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P. A. D. Gonçalves,1, 2, ∗ Thomas Christensen,1 Nuno M. R. Peres,3, 4 Antti-Pekka Jauho,5, 6

Itai Epstein,7, 8 Frank H. L. Koppens,7, 9 Marin Soljačić,1 and N. Asger Mortensen2, 5, 10, †
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SUPPLEMENTARY NOTE 1. FEIBELMAN d-PARAMETERS

In classical electrodynamics the electromagnetic field in macroscopic bodies is fully specified by
Maxwell’s equations along with the system’s bulk, local-response functions (e.g., dielectric function
or conductivity). At interfaces between different media, the behavior of the fields then follows from
the application of the traditional Maxwell boundary conditions; cf. Jackson [1]. These, at the macro-
scopic scale, lead to the discontinuity of the normally-oriented electric field across the interface; such
behavior—although unphysical—is justifiable since the actual (i.e., continuous) variation of the said
field is restricted to a macroscopically-small region confined to the surface: near metal surfaces, such sur-
face region typically spans only a few ångströms in length. Because of this, the traditional macroscopic
Maxwell’s equations remain the workhorse of modern photonics and provide an adequate description of
electromagnetic phenomena in most scenarios [1–3].

Nevertheless, the steadfast advancement of the state-of-the-art in nanofabrication and characterization
techniques has been starting to expose the intriguing quantum mechanical character of the plasmon-
supporting electron gas at mesoscopic scales, as shown by a number of works [4–17]. The quantum
mechanical treatment of the many-electron problem governing the electrodynamics of metals—including
plasmon excitations—may, in principle, be addressed using time-dependent density functional theory
(TDDFT) [18; 19]; however, the latter is often beset by prohibitive computational demands when dealing
with typical plasmonic structures whose size renders most ab initio methods impractical.

In this light, the d-parameter formalism for mesoscale electrodynamics introduced by Feibelman [4; 5]—
and which has recently resurfaced in different contexts [13; 15; 16; 20; 21]—provides an economical,
leading-order-accurate description of the main quantum mechanical features associated with the plas-
monic response of metals, in a general and tractable framework. More specifically, it consists on the
introduction of a set of model-dependent microscopic surface-response functions known as the Feibel-
man d⊥- and d‖-parameters (cf. Fig. 1), which read [5; 13; 16; 17]

d⊥(ω) =

∫ ∞
−∞

dz z ρind(z)∫ ∞
−∞

dz ρind(z)
, (1a)

d‖(ω) =

∫ ∞
−∞

dz z ∂zJind
x (z)∫ ∞

−∞
dz ∂zJind

x (z)
, (1b)

defining, respectively, the centroid (or, alternatively, the first moment) of the quantum mechanical induced
charge density, ρind(z), and of the normal derivative of the corresponding tangential current, ∂zJind

x (z).
Re d⊥ describes the nonclassical shift of dynamic screening charges with respect to the jellium positive
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Supplementary Figure 1. Quantum surface-response associated with a dielectric–metal interface. a
Schematic representation of a planar dielectric–metal interface (here defined by the z = 0 plane, without loss
of generality). In either side, at a macroscopic distance away from the interface, each half-space is described
by its corresponding bulk, local-response dielectric function, i.e., εm ≡ εm(ω) and εd ≡ εd(ω), respectively,
for the metal (z < 0) and dielectric (z > 0) half-spaces. In vicinity of the metal surface, quantum mechanical
features lead to a nonuniform equilibrium electron density, n0(z), and an induced charge density, ρind(z) [arising
from the system’s response to an external perturbation]. The Feibelman d⊥-parameter can be interpreted as the
centroid of the induced charge density with respect to the positive background edge. b Feibelman d⊥-parameter
calculated from TDDFT data from Christensen et al. [13] for a jellium metal with Wigner–Seitz radius of rs = 3.

background, whereas Im d⊥ characterizes the associated surface-enabled Landau damping (e.g., electron–
hole pair creation). Incidentally, for charge-neutral jellium surfaces, d‖ = 0, although lattice effects, sur-
face roughness, or molecular adsorption can all render d‖ finite [4].

Moreover—just as the conventional bulk response functions—the Feibelman d-parameters d⊥ and d‖ are
complex-valued, causal response functions and so obey Kramers–Konig relations, from which the usual
sum-rules can be derived [22].

Low-frequency quantum surface-response: parameterization of d⊥

As shown by Persson and Apell [22] using Kramers–Kronig relations, the low-frequency (i.e., ω � ωp)
behavior of d⊥ is well captured by the following parameterization1:

d⊥(ω)
ω�ωp

= ζ + i
ω

ωp
ξ, (2)

where ζ ≡ ζ(rs) and ξ ≡ ξ(rs) are parameters that are constant for a given density parameter rs (and, in the
jellium approximation, are uniquely defined by it) [22; 23]. Thus, for frequencies well below the metal’s
plasma frequency, the real-part of d⊥ tends to a finite, constant value, Re d⊥(ω� ωp) = d⊥(0) = ζ, while
the corresponding imaginary-part grows linearly with frequency, Im d⊥ ∝ ω [22–24].

SUPPLEMENTARY NOTE 2. NONCLASSICAL SCATTERING COEFFICIENTS AND ACOUSTIC
GRAPHENE PLASMON’S DISPERSION

Our system of interest is a vertical, planar dielectric–graphene–dielectric–metal (D)GDM structure where
the graphene–metal separation t is controlled by the thickness of a dielectric slab with relative permittivity
ε2, as portrayed in Fig. 2 (the remaining quantities are defined in the figure).

Since the resonances supported by a given system are embodied in its scattering coefficients, being de-
termined by their poles, the spectrum of acoustic-like graphene plasmons (AGPs) can be fetched from
the scattering coefficients for p-polarized waves associated with the GDM structure depicted in Fig. 2.

1 We note that our definition of the Feibelman d-parameters differs from Persson and Apell’s [22] by a minus sign.
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Supplementary Figure 2. Pictorial representation of a layered dielectric–graphene–dielectric–metal het-
erostructure. A two-dimensional graphene sheet [characterized by a surface conductivity σ ≡ σ(q,ω)] lies at
distance t (defined by the thickness of a dielectric film) above a semi-infinite metal substrate.

Explicitly, the reflection coefficient for p-polarization akin to the GDM system follows from [17; 25]

rgdmp = r1|g|2
p +

t1|g|2
p t2|g|1

p r2|m
p ei2kz,2t

1 − r2|g|1
p r2|m

p ei2kz,2t
, (3)

where r j|g|k
p

(
t j|g|k
p

)
is the reflection (transmission) coefficient describing the reflection (transmission) of

p-polarized waves by (through) a graphene sheet sandwiched between two dielectrics with relative per-
mittivities ε j and εk, and where the incident wave comes from the side of the dielectric medium charac-
terized by ε j. Similarly, r2|m

p describes the reflection from the metal for p-polarized waves coming from
the dielectric defined by ε2. The complex exponentials account for multiple reflections within the slab

of thickness t that effectively separates the graphene from the metal substrate. Finally, kz,2 =

√
ε2k2

0 − q2

(subjected to Im kz,2 ≥ 0) with k0 = ω/c, and q denoting in-plane wavevector (which will correspond to
the AGP’s propagation constant).

From Eq. (3) it becomes apparent that the spectrum of AGPs is given by the implicit condition
1 − r2|g|1

p r2|m
p ei2kz,2t = 0. Since [5; 16; 26]

r2|g|1
p =

ε1kz,2 − ε2kz,1 + kz,2kz,1
σ

ωε0

ε1kz,2 + ε2kz,1 + kz,2kz,1
σ

ωε0

, (4)

r2|m
p =

εmkz,2 − ε2kz,m + (εm − ε2)
[
iq2d⊥ − ikz,2kz,md‖

]
εmkz,2 + ε2kz,m − (εm − ε2)

[
iq2d⊥ + ikz,2kz,md‖

] , (5)

then the dispersion relation of AGPs stems from the solutions of[
ε1

κ1
+
ε2

κ2
+

iσ
ωε0

] [
εmκ2 + ε2κm −

(
εm − ε2

)(
q2d⊥ − κ2κmd‖

)]
=[

ε1

κ1
−
ε2

κ2
+

iσ
ωε0

] [
εmκ2 − ε2κm +

(
εm − ε2

)(
q2d⊥ + κ2κmd‖

)]
e−2κ2t, (6)

with κ j ≡ κ j(q,ω) =

√
q2 − ε jk2

0 for j ∈ {1, 2, m} (so that kz, j = iκ j), and where ε j ≡ ε j(ω). Additionally,
here σ ≡ σ(q,ω) is the nonlocal dynamical conductivity of graphene, herein described under the nonlo-
cal random-phase approximation (RPA) [17; 27–29] (together with Mermin’s prescription for correctly
incorporating the relaxation-time approximation [17; 30]); see Ref. [17] for details.

Notice that, within this framework, any quantum mechanical aspects pertaining to the metal’s nonlocal
quantum surface-response are uniquely embodied via the Feibelman d-parameters.
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SUPPLEMENTARY NOTE 3. CORRECTION TO THE DISPERSION OF AGPs DUE TO THE METAL’S
QUANTUM SURFACE-RESPONSE: PERTURBATIVE ANALYSIS

q-shift due to the metal’s quantum surface-response

In the pursuit of the metal’s leading-order quantum correction to the AGP’s wavevector, it is instructive
to consider a simple perturbative treatment that elucidates (at least qualitatively) the role of the different
parameters affecting the impact of the metal’s nonlocality on the dispersion of AGPs in GDM heterostruc-
tures. To that end—and for the sake of simplicity and concreteness—we consider the nonretarded limit
of Eq. (6) for εd ≡ ε1 = ε2, yielding[

1 +
2εd

q
ωε0

iσ

] [
Λ − q(d⊥ − d‖)

]
=

[
1 + q(d⊥ + d‖)

]
e−2qt, (7)

with Λ =
εm + εd

εm − εd
. We now write the AGP’s wavevector as

q = q0 + q1 + . . . , (8)

where q0 corresponds to the case where the metal is treated classically (i.e., where dα = 0 with α = {⊥, ‖})
and q1 denotes the leading-order correction to the AGP’s wavevector due to the metal’s quantum surface-
response. In this spirit, the zero-th order solution follows from

1 +
2εd

q0

ωε0

iσ
=

e−2q0t

Λ
, (9)

and the metal-induced quantum q-shift is (assuming d‖ = 0)

q1 = q2
0d⊥

1 + Λ−1

Λe2q0t + 2q0t − 1
. (10)

In the low-frequency (ω� ωp) and small thickness (2q0t� 1) regime, one can make the approximations
Λ ' 1 and e2q0t ' 1 + 2q0t, so that the previous expression simplifies to

q1 ≈ q0
d⊥
2t

. (11)

The above perturbative analysis indicates that the absolute q-shift due to the metal’s quantum surface-
response increases with (i) the magnitude of d⊥, (ii) the “bare”, or classical, AGP’s wavevector q0, and
(iii) with t−1 (inverse of the graphene–metal separation). Notably, the impact of a small graphene–metal
separation is to effectively amplify the d⊥-parameter-correction to the q-shift, with the relative q-shift
being q1

q0
∼

d⊥
2t .

Impact of quantum surface losses arising from the metal’s response. The above-noted pertubation the-
ory result for the metal-induced q-shift is also valuable in exposing the reason why the quality factor
Q ≡ Re q/ Im q does not significantly deteriorate upon the inclusion of the metal’s quantum surface loss
(see Fig. 2c of the paper); from Eq. (11), we find

Re q1 =
1
2t

[
Re q0 Re d⊥ − Im q0 Im d⊥

]
≈
ζ

2t
Re q0, (12a)

Im q1 =
1
2t

[
Re q0 Im d⊥ + Im q0 Re d⊥

]
≈
ζ

2t
Im q0, (12b)

where the last approximation holds in the asymptotic ω/ωp → 0 limit. From this, we obtain

Q =
Re

(
q0 + q1

)
Im

(
q0 + q1

) ≈ [
1 +

ζ
2t
]
Re q0[

1 +
ζ
2t
]
Im q0

=
Re q0

Im q0
≡ Q0 ⇒ Q ≈ Q0, (13)
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which agrees well with the exact, numerical solution presented in the manuscript’s Fig. 2c, i.e., the quality
factor remains essentially unchanged in the low-frequency regime.

Another example, with different parameters and highlighting the evolution of the spectral properties of
AGPs with the graphene–metal separation t is shown in Fig. 3. Indeed, Q only deviates from Q0 for
extremely small t (Fig. 3c), and, even here, the variation is relatively minor. For Re d⊥ ≡ ζ < 0, Q can
actually become larger than Q0 for very small t; the reason for this is that for ζ < 0 the AGPs’ dispersion
shifts towards smaller q (because Re q1 < 0) and thus deviates from the threshold qth = ω/vF marking the
boundary of graphene’s electron-hole continuum, around which AGP’s Q-factor decreases abruptly due
to intraband Landau damping.

a b c

Supplementary Figure 3. Impact of the metal’s quantum surface-response on the spectral properties of
AGPs in GDM structures. a Dependence of the real (imaginary, b) part of the AGP’s wavevector upon varying
the graphene–metal separation t . c Influence of d⊥ on the Q-factor of AGPs’ for varying t (the inset shows
the Q/Q0 ratio; the x-axis scale is the same as in the main panel). Material and setup parameters: rs = 3,
~γm = 0.1 eV, εd = 4, EF = 0.3 eV and ~γ = 8 meV; we assume an excitation at λ0 = 11.28 µm (corresponding to
26.6 THz) [31]. For the d-parameters we have considered a jellium treatment with d‖ = 0 and d⊥ = ζ + iξω/ωp

where ζ = ±4 Å and ξ = 1 Å.

SUPPLEMENTARY NOTE 4. CORRECTION TO THE DISPERSION OF AGPs DUE TO THE METAL’S
QUANTUM SURFACE-RESPONSE: RENORMALIZED GRAPHENE–METAL SEPARATION

A complementary approach for incorporating the quantum surface-response of the metallic substrate
into the AGPs’ dispersion is through the replacement of the actual graphene–metal separation t by a
renormalized (or “effective”) graphene–metal separation t̃.

To find an appropriate expression for t̃, we rewrite Eq. (7) as

1 +
2εd

q
ωε0

iσ
=

1 + q(d⊥ + d‖)
1 − Λ−1q(d⊥ − d‖)

e−2qt

Λ
. (14)

Clearly, the quantum-corrected expression (dα , 0) differs from the classical one (with dα = 0) only
by the prefactor 1+q(d⊥+d‖)

1−Λ−1q(d⊥−d‖)
figuring in the right-hand-side of Eq. (14). Hence, we may “absorb” the

aforementioned prefactor into the argument of the exponential, that is,

1 +
2εd

q
ωε0

iσ
≡

e−2q(t−s)

Λ
=

e−2qt̃

Λ
, (15)

which can be regarded as a new, surface-response-corrected effective graphene–metal separation t̃ ≡ t− s,
with

s ≡
1
2q

ln
(

1 + q(d⊥ + d‖)
1 − Λ−1q(d⊥ − d‖)

)
'

1
2q0

ln
(

1 + q0(d⊥ + d‖)
1 − Λ−1q0(d⊥ − d‖)

)
, (16)

where in the last step we have dropped all q1dα terms since they are “second-order small”.

In Fig. 4b of the main manuscript we show the impact of the metal’s quantum surface-response through
the renormalization of the graphene–metal separation. For t . 5 nm, t̃ ≡ t − s can significantly deviate
from t due to the finiteness of Re d⊥.
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Finally, Eq. (16) can be simplified further by noting that the condition q0dα � 1 is very well realized2

for AGPs; this, together with the fact that in the low-frequency regime (ω � ωp) we may approximate
Λ ' 1, allows us to write

s '
1

2q0
ln

[
1 + 2q0d⊥ + O

(
[q0dα]2)] ,

⇒ s ' d⊥, (17)

where in the last step we have made use of the result ln(1 + x) ' x + O(x2). Therefore, we finally obtain

1 +
2εd

q
ωε0

iσ
=

e−2qt̃

Λ
, with t̃ ' t − d⊥, (18)

which is tantamount to the classical dispersion equation (where dα = 0), but now with a surface-response-
corrected, renormalized graphene–metal separation t̃ = t − d⊥.

Accuracy of perturbation and renormalized graphene–metal separation approximations

The perturbation expressions derived in Supplementary Notes 3 and 4 are compared to exact, numerical
evaluations of the quantum-corrected dispersion equation of Eq. (6) in Fig. 4. Both capture the quantum-
corrected shift very accurately; notably, solving the classical dispersion equation with a renormalized
separation, as in Eq. (18), produces results that are effectively indiscernible (at least in the parameter space
that is relevant here) from the solutions to the unapproximated quantum-corrected dispersion equation.

2 Typically, we have q0 ∼ 10−2 – 10−1 nm−1 and dα ∼ 10−1 nm, so that q0dα ∼ 10−3 – 10−2 � 1.

sec:Perturb
sec:delta_t
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t=2 nm , єd=1 t=2 nm , єd=4

t=1 nm , єd=4t=1 nm , єd=1

d⊥(0) = 4 Åa

b

d⊥(0) = 4 Å d⊥(0) = −4 Å

t=2 nm , єd=4

~

Supplementary Figure 4. Approximations for incorporating the effect of the metal’s quantum surface-
response on AGPs. Comparison of the perturbative treatments against the exact solution obtained by solving
Eq. (6) numerically. The black dotted line corresponds to the approach described in Supplementary Note 3 [via
Eq. (11)], whereas the blue dashed line corresponds to the approach outlined in Supplementary Note 4 [via
Eq. (18)]: a for d⊥ ' d⊥(0) = 4 Å; and b for d⊥ ' d⊥(0) = ±4 Å. General parameters: rs = 3 (~ωp ≈ 9.07 eV)
with ~γm = 0.1 eV for the unscreened jellium metal, and EF = 0.4 eV and ~γ = 8 meV for the graphene. The
hatched region indicates graphene’s electron–hole continuum.

sec:Perturb
sec:delta_t
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