGALHAES_AGING_UP	3.00E-04	1.11E-02	2.09
SMID_BREAST_CANCER_LUMINAL_B_UP	1.29E-04	7.67E-03	2.09
NAKAYAMA_SOFT_TISSUE_TUMORS_PCA2_DN	1.49E-04	7.71E-03	2.08
MARTIN_INTERACT_WITH_HDAC	1.49E-04	7.71E-03	2.08
FARDIN_HYPOXIA_11	3.10E-04	1.11E-02	2.08
ROSS_AML_OF_FAB_M7_TYPE	1.42E-04	7.67E-03	2.06
FARMER_BREAST_CANCER_APOCRINE_VS_LUMINAL	1.16E-04	7.67E-03	2.06
KEGG_ABC_TRANSPORTERS	4.58E-04	1.28E-02	2.04
ONDER_CDH1_TARGETS_2_UP	1.20E-04	7.67E-03	2.04
ELVIDGE_HYPOXIA_UP	1.25E-04	7.67E-03	2.03
HOOI_ST7_TARGETS_DN	1.35E-04	7.67E-03	2.02
SEMENZA_HIF1_TARGETS	3.08E-04	1.11E-02	2.02
ELVIDGE_HYPOXIA_BY_DMOG_UP	1.29E-04	7.67E-03	2.02
FARMER_BREAST_CANCER_APOCRINE_VS_BASAL	1.15E-04	7.67E-03	2.02
ZHANG_TLX_TARGETS_DN	1.37E-04	7.67E-03	2.01
REACTOME_COLLAGEN_FORMATION	2.95E-04	1.11E-02	2.01
BOQUEST_STEM_CELL_UP	1.23E-04	7.67E-03	2.00
FRASOR_TAMOXIFEN_RESPONSE_UP	2.95E-04	1.11E-02	2.00
VALK_AML_CLUSTER_1	4.87E-04	1.31E-02	1.99
BURTON_ADIPOGENESIS_4	2.95E-04	1.11E-02	1.98
TIEN_INTESTINE_PROBIOTICS_6HR_UP	1.31E-03	2.37E-02	-1.98
REACTOME_TRANSLATION	4.78E-04	1.31E-02	-1.99
COLLER_MYC_TARGETS_UP	2.71E-04	1.09E-02	-2.00
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE	4.31E-04	1.23E-02	-2.01
KEGG_SELENOAMINO_ACID_METABOLISM	2.68E-04	1.09E-02	-2.01
XU_HGF_TARGETS_INDUCED_BY_AKT1_6HR	7.59E-04	1.70E-02	-2.01

Table S2: Top 30 significantly enriched upregulated and downregulated pathways in HPr1-ARcells exposed to DHT for 96 hours.

HECKER_IFNB1_TARGETS	6.69E-04	1.59E-02	-2.03
GAURNIER_PSMD4_TARGETS	5.64E-04	1.43E-02	-2.06
CHNG_MULTIPLE_MYELOMA_HYPERPLOID_UP	6.34E-04	1.54E-02	-2.09
SANA_RESPONSE_TO_IFNG_UP	3.28E-04	1.15E-02	-2.10
REACTOME_INFLUENZA_LIFE_CYCLE	4.82E-04	1.31E-02	-2.11
STAMBOLSKY_TARGETS_OF_MUTATED_TP53_DN	6.10E-04	1.49E-02	-2.13
HALLMARK_INTERFERON_ALPHA_RESPONSE	3.75E-04	1.20E-02	-2.13
ZHANG_INTERFERON_RESPONSE	2.60E-04	1.09E-02	-2.20
REACTOME_ACTIVATION_OF_THE_MRNA_UPON_BINDING_OF_THE_CAP_BINDING_COMPLEX_AND_EIFS_AND_SUBSEQUENT_BINDING_TO_43S	3.17E-04	1.13E-02	-2.28
BOLTON_ANDROGEN_DOWN	3.05E-04	1.11E-02	-2.33
BILANGES_SERUM_AND_RAPAMYCIN_SENSITIVE_GENES	3.40E-04	1.17E-02	-2.33
REACTOME_INTERFERON_ALPHA_BETA_SIGNALING	3.05E-04	1.11E-02	-2.34
BOWIE_RESPONSE_TO_TAMOXIFEN	2.52E-04	1.09E-02	-2.34
REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX	4.18E-04	1.22E-02	-2.38
REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX	3.01E-04	1.11E-02	-2.39
REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION	4.06E-04	1.20E-02	-2.39
RASHI_NFKB1_TARGETS	2.58E-04	1.09E-02	-2.40
MOSERLE_IFNA_RESPONSE	2.77E-04	1.10E-02	-2.41
FARMER_BREAST_CANCER_CLUSTER_1	2.56E-04	1.09E-02	-2.42
KEGG_RIBOSOME	3.78E-04	1.20E-02	-2.49
EINAV_INTERFERON_SIGNATURE_IN_CANCER	2.68E-04	1.09E-02	-2.52
REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION	3.96E-04	1.20E-02	-2.52
BENNETT_SYSTEMIC_LUPUS_ERYTHEMATOSUS	2.68E-04	1.09E-02	-2.55
REACTOME_PEPTIDE_CHAIN_ELONGATION	3.79E-04	1.20E-02	-2.61

Table S3: Top 50 significantly enriched pathways associated with DNA methylation dynamics inHPr1-AR cells exposed to DHT for 96 hours.

pathway	pval	padj	NES
MIKKELSEN_MEF_HCP_WITH_H3K27ME3	1.00E-05	5.70E-04	2.93
MIKKELSEN_MCV6_HCP_WITH_H3K27ME3	1.00E-05	5.70E-04	2.74
BENPORATH_PRC2_TARGETS	1.00E-05	5.70E-04	2.67
MEISSNER_BRAIN_HCP_WITH_H3K27ME3	1.00E-05	5.70E-04	2.66
BENPORATH_ES_WITH_H3K27ME3	1.00E-05	5.70E-04	2.54
MEISSNER_NPC_HCP_WIH_H3K4ME2_AND_H3K27ME3	1.00E-05	5.70E-04	2.51
KONDO_PROSTATE_CANCER_WITH_H3K27ME3	1.10E-05	6.30E-04	2.51
MARTENS_TRETINOIN_RESPONSE_UP	1.00E-05	5.70E-04	2.5
MIKKELSEN_NPC_HPC_WITH_H3K27ME3	1.00E-05	5.70E-04	2.49
RICKMAN_HEAD_AND_NECK_CANCER_A	1.00E-05	5.70E-04	2.49
BENPORATH_SUZ12_TARGETS	1.00E-05	5.70E-04	2.48
NABA_MATRISOME	1.00E-05	5.70E-04	2.45
ZHANG_LUMINAL	1.00E-05	5.70E-04	2.45
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION	1.00E-05	5.70E-04	2.44
NABA_ECM_AFFILIATED	1.00E-05	5.70E-04	2.43
MIKKELSEN_IPS_WITH_HCP_H3K27ME3	1.00E-05	5.70E-04	2.43
NABA_CORE_MATRISOME	1.00E-05	5.70E-04	2.41
ANASTASSIOU_MULTICANCER_INVASIVENESS_SIGNATURE	1.00E-05	5.70E-04	2.36
SABATES_COLORECTAL_ADENOMA_DN	1.00E-05	5.70E-04	2.35
SERVITJA_ISLET_HNF1A_TARGETS_DN	1.00E-05	5.70E-04	2.34
RICKMAN_HEAD_AND_NECK_CANCER_E	2.10E-05	9.60E-04	2.34
HALLMARK_KRAS_SIGNALING_DN	1.00E-05	1.11E-02	2.34
NABA_ECM_GLYCOPROTEINS	1.00E-05	5.70E-04	2.34
MIKKELSEN_ES_LCP_WITH_H3K4ME3	1.00E-05	5.70E-04	2.33
MIKKELSEN_MCV6_LCP_WITH_H3K4ME3	1.00E-05	5.70E-04	2.33
SENGUPTA_NASOPHARYNGEAL_CARCINOMA_WITH_LMP1_DN	1.00E-05	5.70E-04	2.32
MIKKELSEN_IPS_LCP_WITH_H3K4ME3	1.00E-05	5.70E-04	2.32
NABA_MATRISOM_ASSOCIATED	1.00E-05	5.70E-04	2.3
SERVITJA_ISLET_HNF1A_TARGETS_UP	1.00E-05	5.70E-04	2.29
KATSANOU_ELAVL1_TARGETS_UP	1.00E-05	5.70E-04	2.27
LIANG_SILENCED_BY_METHYLATION_2	2.10E-05	9.60E-04	2.26
SMID_BREAST_CANCER_NORMAL_LIKE_UP	1.00E-05	5.70E-04	2.25
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES	4.40E-05	1.80E-03	2.25
SHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP	1.00E-05	5.70E-04	2.24
REACTOME_INTERACTION_BETWEEN_L1_AND_ANKYRINS	2.30E-05	1.00E-03	2.24
MIKKELSEN_MEF_LCP_WITH_H3K4ME3	1.00E-05	5.70E-04	2.24

SATO_SILENCED_EPIGENETICALLY_IN_PANCREATIC_CANCER	2.10E-05	9.60E-04	2.24
REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS	1.00E-05	5.70E-04	2.23
ZHANG_ANTIVIRAL_RESPONSE_TO_RIBAVIRIN_UP	6.60E-05	2.40E-03	2.23
TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_10D_UP	1.00E-05	5.70E-04	2.22
NAVA_ECM_REGULATORS	1.00E-05	5.70E-04	2.21
MIKKELSEN_MEF_ICP_WITH_H3K27ME3	2.00E-05	9.60E-04	2.2
MEISSNER_NPC_HCP_WITH_H3K27ME3	3.10E-05	1.40E-03	2.2
REACTOME_G_ALPHA_S_SIGNALLING_EVENTS	2.00E-05	9.60E-04	2.18
MUELLER_METHYLATED_IN_GLIOBLASTOMA	6.40E-05	2.30E-03	2.18
WANG_MLL_TARGETS	1.00E-05	5.70E-04	2.18
REACTOME_POTASSIUM_CHANNELS	5.20E-05	2.00E-03	2.17
MIKKELSEN_ES_ICP_WITH_H3K4ME3	1.00E-05	5.70E-04	2.15
REN_ALVEOLAR_RHABODMYOSARCOMA_UP	4.10E-05	1.70E-03	2.14
REACTOME_GPCR_LIGAND_BINDING	1.00E-05	5.70E-04	2.14

