Supplemental Files

A spontaneous multifunctional hydrogel vaccine amplifies the innate immune response to launch a powerful antitumor adaptive immune response

Xiuqi Liang⁺, Lu Li⁺, Xinchao Li⁺, Tao He, Songlin Gong, Shunyao Zhu, Miaomiao Zhang, Qinjie Wu^{*}, and Changyang Gong^{*}

X. Q. Liang, L. Li, X. C. Li, Dr. T. He, S. L. Gong, S. Y. Zhu, M. M. Zhang, Prof. Q.

J. Wu, Prof, C. Y. Gong

State Key Laboratory of Biotherapy and Cancer Center

West China Hospital, Sichuan University,

Chengdu, 610041, P. R. China

⁺ These authors contributed equally to this work.

* To whom should be corresponded, E-mail: chygong14@163.com and cellwqj@163.com

Antibody	Clone	Supplier
PE anti-mouse CD80	16-10A1	BioLegend
PE-Cy7 anti-mouse CD83	Michel-19	BioLegend
FITC anti-mouse CD86	GL-1	BioLegend
FITC anti-mouse CD80	16-10A1	BioLegend
APC anti-mouse CD86	GL-1	BioLegend
APC anti-mouse CD40	3/23	BioLegend
APC anti-mouse CD206	C068C2	BioLegend
FITC anti-mouse CD8a	53-6.7	BioLegend
PE anti-mouse IFN-γ	XMG1.2	BioLegend
PE-Cy7 anti-mouse CD3	17A2	BioLegend
FITC anti-mouse CD4	GK1.5	BioLegend
APC anti-mouse CD8a	53-6.7	BioLegend
PE anti-mouse CD11c	N418	BioLegend
FITC anti-mouse CD45	30-F11	BioLegend
FITC anti-mouse CD11b	M1/70	BioLegend
PE anti-mouse F4/80	BM8	BioLegend
PE-Cy7 anti-mouse CD86	GL-1	BioLegend
PE anti-mouse CD4	GK1.5	BioLegend
FITC anti-mouse CD25	PC61.5	BioLegend

 Table S1. Antibodies list used in flow cytometric analysis

PE-Cy5 anti-mouse Foxp3	FJK-16s	eBioscience
APC anti-mouse Gr-1	RB6-8C5	BioLegend
APC anti-mouse CD103	2E7	BioLegend
APC anti-mouse CD8a	53-6.7	BioLegend

Sample NOCC Detecting Theoretical ID concentration concentration of concentration $(\mu g/mL)$ CpG (µg/mL) of CpG (μ g /mL) **S**1 6000 47.179 48 6000 47.952 48 S2 S3 6000 49.014 48

Table S2. The grafting ratio of CpG on NOCC

Figure S1. The scheme of synthesizing NOCC-CpG.

Figure S2. The scheme of synthesizing OX-M.

Figure S3. UV-Vis absorption spectra of CpG, NOCC, and NOCC-CpG.

Figure S4. FT-IR spectra of the NOCC and NOCC-CpG.

Figure S5. The ${}^{1}H$ -NMR spectra of the mannose and OX-M.

Figure S6. Dynamic frequency sweep of Ncom Gel at 37 °C.

Figure S7. Cytotoxicity assessment by MTT assay for L929 and NIH3T3 cells incubated with various concentrations of NOCC-CpG and OX-M (A) and (C) and different Ncom Gel extract solutions (B) and (D) (n=3, all data are represented as means \pm s.d.).

Figure S8. Evaluation of degradation behavior of Ncom Gel in mice.

Figure S9. Rheological analysis of the NOCC-CpG/OX-M hydrogel after loading OVA

(OVA/Ncom Gel).

Figure S10. Cumulative release profiles of OVA-FITC from Ncom Gel in PBS.

Figure S11. Evaluation of Ncom Gel vaccine on BMDC activation *in vitro*. (A) . Representative scatter plots and gating information derived from analysis of CD11c⁺ CD80⁺, CD11c⁺ CD86⁺ and CD11c⁺ CD83⁺ BMDCs. (B-D) Flow cytometry analysis for the expression of CD80, CD83 and CD86 on BMDCs after various treatments.

Figure S12. Evaluation of Ncom Gel vaccine on M1 polarization *in vitro*. (A-C) Flow cytometry analysis for the expression of CD80, CD40, and CD86 on Raw264.7s after different treatments.

Figure S13. Evaluation of Ncom Gel vaccine on M2 polarization in vitro.

Figure S14. Blood chemistry profile analysis after treatment with various formulations (n=6 biologically independent samples, all data are represented as means ± s.d.)

Figure S15. H&E staining of vital organ sections. PBS (A), OVA/CpG (B), OVA/Ncom Gel (C), OVA/Alum (D), and Ncom Gel (E) (Scale bar = 100μ m).

Figure S16. Representative scatter plots and gating information derived from analysis of $CD3^+CD4^+$ and $CD3^+CD8^+T$ cells in the tumor.

Figure S17. Fluorescence intensity of M1 TAMs (left) and M2 TAMs (right) were analyzed after various treatments (n=3 biologically independent samples, all data are represented as means \pm s.d. and analyzed with one-way ANOVA with Tukey test. * P < 0.05, **P < 0.01, *** P< 0.001 and **** P< 0.0001).

Figure S18. Representative scatter plots and gating information derived from analysis of CD11c⁺ CD86⁺ and CD11c⁺ CD8⁺ CD103⁺ DCs in TDLN.

Figure S19. The representative flow cytometry dot plots of CD8⁺CD103⁺DCs in tumordraining lymph node (TDLN) and quantitative data were shown (n=3 biologically independent samples, all data are represented as means \pm s.d. and analyzed with oneway ANOVA with Tukey test. * P<0.05, **P<0.01, *** P<0.001 and **** P<0.0001).

Figure S20. The representative flow cytometry histogram (left) and quantitative data (right) of CD86⁺DCs in TDLN were analyzed after different treatments (n=3 biologically independent samples, all data are represented as means \pm s.d. and analyzed with one-way ANOVA with Tukey test. * P < 0.05, **P < 0.01, *** P< 0.001 and **** P< 0.0001).

Figure S21. The representative flow cytometry dot plot of $CD8^+T$ cells and $CD4^+T$ cells in TDLN (top) and quantitative data (bottom) were examined after 2 days of treatment (n=3 biologically independent samples, all data are represented as means \pm s.d.).