
Supplement: Details of the Two-Phase-Compensation of Retinal Nerve Fiber 

Layer 

 

Figure 1. Diagrams showing an overview of the method. 

 

As shown in Figure 1, the method of compensating retinal nerve fiber layer (RNFL) consists of 

two phases. In the first phase, the age is used to compensate RNFL solely in vertical direction. 

The compensated RNFL by age is used in the second phase. In the second phase, gender, 

axial length (AL), disc-fovea angle (DFA) and disc-fovea distance (DFD) are used to 

compensate RNFL in vertical direction and horizontal direction concurrently. 

Phase 1. Compensate RNFL by age 

Age is represented by the one-dimensional vector 𝒙 and standardized. And the bias vector 

with all elements are 1 is superadded to 𝒙. RNFL profile is represented by the N-dimensional 

vector 𝒚 with 𝑁 = 768. The compensated RNFL by age 𝒚𝒂𝒈𝒆 is represented by formula (1):  

𝒚𝒂𝒈𝒆 = [𝒙𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝟏] × 𝑾2×𝑀 × 𝑹𝑩𝑭𝑀×𝑁  + 𝒚𝒕𝒓𝒂𝒊𝒏           (1)  

The product [𝒙𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝟏] × 𝑾𝟐×𝑀 × 𝑹𝑩𝑭𝑀×N is the movement in vertical direction. 𝑾2×𝑀 

is the weight matrix and its elements are initialized randomly. The element at position (𝑚, 𝑛) 

of matrix 𝑹𝑩𝑭𝑀×N is defined by formula (2): 



𝑹𝑩𝑭(𝑚,𝑛) = φ (𝑚, q) = 𝒆𝒙𝒑{ 
−||𝑚,𝑞||

2

2𝜎2  }      (2) 

 

 𝑚 = { 1,2, … , 𝑀 }. 𝑛 = { 1,2, … , 𝑁 }. ||𝑚, 𝑞|| is the Euclidean distance between 𝑚 and 𝑞. 𝑞 =

𝑁

𝑀−1
 × 𝑚 mod 𝑁 indicates that it is equally spaced on the scanned circle of RNFL. 𝜎 =

⌊
𝑁

𝑀−1
⌋. 

According to the fact that the RNFL thickness (RNFLT) decrease with ageing, we consider to 

use the optimization algorithm with constraint conditions to work out the weight matrix 𝑾2×𝑀. 

Generally we use Mean Squared Error (MSE) between 𝒚𝒂𝒈𝒆 and the mean of 𝒚𝒕𝒓𝒂𝒊𝒏  as 

objective function. To minimize the objective function, Lagrange multipliers with 

Karush-Kuhn-Tucker conditions are used. Then the weight matrix 𝑾2×𝑀 can be worked out 

and 𝒚𝒂𝒈𝒆 can be acquired by formula (1) and 𝒚𝒂𝒈𝒆 will be used in phase 2. 

Phase 2. Compensate RNFL by gender, AL, DFA and DFD 

Transformation of RNFLT Profile 

Approximation was applied in the establishment of RNFL profile by integrating 𝑁 discrete 

points with 𝑁 − 1 straight lines. The approximation was furtherly described as the following 

formula (3): 

 

𝒈(𝒚, 𝒑) = 𝒚⌊𝒑⌋ mod N  + (𝒑 −  ⌊𝒑⌋)  × (𝒚⌊𝒑+1⌋ mod N  − 𝒚⌊𝒑⌋ mod N)   (3) 

 

𝒈(𝒚, 𝒑) represents the thickness at positions 𝒑 on the RNFLT curve derived from 𝒚. 𝒚𝒑 

represents the elements of 𝒚 at 𝒑 positions. 𝒑 is the N-dimensional vector and its elements 

represent new positions after compensating in horizontal direction. We define 𝒑 = 𝒊 + ∆𝒑 and 

𝒊 = [0,1, … , 𝑁 − 1]  is an N-dimensional vector representing initial positions. ∆𝒑  is an 

N-dimensional vector that represents the compensation of positions in horizontal direction. 

Along with the N-dimensional vector 𝒔 representing the movements in vertical direction, we 

define the compensated RNFL curve by formula (4):  

 

𝒚′ = 𝒔 × 𝒈(𝒚, 𝒑)                                 (4) 

  

Estimations of 𝒔 and 𝒑  

Depending on formula (4), we need work out 𝒔 and 𝒑 to obtain the compensated RNFL 𝒚′. 

Anatomically, each point in the RNFL profile is in related with neighboring points. Thus a 

spatial correlation can be embedded in the radial basis function network (RBFN), with which 

the fully connected network (FCN) was combined. The estimation of 𝒔 is similar to the 

process of estimating ∆𝒑 . So, in the following parts we will first introduce some key 

components in the RBF neural network to predict ∆𝒑. 



 

Figure 2. The structure of RBFN. The input is the position 𝒊 and the output is ∆𝒑𝒊
′. The 

activation function is the radial basis function. 

 

As shown in Figure 2, the input of RBFN is a position 𝑖 that is an element of vector 𝒊 and the 

output ∆𝑝𝑖
′ defined by formula (5) represents the horizontal compensation at the position 𝑖. 

The activation function is the radial basis function defined by formula (2).  

 

∆𝑝𝑖
′ = ∑ 𝑤𝑗

𝑀
𝑗=1 φ (𝑖, 

𝑁

𝑀
× 𝑚)                            (5) 

 

𝑤𝑗  is an element of the M-dimensional vector 𝒘 that is the weight vector in RBFN. For 

estimating ∆𝑝𝑖
′  we must calculate the weight vector 𝒘 in RBFN. Heuristically, the three 

factors AL, DFA and DFD are composed as 3-dimensional vector 𝒙_𝒇𝒄 and standardized. The 

factor gender is a bivariate variable so it is not standardized. The gender and the standardized 

AL, DFA and DFD are composed as 4-dimensional vector 𝒙_𝒇𝒄 are passed to the FCN with 4 

input features and 𝑀 output features. It implies that there is a weight matrix 𝑾_𝑭𝑪𝟒×M in FCN 

and it can be worked out by training the FCN. Then we can calculate weight vector 𝒘 in 

RBFN by formula (6): 

 

                                  𝒘 =  𝒙_𝒇𝒄 × 𝑾_𝑭𝑪𝟒×M                           (6) 

 

Subsequently, we can get vector ∆𝒑′ consisting of the elements ∆𝑝𝑖
′ . We constrain the 

horizontal compensation by a constant 𝐿  and a function 𝒕𝒂𝒏𝒉(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 , i.e., ∆𝒑 =

𝐿 × 𝒕𝒂𝒏𝒉(∆𝒑′). Then 𝒑 can be worked out by 𝒑 = 𝒊 + ∆𝒑. 

The estimation of vertical compensation 𝒔 is same as the process of estimating ∆𝒑. But the 

estimation of 𝒔 has different weight matrix such as 𝑾_𝑭𝑪 in FCN. The different weight matrix 

in FCN for 𝒔 and 𝒑 can be worked out by training the FCN concurrently. The loss function in 

FCN is MSE between 𝒚′ and the mean of 𝒚𝒂𝒈𝒆 with L2 regularization. Furthermore, 𝒚 in 

formula (3) and (4) must be replaced by 𝒚𝒂𝒈𝒆. So far, 𝒔 and 𝒑 have been worked out. Using 

𝒚𝒂𝒈𝒆, 𝒔 and 𝒑, the compensated RNFL 𝒚′ can be acquired by formula (3) and (4). 

 


