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Figure S1.2. Sample Flow
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Figure S1.2 Sample Flow Of the 618 samples shipped to the BCR, 295 were included in the final genomic analysis. For samples that did not meet 
inclusion criteria, causes of exclusion such as failure to meet quality metrics or pathology review are demonstrated here. 
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Supplementary Table S1.5 Fractional Division of Clinical Parameters by Molecular Subtype

Age* N Mean Range %

Molecular Subtype
Total   EBV MSI GS CIN

Gender n % n % n % n % n %

Lauren Class

WHO Class

Pathologic T

Pathologic N

Pathologic M

AJCC stage

Country of origin

Anatomical region

Survival n days n days n days n days n days



  

Supplementary Table S1.6 Statistical Association with Molecular Subtypes

Data Variable
All

Subtypes EBV MSI CIN GS
Lauren Classification   
Intestinal Subclass
Signet Ring
WHO Classification   
Pathologic M
Pathologic N
Pathologic T
TNM Stage
Anatomic Site
Neoplasm Cancer Status
Residual Tumour
Age at Initial Diagnosis
Country
Gender
Race
MutSig rate Total   
MLH1 epigen. Silenced   
CDKN2A epig. Silenced      
MSI status   
Mutation Rate Category   
Gene Expression Clust      
MicroRNA Expr. Clust
Copy Number Cluster      
Methylation Cluster      
EBV present      
TP53 mutation      
PIK3CA mutation      
KRAS mutation
BRAF mutation   
RHOA mutation
ERBB2 amplification   
ARHGAP-CLDN18 Rearr.
ABSOLUTE Ploidy   
ABSOLUTE Purity
Est. Leukocyte Pcnt.   
Percent Tumour Nuclei
Percent Tumour Cells
Pcnt Lymphocyte Infiltr.

Statistical Association with Molecular Subtypes. p 
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Stage and Overall Survival Molecular Subtype and Overall Survival 

Molecular Subtype and Recurrence CIN and Recurrence 

CIN$

Non'CIN$

Stage and Overall Survival Molecular Subtype and Overall Survival 
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CIN$

Non'CIN$

Figure	
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  differences	
  will	
  become	
  
apparent.	
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Figure S1.7. Patient Survival and Tumour Recurrence, Kaplan-Meier curves
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Figure S1.7. Patient Survival  and Tumour Recurrence, Kaplan-Meier curves. Kaplan-Meier survival 
curves demonstrated separation by  tumour stage.  For the  four  molecular subtypes, no significant 
differences in survival or recurrence rates were found. The CIN subtype showed some evidence for 
an elevated rate of recurrence, but not at a statistically significant level.
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Supplement 1.8: Relations to Country of Origin 
 
Given the known global diversity associated with gastric cancer, country of origin was included in the analysis of 
clinical parameters by molecular subtype (Supplement Table S1.5). For the most part, the frequency of molecular 
subtype within any given country was similar to that of our entire cohort, but some exceptions were observed. More 
GS tumours were identified in samples from the Ukraine (35.9%,p=0.0094) and from Vietnam (29.5%,p=0.097) as 
compared to an overall GS molecular subtype prevalence of 19.7%. Samples from Russia had more than expected 
MSI (31.3%, p=0.018), contrasted with an overall MSI prevalence of 21.7%. The South Korean cohort also had a 
somewhat greater than average fraction of MSI (35.5%, p=0.06) and less than expected GS (6.5%,p=0.06). 
 
To evaluate other potential differences in gastric cancers between geographic regions, the two East Asian countries 
(Vietnam and South Korea) were combined into an East Asian group of 75 patients and compared to the remainder of 
the cohort. In the East Asian group, 68% of tumours were antral/pyloric compared with only 8% of tumours at the GE 
junction/cardia. These percentages are in contrast with tumours from the United States and Canada where tumours 
were more commonly found at the GE junction/cardia (48%) and less commonly located at the gastric antrum/pylorus 
(37%). The East Asian group of patients also presented on average at a somewhat younger age (mean 64 years), 
compared with age of presentation from the other regions (mean 67 years and p-value 0.12). Vietnam had the lowest 
mean age of presentation (mean 61 years, p=0.03) and Germany the highest (mean 72 years, p=0.001). When 
molecular subtypes were assessed in the East Asian group, EBV subtype was similar to the overall group (9.6%), as 
were MSI (20%), CIN (50%), GS (20%); there was thus no evidence for association between the East Asian group 
and molecular subtype (p=0.97). 
 
Then, we evaluated geographic differences, again comparing the East Asian group to the other regions, in somatic 
tumour mutation rates of genes that had been identified in the somatic mutation analysis. These genes (TP53, KRAS, 
ARID1A, PIK3CA, ERBB3, PTEN, HLA-B, RNF4B, B2M, NF1, APC, CTNNB1, SMAD4, SMAD2, RASA1, ERBB2, 
BCOR, CDH1, and RHOA) were assessed for mutations in the East Asian population using Regulome Explorer 
(Supplement S11.8). No significant differences for any of the genes of interest were identified on the basis of East 
Asian origin.  
 
Comparing the East Asian group to other regions, we evaluated differences in pathway-level gene expression 
changes (Figure 5c, Supplement S11.2) in the context of geographical distribution. Pathway expression for tumours 
from the East Asia group was for the most part similar to that of the remainder of the cohort. Exceptions were elevated 
expression in East Asian patients of pathways related to regulation of telomerase (ps=2.0x10-5, see S11.2), and 
decreased expression of HIF-1-alpha transcription factor network (ps=2.4x10-4). Other pathways were seen to differ in 
expression between individual countries. For example, Beta 1 integrin cell-surface interaction pathways had 
decreased expression in the South Korean tumours (ps=5.0x10-6), but the pathways were elevated in Vietnamese 
tumours (ps=5.0x10-6).  Since increased expression of this pathway is seen in the GS subtype, this trend could be 
reflecting the relatively less GS in the Korean samples, as discussed above. IL-12 mediated signaling events, which 
are elevated in EBV samples, also had increased expression in samples from Russia (ps=3.2x10-6).  
 
Overall, these data do not identify strong biologic differences between tumours of East Asian origin compared to other 
tumours.  However, further analysis with larger sample cohorts will be required to better delineate differences that 
may exist between GC tumours originating in different regions of the world and in patients of different ethnic 
backgrounds. 
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S2.1 Copy number analysis 
 

SNP-based copy number analysis 
DNA from each tumour or germline sample was hybridized to Affymetrix SNP 6.0 arrays 
using protocols at the Genome Analysis Platform of the Broad Institute as previously 
described1. Briefly, from raw .CEL files, Birdseed was used to infer a preliminary copy-
number at each probe locus2. For each tumour, genome-wide copy number estimates 
were refined using tangent normalization, in which tumour signal intensities are divided by 
signal intensities from the linear combination of all normal samples that are most similar to 
the tumour3 (and Tabak B. and Beroukhim R. Manuscript in preparation). This linear 
combination of normal samples tends to match the noise profile of the tumour better 
than any set of individual normal samples, thereby reducing the contribution of noise to 
the final copy-number profile. Individual copy-number estimates then underwent 
segmentation using Circular Binary Segmentat ion4 .  As part of this process of copy-
number assessment and segmentation, regions corresponding to germline copy-number 
alterations were removed by applying filters generated from either the TCGA germline 
samples from the ovarian cancer analysis or from samples from this collection. Segmented 
copy number profiles for tumour and matched control DNAs were analyzed using Ziggurat 
Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to the set 
of inferred copy-number changes underlying each segmented copy number profile5.  
Significant focal copy number alterations were identified from segmented data using GISTIC 
2.05.  For copy number based clustering, tumours were clustered based on thresholded copy 
number at reoccurring alteration peaks from GISTIC analysis (all_lesions.conf_99.txt file). 
Clustering was done in R based on Euclidean distance using Ward's method.  In arm level 
analysis, chromosomal arms were considered altered if at least 66% of the arm was lost or 
gained with a log2 copy number change greater the 0.1.  Allelic copy number, and purity 
and ploidy estimates were calculated using the ABSOLUTE algorithm6

. 
 
References:  
 
1. McCarroll, SA, et al. Integrated detection and population genetic analysis of SNPs and 
copy number variation. Nat Genet. 40:1166-1174 (2008).  
2. Korn, JM, et al. Integrated genotype calling and association analysis of SNPs, common 
copy number polymorphisms and rare CNVs. Nat Genet. 40: 1253-1260 (2008).  
3. The  Cancer  Genome  Atlas  Research  Network,  Integrated  genomic  analyses  of  
ovarian carcinoma. Nature 474:609-615 (2011).  
4. Olshen, AB, et al. Circular binary segmentation for the analysis of array based DNA 
copy number data. Biostatistics 5: 557-572 (2004).  
5. Mermel, CH, et al. GISTIC2.0 facilitates sensitive and confident localization of the 
targets of focal somatic copy number alteration in human cancers. Genome Bio. l12:R41 
(2011).  
6. Carter, SL, et al. Absolute quantification of somatic DNA alterations in human cancer. 
Nature 47: 609-615 (2011). 
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S2.2 . Somatic Copy Number Alterations. In the heatmap, SCNAs in tumors (vertical axis) are plotted by chromosomal location (horizontal axis).  Tumors were hierarchical clustered by significantly reoccurring copy number alterations identified by GISTIC 2.0 analysis of the entire dataset. Vertical side bars (left) show the division of two major copy number cluster groups, histology, location, MLH methylation, CIMP and EBV status.  Bar graphs (right) show the mutation rates in tumors.
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S2.3. GISTIC 2.0 amplifications and deletions.  Chromosomal locations of peaks of significantly recurring focal amplifications (red) and deletions (blue) are plotted 
by false discovery rates.   Annotated peaks have an FDR < .25 and encompass 16 or fewer genes.  Peaks are annotated with candidate driver oncogenes, tumor 
suppressors, fragile site genes (green) or by cytoband. The number of genes within each peak is shown next to driver genes or cytobands.
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S2.5 GISTIC 2.0 analyses of focal amplifications in molecular subtypes.  Chromosomal locations of peaks of significantly recurring focal amplifications are plotted by 
false discovery rates.   Annotated peaks have an FDR < .25 and encompass 40 or fewer genes.  Peaks are annotated with candidate driver oncogenes or by cytoband. 
The number of genes within each peak is shown next to driver genes or cytobands.
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S2.6 GISTIC 2.0 analyses of focal deletions in molecular subtypes.
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S2.6 GISTIC 2.0 analyses of focal deletions in molecular subtypes.  Chromosomal locations of peaks of significantly 
recurring focal deletions are plotted by false discovery rates.   Annotated peaks have an FDR < .25 and encompass 40 or 
fewer genes.  Peaks are annotated with candidate driver tumor suppressors, fragile site genes (green) or by cytoband. The 
number of genes within each peak is shown next to driver genes or cytobands. 

 

shethm2
Typewritten Text

shethm2
Typewritten Text



Hi
gh Lo

w
Hi
gh Lo

w
Hi
gh Lo

w
0.0

0.2

0.4

0.6

0.8

1.0

%
P
ur
ity

Di!useIntestinal Mixed

shethm2


shethm2


shethm2


shethm2


shethm2


shethm2


shethm2


shethm2


shethm2


shethm2
Typewritten Text

shethm2
Typewritten Text

shethm2
Typewritten Text
S2.7 Tumor purity of copy number clusters in histology classes. Tumor purities using the ABSOLUTE algorithm.
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S2.8 Tumor purity by molecular subtypes.  Tumor purities were estimated by using the ABSOLUTE algorithm.  Significant Mann-Whitney p values are shown.
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S2.9  Arm-level copy number analysis.  The bar graphs show the frequency of arm level copy number alterations in molecular subtypes.
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Figure S2.10. JAK2, PD-L1, and PD-L2 gene expression and copy number. 

shethm2
Typewritten Text



S2.10 JAK2, PD-L1, PD-L2 gene expression and copy number.  Top graphs show in each molecular subtype the 
expression of JAK2, PD-L1, and PDL-2, which are all contained within the 9p24.1 focal amplification.  Bottom graphs show 
expression (y axis) graphed by GISTIC 2.0 estimated levels of copy number.  Low level losses or gains are estimated 
changes of one copy, high level losses or gains are changes estimated to be of two or more copies. 
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S3.1 Supplementary Materials: DNA sequencing Variant Calling
Sequencing methods

Variant Calling and Significance Analysis 

  

et al. Nature

http://www.broadinstitute.org/cancer/cga
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Supplement S3.2. Determining thresholds for mutation rate categories 

  

  



  

 
  
Figure S3.3 Determining Thresholds for Mutation Rate Categories.  a) 

b) 
c) 

d) 

e) 
f) 

S3.4 Description of mutation validation 
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performed earlier for the TCGA Urothelial Carcinoma study1. Mutations were only considered for 
validation if there was adequate power based on the allele fraction of the candidate site in the discovery 
data and coverage in the validation data. Analysis of sequencing data resulted in removal of two genes 
initially considered to be novel significantly recurrently mutated genes; the gene PGM5 in hypermutated 
tumours and CASC3 in the non-hypermutated tumours.  Following exclusion of mutations of these two 
genes, 95% of evaluable candidate mutations of the genes in the significant gene lists were validated as 
somatic alterations. 
 

1 Cancer Genome Atlas Research, N. Comprehensive molecular characterization of urothelial 
bladder carcinoma. Nature 507, 315-322, doi:10.1038/nature12965 (2014). 

 
 
 
 
 
 
 

*Excludes genes CASC3, MUC6, and PTPRC 

Table S3.4a: Gene-specific mutation verification rates with mRNA-Seq data. Mutations are 
those from the standard mutator gene list after filtering genes by median RPKM less than one. 
Splice site events and events in the UTR are excluded.  
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S3.5 

  

 
S3.6. Low-pass whole genomes sequencing methods

Library construction

Identification of copy number variants

  
Detection of structural rearrangements with BreakDancer and Meerkat. 

    
Validation of rearrangement hits. 

  
Pathogen detection: 

https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
ftp://ftp.ncbi.nih.gov/refseq/release/microbial/
ftp://ftp.ncbi.nih.gov/refseq/release/viral/


  

Evaluation of putative viral integration: 

s

et al. 
Proc Natl Acad Sci U S A 108

et al. 
Nat Methods 6

et al. Cell 
153
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S3.7 

  
S3.8 

  
  

https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
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S3.9. The center matrix displays individual mutations in patient samples, color coded by mutation type, for the significantly 
mutated genes in the hypermutated tumours. The rate of mutations is shown at the top. The bar plot on the left shows the 
percentage of tumours with at least one mutation in each gene. The bar plot on the right displays q-values for each 
mutation. The panel below shows the spectrum of mutations in each tumour above. 
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S3.10. Mutation types across four molecular subtypes. Each bin shows the percentage of 
a particular mutation type out of all mutation types in  the context of  three bases: 5' base, 
mutated base, 3'base. There are 96 mutation types in total. 
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S4. DNA Methylation 

S4.1 Methods 
Array-based DNA methylation assay 

  

P

P

  
Sample and data processing 

methylumi
EGC.tools

  
TCGA Data Packages 

methylumi

methylumi
P

BSgenome.Hsapiens.UCSC.hg19



  

P

  

methylumi

methylumi
P

BSgenome.Hsapiens.UCSC.hg19
P

HM27 and HM450 data merging 

  
Unsupervised clustering analysis of DNA methylation data 



ConsensusClusterPlus

DNA hypermethylation frequency 

Identification of epigenetically silenced genes 

GenomicFeatures

CDKN2A p16INK4
p16INK4

p16INK4

p16INK4 p16INK4



 

 
 
 
incorporated the p16INK4 epigenetic silencing calls into the HM450 silencing call list as described above 
(Data file S4.4). 
 
Notably, a further analysis of the 769 epigenetically silenced genes revealed that nearly half of the 
silencing events occurred specifically in the EBV-positive molecular subgroup (Figure S4.2). We 
identified 526 genes that were significantly more frequently silenced (FDR-adjusted P <0.01, Fisher’s 
exact test) in the EBV-positive subgroup compared with all the other groups (Table S4.3). 
 
Statistics 
Statistical analysis and data visualization were carried out using the R/Biocoductor software packages 
(http://www.bioconductor.org). Cancer-specific DNA hypermethylation was assessed based on unpaired 
analyses, since matched non-malignant tissues were available for fewer than 10% of the tumour 
samples. 
 
Section References 
1. Bibikova, M. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 1, 177-
200 (2009). 
2. Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 
98, 288-295 (2011). 
3. Campan, M. et al. MethyLight. Methods Mol Biol 507, 325-337 (2009). 
4. Du, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation levels 
by microarray analysis. BMC Bioinformatics 11, 587 (2010). 
5. Shen, H. et al. Comprehensive cross-cancer comparison of DNA methylation profiles. 
(Manuscript under review) 



 

Figure S4.2 
 

 
 
 
Figure S4.2 Clustering and heatmap representation of dichotomous epigenetic silencing calls. We 
identified 769 genes that were silenced by DNA methylation in at least 5% of the tumours. The epigenetic 
silencing calls of each gene in 220 STAD tumour samples are indicated by using a black (yes) and gray 
(no) color scheme. Genes are ordered based on a hierarchical clustering with Ward’s method on the 
Jaccard Distance, a distance measure that best suits binary data. CDKN2A and MLH1 DNA methylation 
status of each tumour sample are also shown as bars above the heatmap. Samples are grouped 
according to the four major molecular subtypes indicated as a vertical colour bar at the top. 
 
 
 
 
S4.3 Table- A list of genes significantly more frequently silenced by DNA methylation in EBV tumours 
compared with non-EBV tumours can be found on the TCGA Stomach Adenocarcinoma publication page 
at https://tcga-data.nci.nih.gov/docs/publications/stad_2014/. 
 
 
S4.4 The data file- Epigenetic silencing calls based on HM450 data set can be found on the TCGA 
Stomach Adenocarcinoma publication page at https://tcga-data.nci.nih.gov/docs/publications/stad_2014/. 
 
 
S4.5 The data file- Epigenetic silencing calls based on HM27-HM450 merged data set can be found on 
the TCGA Stomach Adenocarcinoma publication page at  
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/.
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Figure S4.6 

 

 

 

 

Figure S4.6 DNA hypermethylation frequencies across 10 tumour types. Box and jitter plots 
show DNA hypermethylation frequencies, calculated as the percentage of CpG sites methylated 
among 12,862 constitutively unmethylated sites in normal tissues, for 10 different neoplastic 
tissue types studied through TCGA (see Supplemental Methods S4.1). Tumour types/subtypes 
are organized from left to right in descending order of median frequencies of DNA 
hypermethylation.  
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Supplement S5.1 - Messenger RNA library construction, sequencing and analysis

Alignment and coverage analysis of RNA-seq data
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Supplement S5.2 NMF mRNA expression clustering
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Supplementary Figure S5.3: Unsupervised NMF consensus clustering of mRNA-Seq data.  The heatmap shows normalized abundance for 254 tumour and 29 adjacent non-malignant tissue samples, for 40 discriminatory genes (i.e. top 10 differentially expressed genes in each cluster). Tumour samples (columns) are ordered based on a four-group NMF solution; adjacent non-malignant tissue samples are shown for contrast. Genes (rows) are ordered by hierarchical clustering of log-transformed, median-centered, RPKM data. In the profile below the heatmap, high silhouette widths show typical cluster members, while low silhouette widths show atypical group members. 
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Supplementary Data File S5.4a Overlap list of RNA and whole genome sequencing 
events

https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
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S5.7- Differentially expressed genes. We used SAMseq (samr v2.0, R 3.0.2) two-class unpaired 
analyses with an FDR threshold of 0.05 to identify genes that were differentially expressed. For each run 
on a pair of sample groups, we first reduced the number of genes by removing those with median less 
than 5 RPKM in both groups, and those for which the Wilcoxon BH adjusted P-value between the two 
groups was greater than 0.05. This subset of genes was submitted to SAMseq. Each run generated a pair 
of files: genes ‘up’ and ‘down’. We then ranked the genes by a median-based fold change, and generated 
a figure showing up to 10 of the largest fold changes in each direction. 
 
S5.7a The data file- Differentially expressed genes of multiple subtype combinations can be found on the 
TCGA Stomach Adenocarcinoma publication page at 
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/.  
 
 
Figure S5.8. Genes that were differentially abundant between the four molecular subtypes. Refer to 
pages 56-57. 
 
S5.9 The data file- Top 20 least variable genes by coefficient of variation can be found on the TCGA 
Stomach Adenocarcinoma publication page at https://tcga-data.nci.nih.gov/docs/publications/stad_2014/.  
 
 

https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
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S5.8 figure- Differentially expressed genes 
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Supplementary Figure  S5.8. Genes that were  differentially abundant  between  the four  molecular subtypes. a)  Tumours in one subtype versus all 
other tumours. b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based log10 fold change. Right: distributions 
of RPKM abundance, log10  scale, with black vertical  lines showing medians. Up to 10 of the largest  positive and negative  fold changes  satisfying 
FDR ≤ 0.05 are shown. 
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Supplementary Figure  S5.8. Genes that were  differentially abundant  between  the four  molecular subtypes. a)  Tumours in one subtype versus all 
other tumours. b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based log10 fold change. Right: distributions 
of RPKM abundance, log10  scale, with black vertical  lines showing medians. Up to 10 of the largest  positive and negative  fold changes  satisfying 
FDR ≤ 0.05 are shown. 
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Supplement S6.1 - miRNA library construction, sequencing and analysis 
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Supplement S6.3. NMF expression clustering 
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Figure S6.4: Unsupervised NMF consensus clustering of miRNA-Seq data
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Supplementary Figure Legend S6.4: Unsupervised NMF consensus clustering of miRNA-Seq data. The heatmap shows normalized abundance for 295 tumour 
and 33 adjacent non-malignant samples, for 40 discriminatory 5p or 3p strands (i.e. top differentially expressed miRNAs in each cluster). Tumour samples 
(columns) were ordered based on a five-group NMF solution. miRNAs (rows) were ordered by hierarchical clustering of log-transformed, median-centered, 
RPM data. 
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Supplement S6.5. Differentially expressed miRs.  

Supplementrary Data File S6.7 Differentially expressed miRs

https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
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Figure S6.6a. miRs that are differentially abundant between the four molecular subtypes
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Supplementary Figure S6.6. miRs that are differentially abundant between the four molecular subtypes. a) Tumours in one subtype versus all other tumours. 
b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based fold change, linear scale. Right: distributions of RPM abundance, 
log10 scale, with black vertical lines showing medians. Up to 10 of the largest positive and negative fold changes satisfying FDR ≤ 0.05 are shown. 
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Supplementary Figure S6.6. miRs that are differentially abundant between the four molecular subtypes. a) Tumours in one subtype versus all other tumours. 
b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based fold change, linear scale. Right: distributions of RPM abundance, 
log10 scale, with black vertical lines showing medians. Up to 10 of the largest positive and negative fold changes satisfying FDR ≤ 0.05 are shown. 
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S9.1 Microbial Detection in mRNA-Seq 

BioBloom

BioBloom 

number of reads mapped to the 
microbe*106/number of chastity-passed reads

BioBloom

number of reads mapped to the gene * ( 1000/gene length ) * ( 106/total EBV reads aligned ) 

S9.2 Microbial Detection in miRNA-Seq data 

number of reads mapped to 
the microbe*106/number of reads aligned to human miRNAs

S9.3 Identification of a chimaeric human-EBV transcript 
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Figure S9.4 – Identification of a chimaeric human-EBV transcript 
  
 
Human and EBV transcripts, including chimaeras can be found in the mRNA-Seq data (A). A de novo 
assembly of the mRNA-Seq data from the tumour sample TCGA-FP-7998 revealed a single 507bp  
contig representing a potential human-EBV chimaeric gene transcript. Bases 1 to 410 of this contig  
exhibited perfect homology with the complete genome sequence of Epstein Barr Virus (EBV or human 
herpesvirus 4) strain AG876 (DQ279927.1). Bases 404 to 507 of the sequence contig showed 100%  
identity to human chromosome 9 (Genome Reference Consortium GRCh37 positions  
chr9:5431895-5431985 and chr9:5436568-5436583) corresponding to the plasminogen receptor,  
C-terminal lysine transmembrane (PLGRKT) gene positions 261 to 362 of NM_018465.3 (B).  The  
contig represents a gene fusion between exon 3 of PLGRKT and EBV gene BHLF1 at an AG/GT splice 
site (AC/CT on the reverse strand, panel C). Six-frame translation of the contig revealed a stop codon (*) 
in the BHLF1 portion of the peptide sequence. In support of the assembled chimaeric transcript contig, we 
identified 15 x 75bp reads spanning the fusion breakpoint (D). A 7 base-pair sequence exhibiting 
microhomology is shown in square brackets and contains the splice site AC^CT (reverse strand) in bold 
type. 



S9.5 Epstein-Barr virus and Helicobacter pylori detection methods in WGS and WES 

 
The PathSeq1 algorithm was used to perform computational subtraction of human reads, followed by 
alignment of residual reads to human reference genomes and microbial reference genomes (which 
includes bacterial, viral, archaeal, and fungal sequences - downloaded from NCBI in June, 2012). These 
alignments resulted in the identification of reads mapping with Epstein-Barr virus (EBV; also referred to as 
human herpes virus 4, HHV4) and Helicobacter pylori in whole genome sequencing (WGS) and whole 
exome sequencing (WES) data.   
In brief, human reads were subtracted by first mapping reads to a database of human genomes 
(downloaded from NCBI in November 2011) using BWA2 (Release 0.6.1, default settings), Megablast 
(Release 2.2.25, cut-off E-value 10-7, word size 16) and Blastn3 (Release 2.2.25, cut-off E-value 10-7, word 
size 7, nucleotide match reward 1, nucleotide mismatch score -3, gap open cost 5, gap extension cost 2). 
Only sequences with perfect or near perfect matches to the human genome were removed in the 
subtraction process.  In addition, low complexity and highly repetitive reads were removed using Repeat 
Masker4 (version open-3.3.0, libraries dated 2011-04-19).  
 
To identify EBV and H. pylori reads, the residual reads were aligned with Megablast to a database of 
microbial and human reference genomes. Raw read counts were calculated using the reads that were 
mapped to EBV and H. pylori with at least 90% identity and 90% query coverage.  
 
Using the raw read counts, the abundance metric of a given microbe in a sample was calculated as 
 

kingdomthatinmicrobestheofsizegenomeAverage

microbetheofsizeGenome

cohortsampletheinhumantomappedreadsAverage

sampletheinhumantomappedreads

microbethetomappedreads
metricAbundance

*
#

#

#

 
Samples were considered to be EBV positive if the abundance metric exceeded 1000 by WGS or 100 by 
WES. 
 
 

1. Kostic, A.D. et al. PathSeq: software to identify or discover microbes by deep sequencing of 
human tissue. Nat Biotechnol 29, 393-6 (2011). 

2. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754-60 (2009). 

3. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Res 25, 3389-402 (1997). 

4. Smit, AFA. et al. RepeatMasker Open-3.0. 1996-2010 <http://www.repeatmasker.org>. 
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S9.6 text-Sequencing-based determination of tumour EBV status.
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Figure S9.8 Transcription profiling of the EBV genome.
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Figure 9.8. Transcription profiling of the EBV genome.
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S10. Clustering Analysis 
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Supplement S10.1 Molecular Subtpype Definitions obtained through Integrative Clustering- Overview and Flowchart
 
The overarching goal of integrative clustering was to utilize the multi-dimensional molecular/genomic data from our tumour 
cohort to identify robust classes of GC.  Following identification of these robust classes using multi-dimensional data, we 
then sought to develop a simpler classification model to enable assigning GC tumours into molecular subgroups 
(Manuscript Figure 1b). The integrative clustering methods (outlined in the flowchart below) identify groups of tumours that 
show similar features as assayed by the multiple platforms used in this study: somatic DNA copy number aberrations, 
somatic mutation, CpG methylation, mRNA, miRNA, and protein expression.  Thus, the process by which we identified 
molecular subtypes was based on a composite analysis across distinct data types, each providing a view of the molecular 
features of GC.  By considering measurements across different platforms, we obtained robust groupings beyond what 
could be achieved  by  analyzing a single platform.   Two integrative clustering methods were used, and they  are 
complementary in their approach.  The first method (described in subsection S10.2) is similar to a previously described 
technique1 and begins with cluster analysis of each of the molecular platforms individually (as described in S2-S7). 
Integrative analysis of these diverse platform-specific cluster assignments was then performed to identify groups of 
tumours that shared features across multiple data platforms.  The second technique, termed iCluster+ (summarized in 
S10.3),  has also been applied  to other large cancer genomics studies    and takes as  input  features from multiple 
platforms (without first performing clustering for each individual data platform) and performs joint clustering with 
simultaneous feature reduction to identify structure within the dataset.  Despite these differences in approach, the 
resulting sample groupings were quite comparable (summarized in S10.4).   
 
Our goal was to identify a small group of markers that could be used to assign tumours to a subgroup, in order to 
facilitate the classification of GC cases in the setting of clinical care, where it is not practical to obtain comprehensive 
molecular data.  Notably, the groupings  developed through our integrative analysis were found to be strongly correlated  
with specific features of the samples.  Both methods yielded tumour groups that were predominantly EBV-positive or MSI-
H, and the remaining sample groups had distinctly high or low overall degree of copy number derangement. Therefore, we 
used the following features: EBV, MSI and high or low aneuploidy to classify each of the 295 tumours in our dataset into 
one of four molecular subtypes, as described in the classification schema in Figure 1b.  Analyses described in this 
manuscript were thus performed with these four molecular subtypes in order to generate results that could most readily be 
applied to future patient samples and to guide development of new clinical approaches to treat this disease. Additionally, 
we showed that the molecular subtypes were reflected in an analysis of principal components of the tumour samples 
(S10.5). 

The procedure used to arrive at the molecular classification is illustrated on the next page, including references to the 
corresponding supplementary text.
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Supplement S10.2 Integrative clustering by platform-specific subtypes

As described in the preceding sections, subtype discovery was first performed through an 
analysis of cluster assignments in which each data platform was analyzed independently.   The clustering 
approach for each of these platforms is described in the respective sections for each of the molecular 
platforms.  For gene expression, four subtypes were identified (Supplement S5); for miRNA expression, 
five (Supplement S6); for protein expression, three (Supplement S7); for copy number, two 
(Supplement S2); and for DNA methylation, four, of which two can be jointly characterized as non-
CIMP (Figure 2a, Supplement S4).  In addition, mutation rates were found to fall into three 
categories (Supplement S3).  Thus, a total of 20 platform-specific subtypes (PSSs) were identified. 

We began by constructing a matrix with 20 rows, one for each PSS, and a column for each 
of the 295 samples.  Each matrix element indicated whether a sample was a member of the PSS of 
that row (1) or not (0). If a PSS was not identified, the corresponding entry was set to NA . There 
were 214 samples for which we had complete subtype information.  Clustering was then performed on 
rows and columns independently. Clustering of rows identified which groups of PSSs were similar.   
Clustering of columns utilized information on sample similarity, in terms of their shared subtypes, in 
order to identify integrative tumour subtypes. Notably, no information other than PSS membership was 
used. Following the identification of these integrative clusters, we identified additional data elements, 
such as specific mutations and clinical attributes that were associated with individual clusters. 

Clustering of subtype assignments (rows) To compare subtypes, we scored the 2-way contingency 
table for a pair of PSSs using Fisher s exact test. We then took the negative of the (base 10) logarithm 
of the Fisher p-value, and multiplied that by +1 for positive associations and -1 for negative associations. 
Hence, the resulting score was large and positive if the two subtypes were positively correlated, and highly 
negative if the subtypes   were   negatively correlated (in the case of continuously-valued variables), or if 
they tended to be mutually exclusive (for dichotomous variables). If there was no association, 
the score was near zero. For example, there was a strong association between Gene Expression 
Cluster 2 and Gastric EBV-CIMP. The fraction of Gastric EBV-CIMP cases that were also in Gene 
Expression Cluster 2 was 20/26 (76.9%), and the fraction o f  Gene expression Cluster 2 cases that 
were also in Gastric EBV-CIMP was 20/59 (33.9%). The null model of no association was rejected at p-
value of 9.47x10-10, corresponding to an association score of -log10(9.47x10-10)=9.02. A heatmap 
illustrating the score for this subtype pair and all other pairs is displayed in Sup. Fig. S10.6a. 

Average-linkage agglomerative clustering was done using a distance defined from this 
association score, yielding the dendrogram shown in Supp. Fig. S10.6b. Notably, the DNA and 
expression-based molecular subtypes were found to group into five triplets:  
A:  High Copy Number, Standard Mutation Rate and non-CIMP DNA Methylation, 
B: Gene Expression Cluster 1, MicroRNA Cluster 4, and RPPA Cluster 1;  
C: Gene Expression Cluster 2, GASTRIC-EBV-CIMP, and MicroRNA Cluster 3. 
D: Gene Expression Cluster 3, MicroRNA Cluster 2, and RPPA Cluster 3; and finally  
E: GASTRIC-CIMP, Low Copy Number, and Hypermutated. 

These triplets were also found using a different choice of distance, based on the Jaccard 
score. The remaining PSSs (MicroRNA cluster 5, MicroRNA cluster 1, Gene Expression 4, 
Ultramutated, RPPA Cluster 2) were all among the last clusters to be incorporated into the 
agglomerative clustering procedure, and were not consistently grouped by the two methods (data 
not shown). 



Clustering of samples (columns)
To compare two samples, one can count the co-occurrence of their subtype assignments. For 

example, TCGA-BR-4187 and TCGA-BR-4279 were both non-CIMP, microRNA Cluster 4, Low Copy 
Number, and Standard Mutation Rate, but differed in their RPPA and Gene Expression clustering 
assignments. As such, 4 of 6 assignments matched, and this ratio could be used as the basis of a 
comparison score for clustering. However, when the possible subtypes were relatively few for a given 
data type (e.g. copy number), there was a greater chance of co-occurrence. Thus, a weighting scheme
that accounts for the inherent probability of co-occurrence was desirable.  
Here, we used the inverse frequencies of each of the 20 PSSs as a weight when adding co-
occurrences.   The score was converted to a distance prior to clustering (maximum score minus score) 
and the calculation was done on the 214 samples for which we had complete subtype information. We 
used the ConsensusClusterPlus R-package6 with 1000 resamplings of 80% of tumour samples, using 
k-means on the distance matrix. To determine an appropriate number of clusters, we looked at the 
change in the Cumulative Distribution Function (CDF), and the cluster co-occurrence over variation 
in the number of clusters6. The transition to the four-cluster solution led to a substantially lesser 
increase in CDF difference (between adjacent k values) than did subsequent steps (Supp. Fig. S10.6c). 
The four-cluster solution also provided a relatively clean separation in the clustered consensus 
matrix (Supp. Fig. S10.6d), and had 54, 56, 74 and 30 samples in the clusters assigned numbers 1 
through 4 by ConsensusClusterPlus. 

To further evaluate the stability of the clustering of platform-specific subtype results, we 
performed leave-one-out validation in which one of each of the six data platforms was omitted, and the 
calculation was otherwise performed identically. In each case, we evaluated the recovered fraction, 
defined as the fraction of the integrated cluster that was found in the five-data-type calculation (four 
clusters in six experiments, for a total of 24 values in all).  The mean recovered fraction was 85%, 
and the per-cluster average recovery ranged from 83% to 89%.  In nearly all cases, 3 out of 4 clusters 
were reproduced with a recovery fraction of 73.2% or better, with the exception being the experiment 
excluding the mutation rate category (64.8%).  The recovery rate of the remaining clusters varied from 56% 
to 91%. 

The four-cluster integrated subtype solution is shown in Supp. Fig. S10.6e and cluster 
assignments are provided in Supplementary Data File S11.1a. The integrated clusters were next 
compared with all available data and were each found to have strong associations with specific molecular 
signatures: Cluster 1 with MSI-H and MLH1 methylation (45/49 MSI-H tumours were in Cluster 1, 
p=2.1x10-32), Cluster 2 with diffuse tumours (31/56 diffuse tumours were in Cluster 2, p=3.0x10-7), Cluster 
3 with TP53 mutations (25/38 samples in Cluster 3 had TP53 mutations, p=4.9x10-4), and Cluster 4 with 
EBV (19/20 EBV positive samples were in Cluster 4, p=1.5x10-18). These and other associated variables 
are displayed above the clustered matrix in Supp. Fig. S10.6e. The strength of the integrated cluster 
associations with EBV and MSI-H supports their use in defining molecular subtypes in this manuscript 
(Figure 1b). 

S10.3 Integrative clustering using iCluster

As a second means to identifying subgroups of GC, we utilized iCluster, which formulates the 
problem of subgroup discovery as a joint multivariate regression of multiple data types  with  reference  to  
a  set  of  common  latent  variables  that  represent  the underlying tumour subtypes2, 7, 8. Unlike the first 
integrative approach (from S10.2), platform-specific clustering was not performed. A penalized likelihood 
approach was used for estimation, and a Monte Carlo Newton Raphson algorithm was employed to 
maximize the penalized log-likelihood. Due to the computational intensity of the parameter-tuning 
procedure, the current implementation of iCluster+ takes as input up to four data types. 

Data processing
Data processing methods were similar to those previously described2,3 and are outlined below. For 

somatic mutation data, the mutation MAF file was used. A gene-by-sample matrix of binary values (1-
mutated, 0-wildtype) was generated for clustering. The top 1000 mutated genes ranked by the Mutsig 
analysis were included for clustering. Segmented somatic copy number profiles (after removal of CNVs) 
were obtained, and dimension reduction was performed to obtain non-redundant copy number regions, as 



previously described3,4. For the methylation data, the median absolute deviation was employed to select 
the top 4,000 most variable CpG sites based on the -value for input to the clustering framework. For 
mRNA and miRNA sequence data, lowly expressed genes were excluded based on median-normalized 
counts, and variance filtering led to 361 mRNAs and 145 miRNAs for clustering. mRNA and miRNA 
expression features were combined as a single data type, representing transcriptomic measurements. For 
the RPPA (proteomic) data, 121 antibodies were employed in downstream analyses. Given that iCluster+ 
can accept four data types, and five were available, we built two models (A and B), including   either the 
transcriptome (mRNA+miRNA) data or the RPPA data. Supp. Fig.  S10.7 shows that the results were 
highly comparable for model A (transcriptome) versus model B (proteome), indicating the robustness of 
this approach and lack of sensitivity to a particular data type. 

Model selection
To determine the optimal combination of the penalty parameter values, a large search space was 

required. We employed an efficient sampling method that utilized uniform design (UD)9, such that for  a 
given K, we determined the penalty parameter vector that minimized a Bayesian information criterion. A 
theoretical advantage of the uniform design over an exhaustive grid search is the uniform space- lling 
property that avoids wasteful computation at close-by points. 

The number of clusters (K) was estimated.   We computed a deviance ratio metric, where K 
was chosen to maximize the deviance ratio. As shown in Supp. Fig. S10.7A, for model A an elbow  
point was noted at K=3, beyond which point the increase in the deviance ratio diminished, increasing 
again at K=5. For model B (Supp. Fig. S10.7B), an elbow point was similarly noted at K=3. While these 
results suggested that K=3 represented an optimal solution, it was of interest to compare this with 
the alternate K=5 cluster solution, which provided greater granularity. Cluster assignments are 
provided in Supplementary Data File S11.1. A heatmap representation of the associated subtype 
assignments for all data platforms and the association with other sample attributes (top panel) is shown 
in Supp. Fig. S10.8 for K=3 and K=5. Both the 3- and 5- cluster solutions showed an association with 
the Lauren classification and were enriched for diffuse histologic type tumours (iClust1). For the K=3 
and K=5 solutions, iClust3 and iClust5, respectively, were enriched for Gastric-CIMP, MLH1 methylated, 
and MSI-H samples. In contrast, only the K= 5 solution revealed the clear separation of an EBV-positive 
group (iClust2), consistent with other molecular features of these data. Hence, the K=5 solution was 
used in comparisons with the alternative clustering strategies. Importantly, these distinct integrative 
clustering approaches both robustly partitioned gastric tumour samples on the basis of EBV-positivity, 
MSI status, and SCNAs, supporting their use in defining the four molecular subtypes presented 
throughout the text (Supp. Fig. 1b).   

Supplement S10.4. Cross-comparison of subtypes
A comparison of cluster assignments based on the 4-cluster integrative clustering by platform-

specific subtypes with the K = 3  a n d  K = 5 iCluster results is shown in Supp. Fig. S10.9, as is the 
cross-tabulation of each of these two approaches with the 4 molecular subtypes defined in Supp. Fig. 
S10.6e.  From tables A and C, we see that the EBV molecular subtype has almost complete overlap with 
the integrative cluster from the both procedures (Clusters C1, and iClust2, respectively). Similarly, the MSI 
molecular subtype has a very strong overlap with integrative clusters. CIN is found most commonly in 
cluster C3 from the platform-specific subtypes and iCluster 3.  Table B shows that overall there is good 
overlap between sample groupings obtained from the two integrative clustering methods. A primary 
difference between the 5-cluster solution from the iCluster analysis and the 4-cluster solution from 
the integrative clustering based upon platform-level cluster assignments is that the aneuploidy/CIN 
group of tumours is split into two subgroups using the iCluster approach.  

Supplement  S10.5. Subtypes in the context of Principal Component Analysis of tumour samples
In order to investigate the validity of the molecular subtypes without reference to integrative 

clustering or to the results thereof, we examined the correspondence between the subtypes and the first 
few principal components of the tumour sample set. The principal components are the main directions of 
variance in the multi-dimensional space in which the samples reside. The dimensionality of the space is 
equal to the length of the data vector of any given sample. To simplify the calculation, we use the vector of 
20 values  described in S10.2.  In Figure S10.10, projections into the  first few principal components  are 
shown for the data, and each tumour data point is coloured according to subtype.  The first two principal 



components, PC1, and PC2, have strong contributions from mutation rate and copy number, and this is 
reflected in the separation of CIN and MSI in this subspace (panel A).  Looking into dimension three (panel 
B: PC3 vs PC2), we see the emergence of EBV samples from other samples. This implies that the main 
directions of variance in the data have good correspondence with the molecular subtypes.
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Supplementary Figure S10.6. Similarity and grouping of DNA and gene expression subtypes based on integrative 
clustering by platform-specific subtypes. a) Similarity among platform-specific subtypes. Each of the 20 subtypes, 
represented by rows and columns, was obtained from a single molecular platform. The heatmap shows a similarity score 
based on the Fisher p-value for the contingency table comparing the two platform-specific subtypes in the corresponding 
row and column.  A red cell corresponds to two subtypes that are highly similar: they tend to have many tumour samples 
in common. A blue cell corresponds to subtypes that are highly dissimilar. b) Subtype similarity dendrogram. The distance 
metric was based on the score shown in panel a. The highlighted subtype triplets were consistently grouped when the 
comparison metric was varied.  Note that these are groupings of similar platform-specific subtype classifications, not 
groupings of tumour samples. c) Relative change in area under CDF. ConsensusClusterPlus plot comparison of samples 
using weighted co-occurrence. d) Consensus matrix for the four-cluster solution from ConsensusClusterPlus. e) 
Integrative subtype assignments. The red box defines a subtype membership matrix, in which rows correspond to 
platform-specific subtypes, and columns represent 214 tumour samples. Blue indicates subtype membership.  Rows are 
arranged as in panel b, and columns are arranged according to the similarity of sample pairs based on platform-specific 
molecular subtype membership. Integrated subtypes are numbered 1 through 4.  Above the membership matrix are 
dichotomous attributes of samples, each shown in red: non-silent mutations in PIK3CA; non-silent mutations in TP53; 
MSI-H; diffuse, as opposed to intestinal histologic types; and EBV-positivity. Unassigned values are indicated in gray. 
Below each integrative cluster, data elements enriched in that subgroup are indicated. 
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Figure S10.7- robustness of iCluster results to different data inputs and model selection



Supplementary Figure S10.7: Robustness of iCluster results to different data inputs and model 
selection. Cluster membership results were highly comparable, regardless of whether mRNA+miRNA 
(transcriptome) or RPPA (proteome) features were included with somatic mutation, copy number, and 
CpG methylation data. a) The deviance ratio is plotted versus the number of clusters for  Model A, 
which includes transcriptome data (mRNA + miRNA), where an “elbow” point at K=3 is noted, beyond 
which the increase in the deviance ratio diminished. b) As in A, but for Model B, which included RPPA 
data rather than transcriptome data. c) The cluster membership assignments were highly concordant 
regardless of whether transcriptome (Model A) or proteome data (Model B) were included for the K = 3 
solutions. d) The cluster membership assignments for Models A and B were also highly concordant for the 
K  = 5 solutions. 
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Supplementary Figure S10.8: Heatmap representation of iCluster subtype assignments. Heatmap 
illustrating the iCluster subtypes for all data platforms based on clustering of mutation, copy number, 
methylation, and transcriptome (mRNA + mRNA) features (note that RPPA data were not included 
here ,  bu t  yie ld  comparab le  resu l ts  when exchanged for  t ranscr ip tome data ). The 
association between cluster membership and other sample attributes is illustrated in the top panel. a) 
Results for the K = 3 solution and b) for the K = 5 solution. 
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Figure S10.9  Comparison of cluster membership using different integrative clustering approaches 
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Supplementary Figure S10.9.  Comparison of cluster membership using different integrative clustering 
approaches. Cross-tabulation of cluster membership assignments comparing the integrative clustering approaches 
(iCluster K=5, iCluster K=3, and the four-cluster solution from clustering of platform-specific subtypes) with each other and 
with the molecular subtypes defined in the manuscript. a) Integrative clustering by platform-specific subtypes four-cluster 
solution (Row, C1 through C4) compared with molecular subtype (Column). b) Integrative clustering by platform-specific 
subtypes four cluster solution (Row) compared with iCluster K=3 sample membership (Column) c) Integrative clustering 
by platform-specific subtypes four cluster solution (Row) compared with iCluster K=5 sample membership (Column). d) 
Molecular subtype (Row) compared with iCluster K= 5 sample membership (Column). 3) Molecular subtype (Row) 
compared with iCluster K= 3 sample membership (Column). 
 



A   B  

Figure  S10.мл     Principal  Components  and  Molecular  Subtypes  



Supplementary Figure S10.10: Principal Components and Molecular Subtypes. Projection of 
samples into the subspace of the first two (panel A) and the second two (panel B) principal components is 
shown.  The points represent samples and are colored by molecular subtype. In panel A, dotted lines have 
been inserted to denote regions that are predominantly CIN (upper left) and MSI (lower right). In panel B, 
the dotted line encloses a region that is almost exclusively EBV. 



  

  
  
  
  
  

  
  
  
  
  
  

S11 Section Authors: 

 Subsections: 

 RHOA CLDN18-ARHGAP



  

shethm2
Typewritten Text

shethm2
Typewritten Text
S11.15        figure- Oncoprint of cell cycle genes

shethm2
Typewritten Text

shethm2
Typewritten Text

shethm2
Typewritten Text



Supplement S11.1. Master Patient Table and Feature Matrix 

 
 
STAD Feature Matrix. To facilitate the identification of associations among the diverse clinical and molecular 
data in this study, a “feature matrix” (FM) was constructed by integrating values from all data types. Each row in 
the FM represents one of the 295 tumor samples or 91 matched- normal samples, and the columns contain all 
available clinical, sample, and molecular data for each sample: mRNA and microRNA expression levels, protein 
levels, copy number alterations, DNA methylation levels, and somatic mutations. Each column in the FM 
represents a single clinical, sample, or molecular data element, and the individual data values may be numerical 
(continuous or discrete) or categorical, as appropriate. Missing values are indicated within the FM by “NA”, and the 
number of non-NA data values varies significantly across the different data types (columns). Overall, 
approximately 77% of the matrix elements are non-NA (94% for the tumor samples). Data were retrieved from the 
DCC on Jan 20, 2014 and further processed into columns as follows. 
 
Clinical and sample data (567 features): DCC clinical and sample data were processed into a matrix. Assignments 
from EPC review (Supplement S1) were used for anatomic site, histology, and TNM AJCC Stage. Additionally, 
columns were included for ABSOLUTE calls for tumor purity (Supplement S2), estimated leukocyte percentage 
(Supplement S4), and MLH1 and CDKN2A epigenetic silencing (Supplement S4). Cluster assignments obtained 
via clustering of cluster assignments (Supplement S10) and iCluster (Supplement S10) were added, as were 
results of unsupervised clustering for each of the individual molecular data types: SCNA (Supplement S2), 
RNAseq (Supplement S5), miRNA-seq (Supplement S6), DNA methylation (Supplement S4), and RPPA 
(Supplement S7). Mutation rates and rate categories (Supplement S3) were included, as were fusion events such 
as ARHGAP-CLDN18 (Supplement S3). In addition, variables were generated that contrast pairs of subgroups in 
a non-dichotomous classification. 
 
Molecular Data. Gene expression (22,277 features): Gene level RPKM values from RNA-seq (Supplement S5) 
were log2 transformed, and filtered to remove low-variability genes (bottom 25% removed, based on interdecile 
range). MicroRNA expression (697 features): The summed and normalized microRNA quantification files 
(Supplement S6) were log2 transformed, and filtered to remove low-variability microRNAs. (An initial filter 
removed any microRNA not observed in at least 6 samples, and a second filter removed the bottom 25% by 
interdecile range.) Somatic copy number alterations: Copy number and focal copy number changes were obtained 
for peaks identified by GISTIC as described above (Supplement S2, 188 features). DNA methylation (19,711 
features): Probe-specific Level 3 β-values were obtained as described above (Supplement S4). We started with 
26,258 probes in common between the two methylation platforms, and then removed the bottom 25% based on 
interdecile range. RPPA (189 features) (Supplement S7). Somatic mutations (8,220): The Mutations Annotation 
Format file (Supplement S3), was used to generate a binary indicator vector indicating whether a particular 
nonsilent mutation is present in a specific sample. Mutation features found in fewer than five tumor samples were 
removed. 
 
The Synapse platform[1], by Sage Bionetworks (www.sagebase.org), was used during the development of this 
project for distributing versioned data to project researchers and as a staging area for assembling files into the 
Feature Matrix. 
 
STAD Master Patient Table. Key variables, including those discussed in the manuscript, were extracted from the 
FM to create Supplementary Data File 11.1a: Master Patient Table.  This file can be found on the TCGA 
Stomach Adenocarcinoma publication page at  
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/ 
 
[1]Enabling transparent and collaborative computational analysis of 12 tumor types within The Cancer Genome 
Atlas; Larsson Omberg, Kyle Ellrott, Yuan Yuan, Cyriac Kandoth, Chris Wong, Michael R Kellen, Stephen H 
Friend, Josh Stuart, Han Liang & Adam A Margolin; Nature Genetics 45, 1121–1126 (2013). 
 
 
  

https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
shethm2
Typewritten Text



S11.2 NCI-PID Pathway Expression Associated with Molecular Subtypes.     

 
 
In order to gain insight into the underlying differences between the four main molecular subtypes 
identified, we performed pathway-level analysis of the mRNA expression differences across different 
stratifications of the tumour and adjacent non-tumour tissue samples in this dataset. In this analysis, 
pathways were defined as lists of genes.  Specifically, we used gene lists describing the 224 pathways 
from the NCI-PID pathway database[1]. Given a stratification of the samples into two non-overlapping 
subgroups A and B (which may represent, for example, EBV tumours vs. adjacent non-tumour samples, 
or MSI tumours vs. CIN tumours), a p-value was computed for each gene using the non-parametric 
Kruskal-Wallis one-way analysis of variance by ranks.  This p-value estimates the statistical significance 
that the expression of gene X is elevated or reduced in subgroup A relative to subgroup B.  For each 
pathway, the gene-level p-values were log-transformed and summed (using an approach based on 
Fisher’s combined statistic[2]) to obtain a pathway-level composite score:   
 
 
 
 
 
 
The significance of this score, ps, was then estimated empirically by similarly scoring 10000 randomly 
generated pathways for each NCI-PID pathway, using the same distribution of pathway sizes and gene 
membership.  Finally, a heatmap was created using the absolute value of log(ps), with the sign (+ or -) 
indicating whether the pathway was elevated (or reduced) in subset A relative to B.   
 
References:  
 
1. Schaefer, Carl F; Anthony Kira, Krupa Shiva, Buchoff Jeffrey, Day Matthew, Hannay Timo, Buetow 
Kenneth H (Jan 2009). "PID: the Pathway Interaction Database". Nucleic Acids Res.  37 (Database 
issue): D674–9. doi:10.1093/nar/gkn653. PMC 2686461. PMID 18832364   
 
2. Fisher, R.A. Questions and answers #14.  The American Statistician 2, 30-31 (1948). 
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figure 11.2a- Heatmap of relative pathway expression levels for all contrasts among molecular subtypes and normals 
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Figure S11.2a:  Each molecular subtype was compared with every other molecular subtype as well 
as with the adjacent non-tumour samples.  This pairwise comparison resulted in 16 columns, with 
each column indicating which pathways were elevated (or reduced) when comparing the two subsets indicated by the colors at the top of the heatmap.  For example, the first column (on the left) is a 
comparison between the EBV and MSI subsets, in which we see that the genes involved in the TCR 
signaling pathways (rows 3 and 4) were expressed at much higher levels in the EBV samples than in 
the MSI samples.  The reverse is seen in column 5, in which the comparison is reversed: MSI relative 
to EBV.  Within each group of four columns, the rightmost column is the comparison to the non-tumour samples (indicated by a grey box at the top). 
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S11.3 Characterization of RHOA mutations and CLDN18-ARHGAP fusions led to a predicted 
activation of the RHOA- ROCK signaling pathway. 
  

RHOA 

  

RHOA CLDN18-ARHGAP

RHOA ARHGAP

  
RHOA ARHGAP

  

1.   Ng,  S.  et  al.  PARADIGM-­‐SHIFT  predicts  the  function  of  mutations  in  multiple  cancers  using  
pathway  impact  analysis.  Bioinformatics  28,  i640-­‐i646  (2012).  

2.   Wong,  C.K.  et  al.  The  UCSC  Interaction  Browser:  multidimensional  data  views  in  pathway  
context.  Nucleic  Acids  Res  41,  W218-­‐24  (2013).  
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Figure  S11.4.    PARADIGM-­‐SHIFT  analysis  of  RhoA  pathway  alterations,  RHOA  mutations  and  ARHGAP  fusions.    (A)  
Comparison  of  the  distribution  of  P-­‐Shifts  for  samples  with  alterations  (red)  and  samples  without  (black).    (B)  
Distribution  of  t-­‐statistics  of  the  difference  in  P-­‐Shift  scores  between  samples  with  alterations  versus  samples  
without.    Red  line  shows  t-­‐statistic  based  on  actual  data.    (C)  Circlemap  display  of  mutation  neighborhood  selected  
for  RHOA.  Solid  lines  indicate  transcriptional  regulation  and  dashed  lines  indicate  protein  regulation.  Samples  were  
sorted  first  by  the  RHOA  alteration  status  (Black:  RHOA  mutation,  Grey:  ARHGAP  fusion),  then  by  P-­‐Shift  score.        

C  
Neighbor Gene Key 

Expression 
Alteration 
Status 

Focus Gene Key 

Expressio
n Alteration 
Status 

P-Shift 



  

S.11.5. HotNet Analysis 

p

Mutation Data and Interaction Network for HotNet Analysis 

q

q

HotNet2 Analysis 
p

RHOA

RHPN2

mailto:bournewu@cs.brown.edu
mailto:mdml@cs.brown.edu
mailto:braphael@cs.brown.edu
http://www.ncbi.nlm.nih.gov/pubmed/12221077


  

p
RHOA PKN2 

. RHOA PKN2 
CDH1, CDH2, 

CDH3, CDH5 CTNNA1 PTPRM CDH1
CDH1 CTNNA1

p

CDKN2A, CDK6  TP53

p
PIK3CA,

KRAS, and NRAS
MET ITGB4

p

B2M HLA-B HLA-E
CD8A

HFE

Pathway Enrichment  

 
References 

In preparation.

http://www.ncbi.nlm.nih.gov/pubmed/17332740
http://www.ncbi.nlm.nih.gov/pubmed/23341533
http://www.ncbi.nlm.nih.gov/pubmed/23208944
http://www.ncbi.nlm.nih.gov/pubmed/22533479
http://www.ncbi.nlm.nih.gov/pubmed/23389292
http://compbio.cs.brown.edu/public/stad/


  

BMC systems biology 6

PLoS computational biology 9

Tables and Figures
SUBNETWORKS gene (# mutations) KEGG PATHWAYS ENRICHMENTS 

(corrected p-value) 
STAD 
TP53 (107), CDKN2A (47), CDK6 (31), 
MTA1 (19), PTEN (7) 

Cell cycle (0.011), 
Pathways in cancer (0.015), 
p53 signaling pathway (2.34e-06), 

ERBB2 (61), EGFR (23), CD44 (22), ERBB3 
(10), ANK1 (6), ITPR3 (6), PTPRZ1 (6), 
SPTB (6), TLN1 (6), TRPC6 (6), ANKS1B 
(5), FER (5), IRS4 (5) 

 

SMAD4 (54), APBB2 (5), HDLBP (5)  
MYC (52), EP400 (6), SMC4 (5)  
RHOA (13), RHPN2 (10), FAM65B (6)  
FBLN2 (5), HSPG2 (5), NID1 (5)  
GS 
CDH1 (21), CDH2 (4), CTNNA1 (3), CDH5 
(2), PTPRM (2), CDH3 (1) 

Cell adhesion molecules (CAMs) (2.17e-
06) 

RHOA (8), FAM65B (3), MPRIP (2), PKN2 
(2), CIT (1), RHPN2 (1) 

 

ACVR2A (3), MAGI2 (3), INHBA (2), 
ACVR1B (1), DSCAML1 (1), PLCL2 (1) 

TGF-beta signaling pathway (0.022) 

C3 (3), CR1 (2), CFB (1), CFH (1), CRP (1), 
ITGAM (1), ITGAX (1) 

Complement and coagulation cascades 
(7.43e-05) 

CIN 
TP53 (99), CDKN2A (40), CDK6 (32), MTA1 
(21), PDZD2 (10), LAMA4 (8), WRN (6) 

Cell cycle (0.03), 
Pathways in cancer (0.027), 
p53 signaling pathway (0.0091), 

ERBB2 (53), EGFR (21), CD44 (17), TRPC4 
(8), ITPR2 (7), ITPR3 (6), ANK1 (5), 
ANKS1B (4), FER (4), PTPRZ1 (4), SPTB 

 



  

(4), SUPT6H (4), TLN1 (4), TNS3 (4), 
TRPC5 (4), IRS4 (3), SH2B3 (3) 
CELSR3 (8), SPTBN4 (8), BAHCC1 (6), 
CLSTN1 (6), SCAPER (4), TRIP12 (4) 

 

THSD7B (9), HECTD1 (6), IGSF1 (5), 
CNTNAP4 (4), RANBP10 (3) 

 

DSCAML1 (5), PLXNB3 (4), CUL9 (3), 
MAGI3 (3), PLCL2 (3) 

 

EBV 
PIK3CA (18), ITIH1 (1), KRAS (1), NRAS 
(1), PLCE1 (1), SHOC2 (1) 

Neurotrophin signaling pathway (0.027), 
Insulin signaling pathway (0.048), 
VEGF signaling pathway (0.019), 
T cell receptor signaling pathway (0.027), 
Fc epsilon RI signaling pathway (0.011), 
B cell receptor signaling pathway (0.027) 

MET (8), GIPC1 (1), ITGA6 (1), ITGB4 (1), 
NRP1 (1), PLEC (1) 

 

JAK2 (3), CSF2RB (1), GHR (1), MPL (1), 
PTPN2 (1), SOCS3 (1), STAT5B (1) 

Jak-STAT signaling pathway () 

COL1A2 (1), COL5A1 (1), DCN (1), F2 (1), 
IGF1 (1), IGF2 (1), IGFALS (1), IGFBP5 (1), 
THBS1 (1) 

 

MSI 
ERBB3 (35), RASA1 (20), ARHGAP5 (17), 
DOK2 (5), ANXA6 (4) 

 

B2M (23), HLA-B (13), CD8A (5), HFE (5), 
KLRD1 (5), TFRC (5), HLA-E (4), KLRC3 (3) 

Natural killer cell mediated cytotoxicity 
(0.0007), 
Graft-versus-host disease (0.0039), 
Antigen processing and presentation 
(2.13e-08) 
Cell adhesion molecules (CAMs) (0.037) 

Table S11.6: 

p



  

Figure S11.7a: 



  

Figure S11.7b: 

Figure S11.7c: 



  

Figure S11.7d: 

 
 



Supplement S11.8: All-by-all Pairwise Associations, Regulome Explorer, and 
GeneSpot 
  

 
Statistical association among the diverse data elements in this study was evaluated by comparing 
pairs of columns in the feature matrix (Supplement S11.1). Hypothesis testing was performed by 
testing against null models for absence of association, yielding a p-value. P-values for the association 
between and among clinical and molecular data elements were computed according to the nature of 
the data levels for each pair: discrete vs. discrete (Fisher s exact test); discrete vs. continuous 
(ANOVA F- test, equivalently t-test for binary vs. continuous) or continuous vs. continuous (F-test). 
Ranked data values were used in each case.  To account for multiple- testing bias, the p-value was 
adjusted using the Bonferroni correction. 

 
In order to allow researchers to further explore potentially interesting relationships in this dataset, 
including primary data, the statistically significant pairs of associations were loaded into the 
Regulome Explorer web application, which is designed to allow researchers to explore associations 
among multiple data types in cancer genomics (http://explorer.cancerregulome.org).  Prior to loading, 
a p-value threshold was chosen specific to each pair of data types (e.g. clinical data vs. gene 
expression data) in such a way as to strike a balance between making potentially interesting 
associations available to queries by the tool, while still allowing the tool to be responsive, since the 
number of loaded graph edges (each corresponding to a statistically significant relationship) is in the 
millions. 

 
All identified pairwise relationships, including those described in this manuscript can be found at 
http://explorer.cancerregulome.org . 

 
To allow researchers to explore this dataset in the context of other TCGA data types and to provide 
additional plotting and querying capabilities, the data have been made available in the GeneSpot 
web application at www.genespot.org. This software tool for systems biology provides a way to 
view TCGA data from a gene-centric point-of-view. 

 

http://explorer.cancerregulome.org/
http://explorer.cancerregulome.org/all_pairs/?dataset=stad_23jan14_seq_tumor_only&hidden=true
http://www.genespot.org/


  

S11.9 Firehose Analysis 
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S11.10. MIRACLE Analysis
  

M R A C L E

miR-seq, DNA methylation, and RNA-seq Data for MIRACLE Analysis

  
Epigenetically silenced miRNAs and predicted network

Integrated analyses identify a master microRNA regulatory network for the 
mesenchymal subtype in serous ovarian cancer. 

miRBase: annotating high confidence microRNAs using deep 
sequencing data. 

Prediction of mammalian microRNA targets. 
Aberrant hypermethylation of miR-9 genes in gastric cancer.

mailto:wzhang@mdanderson.org
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Figure S11.11. miR-RNA regulatory network for epigenetically silenced miRNAs. 
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Figure S11.12. DNA methylation and expression of miR-9 
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Figure S11.13. DNA methylation and expression of miR-196b 
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S11.14 figure- Somatic mutations recurrently altered in receptor tyrosine kinases 
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S12. TCGA Funding Sources
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