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S$1.1 Biospecimen Collection, Quality Control, and Processing

Sample Acquisition:

Gastric tumours were collected and shipped to a central Biospecimen Core Resource (BCR) between
5/6/2010 and 10/17/2012. Before shipment, clinical information and sample descriptions were submitted to
the BCR. Qualifying tumour samples were obtained from patients who had received no prior treatment for
their disease (chemotherapy or radiotherapy). Specimens were shipped overnight from 13 tissue source
sites (TSS) using a cryoport that maintained an average temperature of less than -180°C. TSSs contributing
biospecimens included: Cureline, Inc.; Asterand, Inc.; ILSbio, LLC.; Indivumed GmbH; Greater Poland
Cancer Center; Christiana Care Health Services, Inc.; University of North Carolina; International Genomics
Consortium; Ontario Institute of Cancer Research; Roswell Park Cancer Institute; National Cancer Center
Research Institute (Korea); University of Pittsburgh; and Analytical Biological Services, Inc.

In addition to tumour samples, each frozen primary tumour specimen had a companion normal tissue
specimen (blood or blood components, including DNA extracted at the tissue source site). Adjacent non-
tumour gastric tissue was also submitted for a subset of cases.

Cases were staged according to the American Joint Committee on Cancer (AJCC) staging system 7'
Edition. Pathology quality control was performed on each tumour and adjacent normal tissue (if available)
specimen from either a frozen section slide prepared by the BCR or from a frozen section slide prepared
by the TSS. Hematoxylin and eosin (H&E) stained sections from each sample were subjected to
independent pathology review to confirm that the tumour specimen was histologically consistent with
gastric cancer and the adjacent tissue specimen contained no tumour cells. The percent tumour nuclei,
percent necrosis, and other pathology annotations were also assessed. Tumour samples with 260% tumour
nuclei and £20% necrosis were submitted for nucleic acid extraction. An exception to tumour nuclei criteria
was made for diffuse tumour types.

Sample Processing:

DNA and RNA were extracted and quality was assessed at the central BCR. RNA and DNA were
extracted from tumour and adjacent non-tumour tissue specimens using a modification of the
DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen DNA column was processed using a
mirVana miRNA Isolation Kit (Ambion). This latter step generated RNA preparations that included RNA
<200 nt suitable for miRNA analysis. DNA was extracted from blood using the QiaAmp DNA Blood Midi kit
(Qiagen).

RNA samples were quantified by measuring Abs260 with a UV spectrophotometer and DNA quantified by
PicoGreen assay. DNA specimens were resolved by 1% agarose gel electrophoresis to confirm high
molecular weight fragments. A custom Sequenom SNP panel or the AmpFISTR Identifiler (Applied
Biosystems) was utilized to verify that tumour DNA and germline DNA representing a case were derived
from the same patient. Five hundred nanograms of each tumour and germline DNA were sent to Qiagen
(Hilden, Germany) for REPLI-g whole genome amplification using a 100ug reaction scale. RNA was
analyzed via the RNAG6000 Nano assay (Agilent) for determination of an RNA Integrity Number (RIN), and
only analytes with RIN 27.0 were included in this study. Only cases yielding a minimum of 6.9 pg of tumour
DNA, 5.15 pg RNA, and 4.9 pg of germline DNA were included in this study.

Sample Qualification:

The BCRs received tumour samples with germline controls from a total of 618 cases, of which 343
samples qualified and were sent for further genomic analysis. Of the 275 samples that were disqualified,
114 cases failed pathology screening, 117 cases failed due to molecular criteria, 13 failed due to genotype
mismatch between tumour and germline, 10 represented unacceptable histology, three had insufficient
tumour, and 18 did not qualify for other reasons. Of the 114 that failed pathologic criteria, 111 failed for
insufficient tumour nuclei (<60%), one failed for necrosis > than 20%, and two cases were disqualified for
both insufficient tumour nuclei and necrosis. Regarding the exception made for the diffuse tumour type, in
the final data set, 11 diffuse gastric tumours were included with tumour nuclei <60%. Of the 117 samples
that failed molecular screening, the majority (n=97) had RNA integrity scores of < 7.0. Other causes of
failure included low DNA or RNA yield, or evidence of low molecular weight DNA observed in the DNA gel,
indicating DNA fragmentation.

Of the 343 samples that qualified based upon BCR pathology review and molecular characteristics, 295
samples were ultimately used for genomic analysis. The 48 samples that were not used in the final analysis



were redacted following independent pathology review (as described below), because of discovery of
clinical disqualifiers (three patients with history of chemotherapy), unknown subject identity or case
duplication. See flow diagram, Supplementary Figure S1.2, for sample qualification.

Of the qualifying cases, matched non-tumour stomach tissue was available from 73 cases. Samples with
residual tumour tissue following extraction of nucleic acids were considered for proteomics analysis.
When available, a 10 to 20 mg piece of snap-frozen tumour adjacent to the piece used for molecular
sequencing and characterization was submitted to MD Anderson for reverse phase protein array
(RPPA) analysis.

Microsatellite Instability Assay

Microsatellite instability (MSI) in qualified cases was evaluated by the BCR at Nationwide Children’s
Hospital. MSI-Mono-Dinucleotide Assay was performed to test a panel of four mononucleotide repeat loci
(polyadenine tracts BAT25, BAT26, BAT40, transforming growth factor receptor type Il), and three
dinucleotide repeat loci (CA repeats in D2S123, D5S346, and D17S250). Two additional pentanucleotide
loci (Penta D and Penta E) were included in this assay to evaluate sample identity. If variation in the number
of microsatellite repeats was detected between tumour and matched non-neoplastic tissue or mononuclear
blood cells, multiplex fluorescent-labeled PCR and capillary electrophoresis were used to confirm MSI.
Equivocal or failed markers were re- evaluated by singleplex PCR. Tumour DNA was classified as
microsatellite-stable (MSS) if zero markers were altered, low level MSI (MSI-L) if less than 40% of markers
were altered, and high level MSI if greater than 40% of markers were altered. In the MSI-Mono-Dinucleotide
Assay, samples were designated MSI-L if one or two markers were altered and MSI if three to seven markers
were altered.

Individual markers were assigned a value of 1 through 6, based on the presence or absence of a MSI shift,
allele homo/heterozygosity and loss of heterozygosity (LOH) if relevant. Markers that demonstrated MSI
shift were classified as follows; 1= homozygous alleles, 2= heterozygous alleles with LOH, and 3=
heterozygous alleles without LOH. Markers that did not demonstrate a MSI shift were classified as follows;
4= homozygous alleles, 5= heterozygous alleles with LOH, and 6= heterozygous alleles without LOH. Penta
D and E markers were scored in the same manner as the MSI markers; however they did not contribute to
MSI Class calculation.
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618 available samples shipped to BCR

343 samples qualified based
upon initial pathology and
molecular criteria

48 samples
excluded

295 samples 10 failed additional

included pathology review

in final genomic

analysis 3 failed due to prior
chemotherapy

35 redacted due to
unknown subject
identity or case

Figure $1.2. Sample Flow duplication

275 samples excluded

Of these, 114 failed due to
tumour characteristics with
tumour nuclei (n=111),
necrosis (n=1), or both (n=2)

117 failed due to molecular
criteria (RIN score < 7.0,
low DNA/RNA yield or DNA

quality)

44 failed due to genotype
mismatch (n=13),
unacceptable histology
(n=10), insufficient sample
(n=3), other (n=18)

Figure S1.2 Sample Flow Of the 618 samples shipped to the BCR, 295 were included in the final genomic analysis. For samples that did not meet
inclusion criteria, causes of exclusion such as failure to meet quality metrics or pathology review are demonstrated here.
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inclusion criteria, causes of exclusion such as failure to meet quality metrics or pathology review are demonstrated here. 


S1.3 text- Review of pathology, TNM stage, anatomic site, and tumour recurrence

Tumour TNM Stage (AJCC Stage) Review

All stage assignments were evaluated for consistency with the 7™ edition of the AJCC Cancer Staging Manual,
in order to fill missing entries, to identify errors, and to update stage annotations based on older editions of the
manual. For cases that were submitted to the BCR with annotation from a prior edition, tumour characteristics
were remapped to the 7™ edition. The mapping was done using a table provided by the Collaborative Stage
Data Collection System (http://web2.facs.org/cstage0204/stomach/Stomach uam.htmll. Prior to this step, the
number of positive lymph nodes was used to assign NO, N1, N2, N3, and for the 6" edition annotations, T
was converted to be consistent with 7'" edition definitions. Manual review was then performed, with a
particular focus on cases where there were contradictions between mapped and tabulated stage values.

Anatomic Site Review

Anatomic location of tumours was verified through review of the primary de-identified pathology reports. Expert
TCGA pathology review of tumour and surrounding tissue provided additional information about tumour
location in 14 cases. Using this method, a location could be assigned for 97% (287 of 295) of tumours.

Pathology review

All cancers included in this study were reviewed by an Expert Pathologist Committee (EPC) that consisted
of four experienced gastrointestinal pathologists (J.K., JW., M.G., and M.P.). A centralized virtual pathology
review system utilizing an Aperio slide scanner housed at the BCR at Nationwide Children’s Hospital,
Columbus OH, was constructed. Representative virtual slide images of each case were deposited on a web
server and reviewed electronically by EPC members. Typically, two frozen sections flanking the tumour
tissue from which all material was extracted for this study and one additional high-quality formalin-fixed
paraffin-embedded tissue section were scanned. GCs were classified using the Lauren classification
categories: (Intestinal, Diffuse, Mixed, Indeterminate), and the World Health Organization classification
(Papillary, Tubular, Mucinous, Poorly Cohesive and other rare variants). All EPC members were well
informed about the classification criteria before the review process. Two EPC members reviewed all cases
without a pathological tumour classification from the tissue source site and one EPC member reviewed the
cases that had a prior pathological tumour classification from the tissue source site. Uncommon cancer
subtypes such as neuroendocrine carcinoma, malignant lymphoma, squamous cell carcinoma and
gastrointestinal stromal tumour were identified and excluded after agreement by two EPC members. In most
cases (71%), a consensus was reached after the first set of reviews. For cases with discrepant results,
a tie-breaker reviewer was assigned. For rare cases upon which no consensus was reached after tie-
breaker’s review, all EPC members joined to reach consensus.

Review of Recurrence and Survival

Tissue source sites were asked to provide clinical follow-up data in periodic updates. Recurrence was
defined as clinical or radiological evidence of recurrence. This was recorded as “YES” if there was definite
recurrence or “NO” if there was no evidence at recurrence during the follow-up period. Cases where there were
insufficient data to make a conclusion were set to “NA”. Survival was determined by known date of death and
data were censored based upon last known clinical follow-up. Clinical data are listed in Supplementary Table
S11.1a.

$1.4 Correlation of Clinical Data with Molecular Subtypes

The division of pathological and clinical data by the four molecular subtypes is shown in Supplementary Table
S1.5. In Supplementary Table S1.6, we highlight the statistically significant associations between Molecular
Subtypes and clinical data categories. This table also includes associations with some other key variables
discussed in the manuscript. Due to space limitations, only a limited set of sample divisions could be
accommodated in the Tables. A more extensive set of significantly associated variables can be explored
using the Regulome Explorer Web tool (Supplement S11.8, explorer.cancerregulome.org).

We also evaluated associations of Molecular Subtypes with both overall survival and tumour recurrence. All
event times were defined with respect to time of surgical resection. Of the 295 participants, 57 were known to
be deceased and 230 had follow-up (including deceased). The number of participants with greater than one
year follow-up was 113; and 21, 8, 7, and 5 participants had more than two, three, four, and five years of
follow-up, respectively. The median follow-up was 362.5 days. Recurrence information was available for
201 participants, with 31 experiencing recurrence. In Supplementary Figure S1.7, we show Kaplan-Meier
curves for overall survival and for recurrence, for groups with defined TNM Stage, and for grouping by
Molecular Subtype. Curves were drawn using the survfit function in R, and p-values were evaluated using Cox
proportional hazards with a log-likelihood test (coxph function). The small number of samples and relatively
short duration of follow-up for most cases posed limitations for drawing conclusions about survival and
recurrence.
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Supplementary Table $1.5 Fractional Division of Clinical Parameters by Molecular Subtype

Age* N Mean Range %
FEMALE 112 67 34-90 38.4%
MALE 180 65.27 39-90 61.6%
Molecular Subtype

Total EBV MSI GS CIN
Gender n % n % n % n % n %
FEMALE 113 38.3% 5 4.4% 36 31.9% 22 19.5% 50 44.2%
MALE 182  61.7% 21 11.5% 28 15.4% 36  19.8% 97 53.3%
Lauren Class
Diffuse 69 23.4 5 7.2% 6 8.7% 40 58.0% 18 26.1%
Intestinal 196 66.4 15 7.7% 48  24.5% 15 7.7% 118  60.2%
Mixed 19 6.4 3 15.8% 3 15.8% 3 15.8% 10 52.6%
Not specified 11 3.7 3 27.3% 7 63.6% 0 0.0% 1 9.1%
WHO Class
Mixed 19 6.4 3 15.8% 3 15.8% 3 15.8% 10 52.6%
Mucinous 18 6.1 0 0.0% 7 38.9% 2 11.1% 9 50.0%
Papillary 22 7.5 1 4.5% 4 18.2% 2 9.1% 15 68.2%
Poor cohesive 69 23.4 5 7.2% 6 8.7% 40 58.0% 18 26.1%
Tubular 140 47.5 9 6.4% 35 25.0% 9 6.4% 87 62.1%
Not specified 27 9.2 8 29.6% 9 33.3% 2 7.4% 8 29.6%
Pathologic T
T1A 1 0.3 0 0.0% 1 100.0% 0 0.0% 0 0.0%
T1B 10 34 1 10.0% 5 50.0% 0 0.0% 4 40.0%
T2 44 14.9 1 2.3% 9 20.5% 11 25.0% 23 52.3%
T3 155 525 15 9.7% 30 19.4% 28 18.1% 82 52.9%
T4 1 0.3 0 0.0% 0 0.0% 1 100.0% 0 0.0%
T4A 60 20.3 9 15.0% 8 13.3% 15 25.0% 28 46.7%
T4B 14 4.7 0 0.0% 7 50.0% 1 7.1% 6 42.9%
X 10 34 0 0.0% 4 40.0% 2 20.0% 4 40.0%
Pathologic N
NO 97 32.9 6 6.2% 26 26.8% 19 19.6% 46 47.4%
N1 64 217 6 9.4% 15 23.4% 8 12.5% 35 54.7%
N2 58 19.7 5 8.6% 7 12.1% 18  31.0% 28 48.3%
N3 65 22 9 13.8% 11 16.9% 11 16.9% 34 52.3%
NX 11 3.7 0 0.0% 5 45.5% 2 18.2% 4 36.4%
Pathologic M
MO 273 925 23 8.4% 61 22.3% 52  19.0% 137 50.2%
M1 20 6.8 3 15.0% 2 10.0% 6 30.0% 9 45.0%
MX 2 0.7 0 0.0% 1 50.0% 0 0.0% 1 50.0%
AJCC stage
Stage IA 8 2.7 1 12.5% 3 37.5% 0 0.0% 4 50.0%
Stage IB 24 8.1 1 4.2% 7 29.2% 4 16.7% 12 50.0%
Stage IIA 56 19 4 7.1% 14 25.0% 11 19.6% 27 48.2%
Stage IIB 60 20.3 5 8.3% 14 23.3% 12 20.0% 29 48.3%
Stage llIA 40 13.6 2 5.0% 2 5.0% 10 25.0% 26 65.0%
STAGE_IIIB 57 19.3 8 14.0% 10 17.5% 10 17.5% 29 50.9%
STAGE_IIIC 14 4.7 2 14.3% 5 35.7% 2 14.3% 5 35.7%
STAGE_IV 20 6.8 3 15.0% 2 10.0% 6 30.0% 9 45.0%
X 16 5.4 0 0.0% 7 43.8% 3 18.8% 6 37.5%
Country of origin
CANADA 3 1 0 0.0% 1 33.3% 0 0.0% 2 66.7%
GERMANY 39 13.2 1 2.6% 9 23.1% 6 15.4% 23 59.0%
KOREA_SOUTH 31 10.5 4 12.9% 11 35.5% 2 6.5% 14 45.2%
POLAND 32 10.8 4 12.5% 2 6.2% 6 18.8% 20 62.5%
RUSSIA 83 28.1 6 7.2% 26 31.3% 15 18.1% 36 43.4%
UKRAINE 39 13.2 6 15.4% 6 15.4% 14 35.9% 13 33.3%
UNITED_STATES 24 8.1 2 8.3% 5 20.8% 2 8.3% 15 62.5%
VIETNAM 44 14.9 3 6.8% 4 9.1% 13 29.5% 24 54.5%
Anatomical region
ANTRUM 114 38.6 6 5.3% 31 27.2% 28 24.6% 49 43.0%
FUNDUS_BODY 116  39.3 16 13.8% 25 21.6% 18 15.5% 57 49.1%
GEJ_CARDIA 57 19.3 4 7.0% 5 8.8% 11 19.3% 37 64.9%
NA 8 2.7 0 0.0% 3 37.5% 1 12.5% 4 50.0%
Survival n days n days n days n days n days
Death 57 399.5 5 334.2 11 419.2 12 374.2 29 413.9
Tumour Recurrence 31 387.7 4 354 3 348.3 4 671.8 20 337

*Three missing fields for age



Supplementary Table $1.6 Statistical Association with Molecular Subtypes

All
Data Variable Subtypes EBV MsSi CIN GS
Lauren Classification 6.57E-15 0.404 0.0117 4.99E-06 1.40E-16
Intestinal Subclass 0.646 0.845 0.294 0.51 0.526
Signet Ring 0.245 0.169 1 0.386 0.119
WHO Classification 0.00577 0.443 0.0139 1.49E-05 5.79E-15
Pathologic M 0.454 0.503 0.191 0.908 0.443
Pathologic N 0.831 0.486 0.0516 0.771 0.138
Pathologic T 0.831 0.345 0.852 0.496 0.707
TNM Stage 0.759 0.332 0.414 0.644 0.46
Anatomic Site 0.762 0.458 0.0547 0.0971 0.519
Neoplasm Cancer Status 0.091 0.29 0.0495 0.122 0.568
Residual Tumour 0.664 0.748 0.0209 0.195 0.961
Age at Initial Diagnosis 8.06E-08 0.241 5.02E-05 0.164 3.65E-07
Country 0.0481 0.635 0.0677 0.516 0.0174
Gender 0.00329 0.0368 0.00128 0.151 1
Race 0.925 1 0.323 0.959 0.89
MutSig rate Total 5.10E-34 0.104 2.78E-33 0.000112 3.34E-11
MLH1 epigen. Silenced 2.27E-30 0.0171 1.65E-30 2.46E-09 4.90E-05
CDKN2A epig. Silenced 1.41E-20 6.01E-14 2.95E-05 1.60E-08 0.0014
MSI status 1.49E-63 0.00256 1.75E-66 1.33E-23 4.06E-07
Mutation Rate Category 1.21E-53 0.267 6.27E-54 2.94E-18 5.68E-07
Gene Expression Clust 0.00874 5.55E-08 0.0316 1.48E-05 1.43E-11
MicroRNA Expr. Clust 2.56E-05 0.0696 0.00818 0.553 2.19E-05
Copy Number Cluster 4.10E-73 0.000884 1.32E-16 4.81E-70 1.15E-23
Methylation Cluster 0.00487 2.89E-35 2.06E-25 2.59E-16 0.00067
EBYV present 7.64E-38 7.64E-38 0.00202 8.95E-09 0.00371
TP53 mutation 3.01E-18 1.13E-06 0.156 3.39E-16 2.59E-08
PIK3CA mutation 5.89E-22 9.15E-12 1.67E-06 1.55E-14 0.0889
KRAS mutation 0.00078 0.487 0.000122 0.00534 1
BRAF mutation 3.06E-09 0.637 1.68E-08 9.28E-06 0.0483
RHOA mutation 0.00641 0.637 1 0.0103 0.00394
ERBB2 amplification 8.76E-17 0.566 1.13E-07 5.55E-16 1.51E-06
ARHGAP-CLDN18 Rearr. 0.00235 0.614 1 0.0196 0.000996
ABSOLUTE Ploidy 6.60E-08 0.587 0.00769 7.62E-08 9.86E-06
ABSOLUTE Purity 0.0875 0.843 0.0301 0.637 0.0651
Est. Leukocyte Pcnt. 2.01E-08 0.00873 0.472 1.64E-08 7.79E-06
Percent Tumour Nuclei 0.00209 0.681 0.0734 0.206 0.000184
Percent Tumour Cells 0.00147 0.184 0.252 0.00476 0.000925
Pcnt Lymphocyte Infiltr.  0.776 0.502 0.435 0.604 0.748

Statistical Association with Molecular Subtypes. All associations with p < 0.05 are highlighted. The first
column applies to subtype divisions overall, and the remaining columns to comparison between samples in the
subgroup and other samples. Red denotes an elevated or greater than expected number in that subtype. Blue
denotes a lower value or fewer than expected. Other statistically significant associations (such as for non-
ordered data including all the molecular subtypes) are highlighted in gray. The following two dichotomous
variables were ordered alphabetically to define directionality: Gender: Female, Male; Copy Number Cluster:
High, Low. Significant associations for other variables can be found using the Regulome Explorer web tool
(Supplement S11.8, explorer.cancerregulome.org)
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Figure S1.7. Patient Survival and Tumour Recurrence, Kaplan-Meier Curves

Molecular Subtype and Overall Survival Molecular Subtype and Recurrence
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Note: At the time of this analysis, the follow-up time for this cohort remains limited; hence any survival analyses are quite
exploratory. We continue to accrue follow-up data and it is possible that with additional time such differences will become

apparent.

Figure S1.7. Patient Survival and Tumour Recurrence, Kaplan-Meier curves
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Figure $1.7. Patient Survival and Tumour Recurrence, Kaplan-Meier curves. Kaplan-Meier survival
curves demonstrated separation by tumour stage. For the four molecular subtypes, no significant
differences in survival or recurrence rates were found. The CIN subtype showed some evidence for
an elevated rate of recurrence, but not at a statistically significant level.
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Figure S1.7. Patient Survival  and Tumour Recurrence, Kaplan-Meier curves. Kaplan-Meier survival 
curves demonstrated separation by  tumour stage.  For the  four  molecular subtypes, no significant 
differences in survival or recurrence rates were found. The CIN subtype showed some evidence for 
an elevated rate of recurrence, but not at a statistically significant level.
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Supplement 1.8: Relations to Country of Origin

Given the known global diversity associated with gastric cancer, country of origin was included in the analysis of
clinical parameters by molecular subtype (Supplement Table S1.5). For the most part, the frequency of molecular
subtype within any given country was similar to that of our entire cohort, but some exceptions were observed. More
GS tumours were identified in samples from the Ukraine (35.9%,p=0.0094) and from Vietnam (29.5%,p=0.097) as
compared to an overall GS molecular subtype prevalence of 19.7%. Samples from Russia had more than expected
MSI (31.3%, p=0.018), contrasted with an overall MSI prevalence of 21.7%. The South Korean cohort also had a
somewhat greater than average fraction of MSI (35.5%, p=0.06) and less than expected GS (6.5%,p=0.06).

To evaluate other potential differences in gastric cancers between geographic regions, the two East Asian countries
(Vietnam and South Korea) were combined into an East Asian group of 75 patients and compared to the remainder of
the cohort. In the East Asian group, 68% of tumours were antral/pyloric compared with only 8% of tumours at the GE
junction/cardia. These percentages are in contrast with tumours from the United States and Canada where tumours
were more commonly found at the GE junction/cardia (48%) and less commonly located at the gastric antrum/pylorus
(37%). The East Asian group of patients also presented on average at a somewhat younger age (mean 64 years),
compared with age of presentation from the other regions (mean 67 years and p-value 0.12). Vietnam had the lowest
mean age of presentation (mean 61 years, p=0.03) and Germany the highest (mean 72 years, p=0.001). When
molecular subtypes were assessed in the East Asian group, EBV subtype was similar to the overall group (9.6%), as
were MSI (20%), CIN (50%), GS (20%); there was thus no evidence for association between the East Asian group
and molecular subtype (p=0.97).

Then, we evaluated geographic differences, again comparing the East Asian group to the other regions, in somatic
tumour mutation rates of genes that had been identified in the somatic mutation analysis. These genes (TP53, KRAS,
ARID1A, PIK3CA, ERBB3, PTEN, HLA-B, RNF4B, B2M, NF1, APC, CTNNB1, SMAD4, SMAD2, RASA1, ERBB?2,
BCOR, CDH1, and RHOA) were assessed for mutations in the East Asian population using Regulome Explorer
(Supplement S11.8). No significant differences for any of the genes of interest were identified on the basis of East
Asian origin.

Comparing the East Asian group to other regions, we evaluated differences in pathway-level gene expression
changes (Figure 5c, Supplement S11.2) in the context of geographical distribution. Pathway expression for tumours
from the East Asia group was for the most part similar to that of the remainder of the cohort. Exceptlons were elevated
expression in East Asian patients of pathways related to regulation of telomerase (ps=2. 0x10°, see S11. 2), and
decreased expression of HIF-1-alpha transcription factor network (ps=2.4x10" ) Other pathways were seen to differ in
expression between individual countries. For example, Beta 1 integrin cell-surface interaction pathways had
decreased expressmn in the South Korean tumours (ps=5.0x10" ) but the pathways were elevated in Vietnamese
tumours (ps=5.0x10" ) Since increased expression of this pathway is seen in the GS subtype, this trend could be
reflecting the relatively less GS in the Korean samples, as discussed above. IL-12 mediated S|gnal|ng events, which
are elevated in EBV samples, also had increased expression in samples from Russia (ps=3.2x10" )

Overall, these data do not identify strong biologic differences between tumours of East Asian origin compared to other
tumours. However, further analysis with larger sample cohorts will be required to better delineate differences that
may exist between GC tumours originating in different regions of the world and in patients of different ethnic
backgrounds.
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S$2.1 Copy number analysis

SNP-based copy number analysis

DNA from each tumour or germline sample was hybridized to Affymetrix SNP 6.0 arrays
using protocols at the Genome Analysis Platform of the Broad Institute as previously
described’. Briefly, from raw CEL files, Birdseed was used to infer a preliminary copy-
number at each probe locus®. For each tumour, genome-wide copy number estimates
were refined using tangent normalization, in which tumour signal intensities are divided by
signal intensities from the linear combination of all normal samples that are most similar to
the tumour® (and Tabak B. and Beroukhim R. Manuscript in preparation). This linear
combination of normal samples tends to match the noise profile of the tumour better
than any set of individual normal samples, thereby reducing the contribution of noise to
the final copy-number profile. Individual copy-number estimates then underwent
segmentation using Circular Binary Segmentation4. As part of this process of copy-
number assessment and segmentation, regions corresponding to germline copy-number
alterations were removed by applying filters generated from either the TCGA germline
samples from the ovarian cancer analysis or from samples from this collection. Segmented
copy number profiles for tumour and matched control DNAs were analyzed using Ziggurat
Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to the set
of inferred copy-number changes underlying each segmented copy number proﬂle
S|gn|f|cant focal copy number alterations were identified from segmented data using GISTIC
2.0°. For copy number based clustering, tumours were clustered based on thresholded copy
number at reoccurring alteration peaks from GISTIC analysis (all_lesions.conf 99.txt file).
Clustering was done in R based on Euclidean distance using Ward's method. In arm level
analysis, chromosomal arms were considered altered if at least 66% of the arm was lost or
gained with a log2 copy number change greater the 0.1. AIIeI|c copy number, and purity
and ploidy estimates were calculated using the ABSOLUTE algorithm®

References:

1. McCarroll, SA, et al. Integrated detection and population genetic analysis of SNPs and
copy number variation. Nat Genet. 40:1166-1174 (2008).

2. Korn, JM, et al. Integrated genotype calling and association analysis of SNPs, common
copy number polymorphisms and rare CNVs. Nat Genet. 40: 1253-1260 (2008).

3. The Cancer Genome Atlas Research Network, Integrated genomic analyses of
ovarian carcinoma. Nature 474:609-615 (2011).

4. Olshen, AB, et al. Circular binary segmentation for the analysis of array based DNA
copy number data. Biostatistics 5: 557-572 (2004).

5. Mermel, CH, et al. GISTIC2.0 facilitates sensitive and confident localization of the
targets of focal somatic copy number alteration in human cancers. Genome Bio. 112:R41
(2011).

6. Carter, SL, et al. Absolute quantification of somatic DNA alterations in human cancer.
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S2.2 . Somatic Copy Number Alterations. In the heatmap, SCNAs in tumors (vertical axis) are plotted by chromosomal location (horizontal axis).  Tumors were hierarchical clustered by significantly reoccurring copy number alterations identified by GISTIC 2.0 analysis of the entire dataset. Vertical side bars (left) show the division of two major copy number cluster groups, histology, location, MLH methylation, CIMP and EBV status.  Bar graphs (right) show the mutation rates in tumors.
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S2.3. GISTIC 2.0 amplifications and deletions. Chromosomal locations of peaks of significantly recurring focal amplifications (red) and deletions (blue) are plotted
by false discovery rates. Annotated peaks have an FDR < .25 and encompass 16 or fewer genes. Peaks are annotated with candidate driver oncogenes, tumor
suppressors, fragile site genes (green) or by cytoband. The number of genes within each peak is shown next to driver genes or cytobands.
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S2.3. GISTIC 2.0 amplifications and deletions.  Chromosomal locations of peaks of significantly recurring focal amplifications (red) and deletions (blue) are plotted 
by false discovery rates.   Annotated peaks have an FDR < .25 and encompass 16 or fewer genes.  Peaks are annotated with candidate driver oncogenes, tumor 
suppressors, fragile site genes (green) or by cytoband. The number of genes within each peak is shown next to driver genes or cytobands.
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S2.4 The data file- GISTIC 2.0 peaks can be found on the TCGA Stomach Adenocarcinoma publication
page at https://tcga-data.nci.nih.gov/docs/publications/stad 2014/.



https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
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S2.5 GISTIC 2.0 analyses of focal amplifications in molecular subtypes. Chromosomal locations of peaks of significantly recurring focal amplifications are plotted by
false discovery rates. Annotated peaks have an FDR < .25 and encompass 40 or fewer genes. Peaks are annotated with candidate driver oncogenes or by cytoband.
The number of genes within each peak is shown next to driver genes or cytobands.
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S2.5 GISTIC 2.0 analyses of focal amplifications in molecular subtypes.  Chromosomal locations of peaks of significantly recurring focal amplifications are plotted by 
false discovery rates.   Annotated peaks have an FDR < .25 and encompass 40 or fewer genes.  Peaks are annotated with candidate driver oncogenes or by cytoband. 
The number of genes within each peak is shown next to driver genes or cytobands.
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S2.6 GISTIC 2.0 analyses of focal deletions in molecular subtypes.
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S2.6 GISTIC 2.0 analyses of focal deletions in molecular subtypes.
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S$2.6 GISTIC 2.0 analyses of focal deletions in molecular subtypes. Chromosomal locations of peaks of significantly
recurring focal deletions are plotted by false discovery rates. Annotated peaks have an FDR < .25 and encompass 40 or
fewer genes. Peaks are annotated with candidate driver tumor suppressors, fragile site genes (green) or by cytoband. The
number of genes within each peak is shown next to driver genes or cytobands.
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S2.7 Tumor purity of copy number clusters in histology classes. Tumor purities using the ABSOLUTE algorithm.
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S2.7 Tumor purity of copy number clusters in histology classes. Tumor purities using the ABSOLUTE algorithm.
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S2.8 Tumor purity by molecular subtypes. Tumor purities were estimated by using the ABSOLUTE algorithm.

Significant Mann-Whitney p values are shown.
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S2.8 Tumor purity by molecular subtypes.  Tumor purities were estimated by using the ABSOLUTE algorithm.  Significant Mann-Whitney p values are shown.
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S2.9  Arm-level copy number analysis.  The bar graphs show the frequency of arm level copy number alterations in molecular subtypes.
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Figure S2.10. JAK2, PD-L1, and PD-L2 gene expression and copy number. 
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S$2.10 JAK2, PD-L1, PD-L2 gene expression and copy number. Top graphs show in each molecular subtype the
expression of JAK2, PD-L1, and PDL-2, which are all contained within the 9p24.1 focal amplification. Bottom graphs show
expression (y axis) graphed by GISTIC 2.0 estimated levels of copy number. Low level losses or gains are estimated
changes of one copy, high level losses or gains are changes estimated to be of two or more copies.
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S$3.1 Supplementary Materials: DNA sequencing Variant Calling

Sequencing methods

Whole exome sequencing was performed as previously described”. Briefly, 0.5-3 micrograms of
DNA from each sample was used for library preparation, which included shearing and ligation of
sequencing adaptors. Exome capture was performed using the Agilent SureSelect Human All Exon
5Mb kit. Captured DNA was sequenced using the lllumina HiSeq platform, and paired-end
sequencing reads were generated for each sample. Initial alignment and quality control were
performed using the Picard and Firehose pipelines at the Broad Institute.

Picard generated a single BAM file for each sample that included reads, calibrated quantities, and
alignments to the genome. Firehose represents a set of tools for analyzing sequencing data from
tumour and matched normal DNA. The pipeline performed quality control, local realignment,
mutation calling, small insertion and deletion identification, and coverage calculations, among other
analyses. Complete details of this pipeline have been published2 or can be found online at
www.broadinstitute.org/cancer/cga.

Variant Calling and Significance Analysis

Somatic mutations and short insertions/deletions (indels) were called and post-filtered using MuTect,
Strelka and Indel locator®®’. These were then annotated to genes, variant severity, and transcript
using Oncotator (http://www.broadinstitute.org/cancer/cga/oncotator). Variants were filtered against
a panel of normals as described®. We assembled our mutation file for significance analysis by
combining MuTect-called SNVs with Strelka and Indel locator called indels and split the file by
mutation rate (Supp. 3.2). We limited our significance analysis of the Hypermutator set by removing
indels below 30% allele fraction or alternate allele count four. Mutation significance was assessed
using the MutSigCV algorithms. In brief, this algorithm takes into account recurrence of mutations,
nucleotide context, gene-expression, replication time, and somatic background mutation rate. Genes
with a g-value less than 0.1 were deemed significant.

References:

1. TCGA Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature
2012 Sep 27;489(7417):519-25

2. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science
333, 1157-60 (2011).

3. Lawrence, MS. et al. Mutational heterogeneity in cancer and the search for novel cancer-
associated genes. Nature 2013 Jun 16.

4. Futreal, P.A. et al. A census of human cancer genes. Nature reviews cancer 4, 177-83 (2004).
5.Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in
impure and heterogeneous cancer samples. Nat Biotechnol 2013;31:213-9.

6. Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic
small-variant calling from sequenced tumour-normal sample pairs. Bioinformatics

2012;28:1811-7.

7. Chapman, M.A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature

471, 467-72 (2011).
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Supplement S$3.2. Determining thresholds for mutation rate categories

A plot of total mutation rate for samples, sorted in decreasing order (yielding ranks 1 through 289)
indicated that mutation rates fell into three distinct populations, which we termed Ultramutated (UM),
Hypermutated (HM) and Standard mutation rate (SM), in order of decreasing mutation rate (Supp.
Fig. S3.3a). The term “Ultramutated” will be used only to aid this discussion — in the manuscript, the
ultramutated group was considered a subset of hypermutated, and SM is referred to as non-
hypermutated. In order to identify the boundaries between these regions, we made use of the
observation that rates were approximately linear in the HM and SM regions. We then determined the
values at which the transitions occurred between these regions of constant slope. Polynomial
spline fitting of the values in the rate vs. rank plot (Supp. Fig. 3.3a) was used to estimate the
transition points.

Fitting with third-order polynomial splines (R package pspline) gave a good representation of the
rate vs rank curve (Supp. Fig. 3.3b, e.g.) and provided a framework for numerical estimation. First
derivative (slope) estimates were found to be approximately constantin HM and SM regions but not
in UM (Supp. Fig. 3.3c). The mean slope was -0.7941 in HM (estimated using ranks 20-60) and -
0.0553 in SM (ranks 80-200). The corresponding standard deviations were 0.308 and 0.0442,
respectively. To determine transition points between regions, we determined the point at which the
fitted curve deviated by a specified number of standard deviations from these means. Supp. Fig.
3.3d shows the transition from HM (higher rank) to UM (lower rank), defined as where the curve
deviated from the mean by more than 3 standard deviations. The spline fit, combined with root-
finding (uniroot function in R) gave 11.41 as the interpolated rank at which this occurs. This rank
corresponded to 63.6767 mutations/Mb in the spline fit (Supp. Fig. 3.Xa). Similarly, Supp. Fig.3.3e
shows the transition from SM to HM. The crossover point, at rank 73.90, is 6 standard deviations
below the SR mean, and corresponds to 11.4354 mutations/Mb.

To summarize, hypermutated samples are defined as those with mutation rates greater than
11.4354 mutations/Mb (74 samples). Those samples with lower mutation rates are termed non-
hypermutated (215 samples). Among the hypermutated samples, we detected a distinct group of
11 samples with mutation rates greater than 67.6767 mutations/Mb which were excluded from the
MutSigCV analysis. Supplementary figure S3.3e shows the resulting classification for the 100
most highly mutated samples, using the nomenclature of the analysis described herein.
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Figure S3.3: Determining Thresholds for Mutation Rate Categories. a) Sorted total mutation
rates from high (left) to low (right) labeled by three implied populations: Ultramutated (UM),
Hypermutated (HM), and Standard Mutation Rate (SM). In the manuscript, the first two categories were
combined to create the category hypermutated, and SM was called non-hypermutated. b) Third-order
spline fit shown in a selected range. True mutation rates are in blue and fitted rates in magenta. c)
First derivatives (slopes) in the HM and SM regions were approximately constant. The green
horizontal line indicates the mean slope in the HM region, magenta the mean slope in SM. d)
Transition from HM to UM region. Solid lines are as in panel c), while the green dotted line is 3
standard deviations below the HM mean. e) Transition from SM to HM region. Solid lines are as in
panel c), and the magenta dotted line is 6 standard deviations below the SM mean. f) Mutation rate
categories after application of thresholds.

$3.4 Description of mutation validation

The mRNA sequencing data were used to validate mutations in genes in our standard-mutator
significant gene list (S 3.5). We selected candidate mutations for validation by filtering the significant
genes by expression, selecting only genes with median RPKM greater than one. Next we limited
candidate mutations to coding regions. These 778 events in 18 genes were then compared against
MRNA-Seq SNP and indel calls made by extended-SNVMix2 and Trans-ABySS v1.4.6 respectively
(www.bcgsc.cal/platform/bioinfo/software). Of 712 events, 586 (82%) were verified; the remaining 66
events were among patients with no mRNA-Seq data. When we removed the three genes with the
lowest mutation rate (CASC351%, MUC6 49% and PTPRC 0), 542 out of 600 (90%) events were
verified.

Additionally, we performed validation of the somatic status of the genes we identified as subject to
statistically significantly recurrent mutations (in both the analysis of the standard mutator groups and
hypermutated groups of tumours). Validation was performed on DNA from both tumour and matched
germline samples using multiplexed PCR amplification using a microfluidic PCR platform (Fluidigm
Access Array) followed by sequencing of the PCR products on lllumina MiSeq instruments as
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performed earlier for the TCGA Urothelial Carcinoma study1. Mutations were only considered for
validation if there was adequate power based on the allele fraction of the candidate site in the discovery
data and coverage in the validation data. Analysis of sequencing data resulted in removal of two genes
initially considered to be novel significantly recurrently mutated genes; the gene PGM5 in hypermutated
tumours and CASC3 in the non-hypermutated tumours. Following exclusion of mutations of these two
genes, 95% of evaluable candidate mutations of the genes in the significant gene lists were validated as
somatic alterations.

1 Cancer Genome Atlas Research, N. Comprehensive molecular characterization of urothelial
bladder carcinoma. Nature 507, 315-322, doi:10.1038/nature 12965 (2014).

No RNA No RNA RNA Verification

data evidence evidence Rate

ERBB2 1 0 15 100.00%
RHOA 1 0 16 100.00%
SMAD2 0 0 11 100.00%
TP53 14 5 116 95.87%
CTNNB1 2 1 23 95.83%
ARID1A 7 8 102 92.73%
RNF43 9 4 51 92.73%
KRAS 4 2 22 91.67%
CDH1 3 3 24 88.89%
SMAD4 2 3 23 88.46%
PIK3CA 5 9 60 86.96%
APC 3 10 43 81.13%
BCOR 5 5 19 79.17%
RASA1 1 5 12 70.59%
EIF2C4 1 3 5 62.50%
CASC3 1 17 18 51.43%
MUC6 3 27 26 49.06%

PTPRC 4 24 0 0.00%
Total 66 126 586 82.30%
*Total 58 58 542 90.33%

*Excludes genes CASC3, MUC6, and PTPRC

Table S3.4a: Gene-specific mutation verification rates with mRNA-Seq data. Mutations are
those from the standard mutator gene list after filtering genes by median RPKM less than one.
Splice site events and events in the UTR are excluded.
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S3.5 The data file listing the MutSig significantly mutated genes can be found on the TCGA
Stomach Adenocarcinoma publication page at:
https://tcga-data.nci.nih.gov/docs/publications/stad 2014/.

S$3.6. Low-pass whole genomes sequencing methods

Library construction. Between 500 and 700 ng of each gDNA sample was sheared into fragments of
~250 bp, using a Covaris E220 ultrasonicator; fragments were converted to a pair-end lllumina
library using KAPA Bio kits with Caliper (PerkinElmer) robotic NGS Suite according to manufacturers’
protocols. All libraries were sequenced on HiSeq2000 using one sample per lane, with the paired-
end 2 x 51bp setup. Tumours and matching normal DNA samples were usually loaded on the same
flowcell. Average sequence coverage was ~6.19X, read quality was 38.04 and 92.31% of the reads
were mapped. Raw data were converted to the FASTQ format, and BWA alignment was used to
generate bam files.

Identification of copy number variants. To characterize somatic copy number alterations in the
tumour genome, we applied BIC-seq1, an algorithm we developed previously. Briefly, we first
counted the uniquely aligned reads in fixed-size, non-overlapping windows along the genome. Given
these bins with read counts for tumour and matched normal genomes, BIC-seq attempts to
iteratively combine neighbouring bins with similar copy numbers. Whether the two neighbouring bins
should be merged is based on Bayesian Information Criteria (BIC), a statistical criterion measuring
both the fit and complexity of a statistical model. Segmentation stops when no merging of windows
improves BIC, and the boundaries of the windows are reported as a final set of copy number
breakpoints. Segments with copy ratio differences smaller than 0.1 (log2 scale) between tumour and
normal genomes were merged in the post-processing step to avoid excessive refinement of altered
regions with high read counts.

Detection of structural rearrangements with BreakDancer and Meerkat. We used two
algorithms, BreakDancer® and Meerkat®, to detect structural variation. The first step in BreakDancer
requires a configuration file of each bam file for each tumour pair with the bam2cfg.pl perl module of
the program. The perl module BreakDancerMax.pl is then run on the configuration file to call
structural variants in the tumour and control files. The set of structural variants from each tumour
sample was compared to the set from its matched normal, to remove germline variants. Structural
variations were also detected by Meerkat, which requires at least two discordant read pairs
supporting each event and at least one read covering the breakpoint junction. Variants detected from
tumour genomes were filtered by the variants from all normal genomes to remove germ-line events
and were also removed if both breakpoints fell into simple repeats or satellite repeats. The final set
of variants fit one of these criteria: (i) the read identified to span the breakpoint junction hit the
predicted breakpoint region uniquely, according to a BLAT search, or (ii) the mate of the read
spanning the breakpoint junction was mapped near the predicted breakpoint.

Validation of rearrangement hits. A subset of all detected structural variants was cross-confirmed
by both Breakdancer and Meerkat. In Meerkat, we also sought a read that spanned the breakpoint,
to provide the precise location at which the break occurred. RNA-seq fusion data was used to
assess if a novel junction between two genes could be found. Finally, in a number of cases that were
detected by only one method and/or a split read was not found, we PCR-amplified the junction
fragment and subjected it to Sanger sequencing.

Pathogen detection: To detect bacteria and viruses and to examine the physical status of the
bacterial/viral genome, a custom pipeline PathWatch was used. As the first step, the pipeline
performed computational subtraction of sequences mapped previously to the human genome. Then
it used BWA aligner to map the remaining set of non-human sequences to the set of bacterial and
viral reference genomes obtained from the NCBI RefSeq database
(ftp://ftp.ncbi.nih.gov/refseq/release/microbial/ and ftp:/ftp.ncbi.nih.gov/refsea/releasel/viral/
respectively). Reads that aligned to the genomes of multiple species were filtered out.

The percentage of covered pathogen genome and count of pathogen sequencing reads normalized
by the length of the pathogen genome and total number of non-human reads in the sample were
calculated. To consider a given sample positive for the pathogen, we chose an empirical threshold of
1kb of pathogen genome to be covered.



https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
ftp://ftp.ncbi.nih.gov/refseq/release/microbial/
ftp://ftp.ncbi.nih.gov/refseq/release/viral/

wn -

Evaluation of putative viral integration: To assess possible virus integration into the host genome,
the pipeline used the advantage of paired-end (PE) sequencing technology and searched for the
clusters of discordant read pairs where one mate is aligned to the human genome and the second
mate mapped to the viral sequence. As an input, the original set of all PE reads, mapped and
unmapped to the human genome was used, and two subsets of reads were generated: ends
represented by human sequences and their unmapped mates. Then such unmapped reads were
aligned against the specific viral genome identified in the previous step.

Clusters of discordant read pairs were calculated. To determine the putative presence of a cluster,
we used an empirical cutoff of 3 discordant read pairs within the same integration region. To assess
the precise site of a candidate integration event at nucleotide resolution, the pipeline searched for
the chimeric viral-human reads. Soft-clipped reads, i.e. reads in which only a portion of a read had
been mapped to the human genome, were filtered from the original PE dataset and were aligned by
BLAT to the virus genome. As the pipeline operates in each step with only filtered subsets of reads,
it is efficient in terms of the required time and computational resources, keeping the same precision
as previously published methods.

Xi, R. et al. Copy number variation detection in whole-genome sequencing data using the

Bayesian information criterion. Proc Natl Acad Sci U S A 108, E1128-36 (2011).

Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural
variation. Nat Methods 6, 677-81 (2009).

Yang, L. et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell
153, 919-29 (2013).
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$3.7 The data file- In-frame rearrangement fusion list can be found on the TCGA Stomach
Adenocarcinoma publication page at https://tcga-data.nci.nih.gov/docs/publications/stad _2014/.

$3.8 The data file- low-pass structural rearrangements can be found on the TCGA Stomach
Adenocarcinoma publication page at https://tcga-data.nci.nih.gov/docs/publications/stad _2014/.
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S3.9. The center matrix displays individual mutations in patient samples, color coded by mutation type, for the significantly
mutated genes in the hypermutated tumours. The rate of mutations is shown at the top. The bar plot on the left shows the
percentage of tumours with at least one mutation in each gene. The bar plot on the right displays g-values for each
mutation. The panel below shows the spectrum of mutations in each tumour above.
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Figure S.3.10. Mutation types across four molecular subtypes
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S3.10. Mutation types across four molecular subtypes. Each bin shows the percentage of
a particular mutation type out of all mutation types in the context of three bases: 5' base,
mutated base, 3'base. There are 96 mutation types in total.
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mutated base, 3'base. There are 96 mutation types in total. 
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S4. DNA Methylation

S$4.1 Methods

Array-based DNA methylation assay

We wused two lllumina Infinium DNA methylation platforms (lllumina, San Diego, CA),
HumanMethylation27 (HM27) and HumanMethylation450 (HM450), to obtain DNA methylation profiles of
295 gastric adenocarcinoma samples and 27 adjacent non-malignant stomach tissue samples. Ten
control cell line technical replicates were also included in the assay to monitor technical variations, with
two on the HM27 platform and eight on the HM450 platform; 47 tumours and 25 adjacent non-malignant
samples were analyzed on the HM27 platform, and 248 tumours and 2 adjacent non-malignant samples
were analyzed on the HM450 platform. The HM27 array targets 27,578 CpG sites located in proximity to
the transcription start sites of 14,475 consensus coding sequencing (CCDS) in the NCBI Database
(Genome Build 36). The HM450 assay analyzes DNA methylation status of up to 482,421 CpG sites
throughout the genome. It covers 99% of RefSeq genes with multiple probes per gene and 96% of CpG
islands from the UCSC database and their flanking regions. The assay probe sequences and information
for each interrogated CpG site on both Infinium DNA methylation platforms are available from lllumina
(www.illumina.com).

The DNA methylation score for each locus is presented as a beta (B) value (8 = (M/(M+U)) in which M
and U indicate the mean methylated and unmethylated signal intensities for each locus, respectively. 3-
values range from zero to one, with scores of zero indicating no DNA methylation and scores of one
indicating complete DNA methylation. A detection P value accompanies each data point and compares
the signal intensity difference between the analytical probes and a set of negative control probes on the
array. Any data point with a corresponding P value greater than 0.05 is deemed not to be statistically
significantly different from background and is thus masked as “NA” in the Level 3 data packages as
described below. Further details on the Illumina Infinium DNA methylation assay technology have been
described previously'?.

Sample and data processing

We performed bisulfite conversion on 1 ug of genomic DNA from each sample using the EZ-96 DNA
Methylation Kit (Zymo Research, Irvine, CA) according to the manufacturer’s instructions. We assessed
the amount of bisulfite-converted DNA and completeness of bisulfite conversion using a panel of
MethyLight-based quality control (QC) reactions as previously described®. All the TCGA samples passed
our QC tests and entered the Infinium DNA methylation assay pipeline. Bisulfite-converted DNAs were
whole-genome-amplified (WGA) and enzymatically fragmented prior to hybridization to BeadChip arrays.
BeadArrays were scanned using the Illlumina iScan technology to produce IDAT files. Raw IDAT files for
each sample were processed with the R/Bioconductor package methylumi. TCGA DNA methylation data
packages were then generated using the EGC.tools R package which was developed internally and is
publicly available on GitHub (https://github.com/uscepigenomecenter/EGC.tools).

TCGA Data Packages

The data levels and the files contained in each data level package are described below and are present
on the TCGA Data Portal website (http://tcga-data.nci.nih.gov/tcga/). A DESCRIPTION file outlining the
methods used to generate the Level 1, 2 and 3 files is also provided in the AUX directory. Please note
that as continuing updates of genomic databases and data archive revisions frequently become
available, the data packages on TCGA Data Portal are updated accordingly.

HM27: Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system and as
mapped by the SDRF. These IDAT files can be directly processed by the R/Bioconductor package
methylumi. We provided a comma-separated value (CSV) disease-mapping file (STAD.mappings.csv) in
the AUX directory to facilitate this process. Level 2 data contain background-corrected methylated (M)
and unmethylated (U) summary intensities as extracted by the R/Bioconductor package methylumi. Non-
detection probabilities (P values) were computed as the minimum of the two values (one per allele) for
the empirical cumulative density function of the negative control probes in the appropriate colour channel.
Background correction was performed via normal-exponential deconvolution. Level 3 data contain B-
values for each interrogated locus with annotations for the HUGO Gene Nomenclature Committee
(HGNC) gene symbol, chromosome (UCSC hg19, Feb 2009), and CpG coordinate (UCSC hg19, Feb
2009). Probes having a SNP within 10bp of the interrogated CpG site or having a repeat element [as
defined by RepeatMasker and Tandem Repeat Finder Masks (UCSC hg19, Feb 2009) contained in the
BSgenome.Hsapiens.UCSC.hg19 R package] that covers 15 bp from the interrogated CpG site were



masked as “NA” across all samples. Furthermore, probes with a detection P value greater than 0.05 in a
given sample were masked as “NA” on that array. Probes that were mapped to multiple sites on hg19
were annotated as “NA” for chromosome and 0 for CpG coordinate.

HM450: Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system and as
mapped by the SDRF. These IDAT files can be directly processed by the R/Bioconductor package
methylumi. We provided a comma-separated value (CSV) disease-mapping file (STAD.mappings.csv) in
the AUX directory to facilitate this process. Level 2 data contain background-corrected methylated (M)
and unmethylated (U) summary intensities as extracted by the R/Bioconductor package methylumi. Non-
detection probabilities (P values) were computed as the minimum of the two values (one per allele) for
the empirical cumulative density function of the negative control probes in the appropriate color channel.
Background correction was performed via normal-exponential deconvolution. Multiple-batch archives had
the intensities in each of the two channels multiplicatively scaled to match a reference sample (sample
with R/G ratio of the normalization control probes closest to 1.0). Level 3 data contain B-value
calculations with annotations for HGNC gene symbol, chromosome (UCSC hg19, Feb 2009), and
genomic coordinate (UCSC hg19, Feb 2009) for each targeted CpG/CpH site on the array. Probes
having a common SNP (Minor Allele Frequency > 0.01, per dbSNP build 135 via the UCSC
snp135common track) within 10 bp of the interrogated CpG site or having a 15 bp from the interrogated
CpG site which overlaps with a repetitive element (as defined by RepeatMasker and Tandem Repeat
Finder Masks contained in the BSgenome.Hsapiens.UCSC.hg19 R package) were masked as “NA’
across all samples, and probes with a non-detection probability (P value) greater than 0.05 in a given
sample were masked as “NA” on that array. Probes that were mapped to multiple sites on hg19 were
annotated as “NA” for chromosome and 0 for CpG/CpH coordinate.

The following data archives were used for the analyses described in this manuscript.
jhu-usc.edu_STAD.HumanMethylation27.Level_3.1.2.0
jhu-usc.edu_STAD.HumanMethylation27.Level_3.2.2.0
jhu-usc.edu_STAD.HumanMethylation450.Level_3.1.6.0
jhu-usc.edu_STAD.HumanMethylation450.Level_3.2.6.0
jhu-usc.edu_STAD.HumanMethylation450.Level 3.3.6.0
jhu-usc.edu_STAD.HumanMethylation450.Level_3.4.6.0
jhu-usc.edu_STAD.HumanMethylation450.Level_3.5.6.0
jhu-usc.edu_STAD.HumanMethylation450.Level_3.6.6.0
jhu-usc.edu_STAD.HumanMethylation450.Level_3.7.6.0
jhu-usc.edu_STAD.HumanMethylation450.Level_3.8.6.0
jhu-usc.edu_STAD.HumanMethylation450.Level_3.9.6.0

HM27 and HM450 data merging

A total of 25,978 probes were shared between the HM27 and HM450 platforms. Among these, 2,597
probes were masked in the Level 3 data due to SNPs, repeats, and non-unique mapping to the genome
as described above (n=23,381 remaining). We observed batch- and platform-specific effects with the
technical replicates. To minimize systematic platform-specific effects (dye bias, background level, etc.),
we fitted a LOESS regression model between the two platforms using cell line control technical
replicates. We normalized the HM450 data against the HM27 data with this fitted model on M values,
stratified by the number of CpGs in the probe (CpG=1,2,3,4,5,6+). M value is the log, ratio of Methylated
(M) intensity and Unmethylated (U) intensity (=log,(M/U)) and better satisfies the linearity assumption®.
The M values were then transformed back to 3- values.

Unsupervised clustering analysis of DNA methylation data

We removed probes that showed high technical variances after the platform correction based on
standard deviation (>0.15) across technical replicates (n=23,322 remaining probes). We also removed
probes which had any “NA”-masked data points and probes that were designed for sequences on X and
Y chromosomes. Furthermore, to capture cancer-specific DNA hypermethylation events, we selected
3,732 CpG sites that are located in high CpG density regions (top 20% of the sites with the highest
observed/expected CpG ratio around their 3 kb regions) and are not highly methylated in adjacent non-
malignant stomach tissues (mean B-value <0.5). However, a clustering analysis can be strongly
confounded by the purity of tumour samples. To minimize the potential influence of variable levels of
tumour purity in our sample set on our clustering result, we dichotomized the data using a p-value of >0.3
as a threshold for positive DNA methylation. The dichotomization not only ameliorated the effect of
tumour sample purity on the clustering, but also removed a great portion of residual batch/platform
effects that are mostly reflected in small variations near the two ends of the range of B-values. We then



performed consensus clustering using 1,315 CpG sites that were methylated with this threshold in more
than 5% of the tumour samples. The optimal number of clusters was assessed based on 80% resampling
over 1,000 iterations of hierarchical clustering for K=2,3,4,5,6 using the binary distance metric for
clustering and Ward’s method for linkage as implemented in the R/Bioconductor ConsensusClusterPlus
package. The heatmap shown in Figure 2a was generated based on the original B-values to visualize
1,315 CpG sites used in the clustering. The CpG sites were arranged based on the order of unsupervised
hierarchal clustering of the dichotomous data using the binary distance metric and Ward’s linkage
method.

DNA hypermethylation frequency

We previously identified 12,862 CpG sites that were constitutively unmethylated in 12 different normal
tissue types as a part of the TCGA Pan-Cancer projects. We dichotomized the B-values in the tumours at
0.3. For each locus, tumours with a 3-value of 0.3 or greater were designated as methylated and tumours
with a B-value of lower than 0.3 were designated as unmethylated. We then calculated the percentage of
loci that were methylated among the loci investigated in each tumour. DNA hypermethylation frequencies
in 4,923 tumours consisting of 12 different tumour types were previously calculated®. The upper and
lower ends of the box correspond to the 25th and 75th quartiles, respectively. The line within the box
identifies the median. The whiskers above and below the box extend to at most 1.5 times the interquartile
range.

Identification of epigenetically silenced genes

We identified genes that were silenced by DNA methylation and made dichotomous epigenetic silencing
calls for each sample for the corresponding genes. We generated two sets of silencing calls
independently; one based on the HM450 DNA methylation data only (Data file S4.4) and the other based
on the HM27-HM450 merged DNA methylation data set (Data file S4.5).

We first removed DNA methylation probes overlapping with SNPs, repeats or designed for sequences on
X and Y chromosomes and non-CpG sites. The remaining probes were mapped against UCSC Genes
using the GenomicFeatures R/Bioconductor package. Probes that were located either in a promoter
region (defined as the 3 kb region spanning from 1,500 bp upstream to 1,500 bp downstream of the
transcription start sites) or in a gene body were identified. Level 3 RNA-seq RPKM data on 29,699 genes
were log, transformed [log, (RPKM+1)] and used to assess the expression levels associated with DNA
methylation changes. DNA methylation and gene expression data were merged by Entrez Gene IDs. For
the epigenetic silencing calls based on the HM450 data, a total of 220 tumours had both DNA
methylation and expression data and we examined ~21,000 genes for this analysis. For the epigenetic
silencing calls based on the HM27-HM450 merged data, we examined ~14,000 genes in 262 tumours.
We removed the CpG sites that were methylated in adjacent non-malignant stomach tissues (mean [3-
value >0.3). We then dichotomized the DNA methylation data using a B-value of >0.3 as a threshold for
positive DNA methylation, and further eliminated CpG sites methylated in fewer than 5% of the tumour
samples. For each probe/gene pair, we applied the following algorithm: 1) Organize the tumours as either
methylated (B =0.3) or unmethylated (B <0.3); 2) Compute the mean expression in the methylated and
unmethylated groups; 3) Compute the standard deviation of the expression in the unmethylated group.
We then selected probes for which the mean expression in the methylated group was lower than 1.28
standard deviations (bottom 10%) of the mean expression in the unmethylated group. Furthermore, we
selected from the remaining probes in which >80% of the tumour samples in the methylated group had
expression levels lower than the mean expression in the unmethylated group. We labeled each individual
tumour sample as epigenetically silenced for a specific probe/gene pair selected from above if: a) it
belonged to the methylated group and b) the expression of the corresponding gene was lower than the
mean of the unmethylated group of samples. If there were multiple probes associated with the same
gene, a sample identified as epigenetically silenced at more than half the probes for the corresponding
gene was also labeled as epigenetically silenced at the gene level. The complete list of 769 genes
(derived from the HM450 data) and 249 genes (derived from the HM27-HM450 merged data) identified
as epigenetically silenced are provided in Data file S4.4 and Data file S4.5, respectively.

CDKNZ2A (p16INK4) epigenetic silencing calls were made separately using the exon level RNA-seq data.
p16INK4 DNA methylation status was assessed in each sample based on the probe (cg13601799)
located in the p16INK4 promoter CpG island. Note that the DNA methylation level at this locus was
measured only in the HM450 platform, as the HM27 array does not contain a probe specific for this locus
within the p76/INK4 gene. p16INK4 expression was determined by the log,(RPKM+1) level of its first exon
(chr9:21974403-21975132). The epigenetic silencing calls for each sample were made manually by
evaluating a scatter plot showing an inverse association between DNA methylation and expression. We



incorporated the p16INK4 epigenetic silencing calls into the HM450 silencing call list as described above
(Data file S4.4).

Notably, a further analysis of the 769 epigenetically silenced genes revealed that nearly half of the
silencing events occurred specifically in the EBV-positive molecular subgroup (Figure S4.2). We
identified 526 genes that were significantly more frequently silenced (FDR-adjusted P <0.01, Fisher’s
exact test) in the EBV-positive subgroup compared with all the other groups (Table S4.3).

Statistics
Statistical analysis and data visualization were carried out using the R/Biocoductor software packages
(http://www.bioconductor.org). Cancer-specific DNA hypermethylation was assessed based on unpaired
analyses, since matched non-malignant tissues were available for fewer than 10% of the tumour
samples.
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Figure S4.2 Clustering and heatmap representation of dichotomous epigenetic silencing calls. We
identified 769 genes that were silenced by DNA methylation in at least 5% of the tumours. The epigenetic
silencing calls of each gene in 220 STAD tumour samples are indicated by using a black (yes) and gray
(no) color scheme. Genes are ordered based on a hierarchical clustering with Ward's method on the
Jaccard Distance, a distance measure that best suits binary data. CDKN2A and MLH1 DNA methylation
status of each tumour sample are also shown as bars above the heatmap. Samples are grouped
according to the four major molecular subtypes indicated as a vertical colour bar at the top.

S$4.3 Table- A list of genes significantly more frequently silenced by DNA methylation in EBV tumours
compared with non-EBV tumours can be found on the TCGA Stomach Adenocarcinoma publication page
at https://tcga-data.nci.nih.gov/docs/publications/stad_2014/.

S4.4 The data file- Epigenetic silencing calls based on HM450 data set can be found on the TCGA
Stomach Adenocarcinoma publication page at https://tcga-data.nci.nih.gov/docs/publications/stad_2014/.

S4.5 The data file- Epigenetic silencing calls based on HM27-HM450 merged data set can be found on

the TCGA Stomach Adenocarcinoma publication page at
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/.
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Figure S4.6

Frequency (%)

Promoter DNA Hypermethylation

Figure S4.6 DNA hypermethylation frequencies across 10 tumour types. Box and jitter plots
show DNA hypermethylation frequencies, calculated as the percentage of CpG sites methylated
among 12,862 constitutively unmethylated sites in normal tissues, for 10 different neoplastic
tissue types studied through TCGA (see Supplemental Methods S4.1). Tumour types/subtypes
are organized from left to right in descending order of median frequencies of DNA
hypermethylation.
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Supplement S5.1 - Messenger RNA library construction, sequencing and analysis

Two micrograms of total RNA samples were arrayed into a 96-well plate, and polyadenylated (PolyA+)
messenger RNA (mRNA) was purified using the 96-well MultiMACS mRNA isolation kit on the MultiMACS 96
separator (Miltenyi Biotec, Germany) with on-column DNasel-treatment according to the manufacturer's
instructions. The eluted polyA+ mRNA was ethanol- precipitated and resuspended in 10uL of DEPC
treated water with 1:20 SuperaselN (Life Technologies, USA). Double-stranded cDNA was synthesized
from the purified polyA+ RNA using the Superscript Double-Stranded cDNA Synthesis kit (Life
Technologies, USA) and random hexamer primers at a concentration of 5uM. The cDNA was quantified in a
96-well format using PicoGreen (Life Technologies, USA) and VICTOR3V spectrophotometry (PerkinElmer,
Inc. USA). The cDNA quality was checked on a random sampling using the High Sensitivity DNA chip Assay
(Agilent). The cDNA was fragmented by a Covaris E210 (Covaris, USA) ultrasonicator for 55 seconds, using
a Duty cycle of 20% and Intensity of 5. Plate-based libraries were prepared following the British Columbia
Cancer Agency, Genome Sciences Centre (BCGSC) paired-end (PE) protocol on a Biomek FX robot
(Beckman-Coulter, USA). Briefly, the cDNA was purified in 96-well format using Ampure XP SPRI beads,
and was subject to end-repair and phosphorylation by T4 and Klenow DNA polymerases, and T4
polynucleotide kinase respectively in a single reaction, followed by cleanup using Ampure XP SPRI beads
and 3’ A-tailing by Klenow fragment (3’ to 5 exo minus). After cleanup using Ampure XP SPRI beads,
Picogreen quantification was performed to determine the amount of lllumina PE adapters used in adapter
ligation reaction. The adapter-ligated products were purified using Ampure XP SPRI beads, then PCR-
amplified with Phusion DNA Polymerase (Thermo Fisher Scientific Inc. USA) using Illlumina’s PE primer
set, with cycle conditions of 98°C for 30sec followed by 10-15 cycles of 98°C for 10 sec, 65°C for 30 sec
and 72°C for 30 sec, and finally 72°C for 5min. The PCR products were purified using Ampure XP SPRI
beads, and checked with a Caliper LabChip GX for DNA samples using the High Sensitivity Assay
(PerkinElmer, Inc. USA). PCR products with a desired size range were purified using a 96-channel size
selection robot developed at the BCGSC, and the DNA quality was assessed and quantified using an Agilent
DNA 1000 series Il assay and Quant-iT dsDNA HS Assay Kit using Qubit fluorometer (Invitrogen), then
diluted to 8nM. The final concentration was verified by Quant-iT dsDNA HS Assay prior to lllumina
HiSeq2000 PE 75 base sequencing.

Alignment and coverage analysis of RNA-seq data

Using BWA (Burrows-Wheeler Aligner) version 0.5.7, we aligned chastity-passed reads (i.e. reads for
which the bases have a ratio of the highest of the four (base type) intensities to the sum of highest two of
20.6) to an extended human reference genome consisting of hg19/GRCh37 plus exon junction sequences
constructed from all known transcript models in RefSeq, EnsEMBL and UCSC genes1. We used default
BWA parameter settings but disabled Smith-Waterman alignment. After alignment, the reads that aligned
to exon junctions were repositioned in the genome as large-gapped alignments, using repositioning software
developed in-house. We removed adapter dimer sequences and soft-clipped reads that contained adapter
sequences. The unambiguously aligned, filtered reads were then analyzed by custom gene coverage
analysis software to calculate the coverage over the total collapsed exonic regions in each gene as
annotated in EnsEMBL (version 59), and RPKM values were calculated to represent the normalized
expression level of exons and genes.

References
1. Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S,

Marra M. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel
short-read sequencing. 2008. Biotechniques 45(1):81-94 [PMID:18611170]



Supplement S5.2 NMF mRNA expression clustering

For 262 mRNA-Seq expression datasets, we first removed genes expressed at or below a noise
threshold of <0.2 reads per kilobase (of gene model) per million mapped reads (RPKM) in at least 75% of
samples. We then checked for outliers and batch effects using our principal component (PC) analysis tool
BLISS [Batch anaLyslS Suite; http://www.bcgsc.cal/platform/bioinfo/software/bliss]. We removed two
samples that were outliers in PC2 (TCGA-D7-6527, TCGA-BR-6710) in which PGC was over-
expressed. The PGC gene encodes Progastricsin, a major component of the gastric mucosa. PC1 had a
significant sample separation that was largely driven by high expression of mitochondrial (MT) genes. While
this may reflect gastric cancer (GC) biology, we excluded MT genes from further analyses.

We created the NMF input matrix for 260 tumour samples using the top 25% most-variant genes, by
ranking expressed genes having a mean RPKM of at least 10 by the coefficient of variation. We then
removed six additional samples by iteratively creating an input matrix and removing BLI/SS outliers, until no
further outliers were identified. To ensure that NMF solutions improved through this filtering process, at each
iteration we ran NMF and checked for a cophenetic score above 0.98, and below 0.7 for the randomized
data. The final NMF run used 254 tumour samples and 1,577 genes. Rank survey profiles for
cophenetic and silhouette width, and consensus membership heatmaps (data not shown), suggested
a four-cluster solution.

For mRNA-Seq data, we generated unsupervised consensus clustering results with NMF v0.5.02 in R
v2.12.0, with the default Brunet algorithm, and 30 iterations for the rank survey and clustering runs. With
the NMF output for mMRNA-Seq data, we generated abundance heatmaps from the clustering input matrix as
follows. The top differentially expressed genes in each cluster were used to filter the RNA-seq RPKM
matrix for visualization. We reordered columns in each matrix into the NMF output order. Finally, we used
Cluster v3.0 (bonsai.hgc.jp/~mdehoon/software/cluster) to log-transform and median-center each row,
then to reorder rows using hierarchical clustering with Pearson correlation distance metric and average
linkage.
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of log-transformed, median-centered, RPKM data. In the profile below the heatmap, high silhouette widths show typical cluster members, while low silhouette
widths show atypical group members.
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Supplementary Figure S5.3: Unsupervised NMF consensus clustering of mRNA-Seq data.  The heatmap shows normalized abundance for 254 tumour and 29 adjacent non-malignant tissue samples, for 40 discriminatory genes (i.e. top 10 differentially expressed genes in each cluster). Tumour samples (columns) are ordered based on a four-group NMF solution; adjacent non-malignant tissue samples are shown for contrast. Genes (rows) are ordered by hierarchical clustering of log-transformed, median-centered, RPKM data. In the profile below the heatmap, high silhouette widths show typical cluster members, while low silhouette widths show atypical group members. 
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Supplement S5.4 Gene fusion detection

RNA-seq libraries were assembled with ABySS (version 1.3.2 —
http://www.bcgsc.ca/platform/bioinfo/software/abyss/releases) using k-mer values of 26 to 50 (for 50bp
reads) and 38 to 74 (for 75bp reads) as previously described’. The contigs from assemblies were filtered,
merged, aligned and post-processed using the Trans-ABySS pipeline (version

1.4.6 - http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss/releases) with parameters: -G hg19 g
(gene model, g: TCGA.hg19.gaf.v3_0.txt); -f = 0.95 (minimum fusions fraction); -r -T
/reference/genomes/human/hg19.fa (realign against hg19); -l = 500 (maximum subsequence length); -U
(only count unique spanning reads and breakpoint pairs). Contigs were aligned against the reference
genome using GMAP? with the following parameters: -d hg19 (genome database = hg19); -x 10
(threshold for the amount of unaligned sequence that is required before searching for the remaining
sequence). Potential fusion candidates were identified as contigs that could not be mapped to a single
unique location for at least 95% of the sequence. Such contig alignments with the following characteristics
were considered candidates: both alignments had percentage of identity of at least 98%, one of the
alignments did not reside entirely within its partner in terms of genomic coordinates, the alignments did not
overlap by more than 5% in terms of contig coordinates, the alignments did not overlap in terms of genome
coordinates, and the total coverage of the two alignments, in terms of contig sequence, was at least 90%.
To further filter the candidate events from contig alignments, we used alignment of sequence reads to both
contigs and the genome. Reads were aligned to the contigs using BWA 0.6.2-r126 and the parameter =
bwasw (BWA-SW for long queries). Reads were aligned to the reference genome with exon-exon junctions
using BWA 0.5.7, and reads that mapped across exon junctions were repositioned to their original genomic
positions. Candidate fusion cases were then filtered by requiring at least two reads spanning the contig
breakpoint with at least 4 flanking base pairs on either side, and at least two read pairs flanking the genomic
breakpoint and pointing towards each other.

Partial and internal tandem duplications (PTDs and ITDs) were also reported from the RNA-seq data
using the Trans-ABySS pipeline.

Candidate gene fusions, partial and internal tandem duplications identified from the RNA-seq data were
compared with those of low-pass whole genome sequencing (WGS). Orthogonally verified structural
variants were determined by enriching as follows:

1) All events in which the breakpoint in the RNA-seq data lay within 50,000 bp of the WGS genomic
breakpoint coordinates, relative to hg19, were kept.

2) Those events identified in step 1 using the same gene symbol (or NA for Not Annotated) were kept.

3) Those events in step 2 that represent the same structural variant type (i.e. duplication, deletion,
inversion, translocation) were kept.

Briefly, there were 95 tumours assayed with both low-pass WGS and RNA-seq, 44 of which have at least
one fusion event detected by both data types. In total, 170 events were identified by this approach (Table
S5.4) including the CLDN18-ARHGAP gene fusions (Table S5.6). For each of the 170 events, we
surveyed all STAD RNA-seq datasets to determine the frequency in this cohort.
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Supplementary Data File S5.4a The data file- Overlap list of RNA and whole genome sequencing
events can be found on the TCGA Stomach Adenocarcinoma publication page at https://tcga-
data.nci.nih.gov/docs/publications/stad _2014/.
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Figure S5.5: RPKM expression of MET in samples with and without exon 2 (A) or exon 18 and/or 19 (B) skipping in MET. The color scale shows
logo copy number (cn). Normal samples are in gray and have no copy number information. 82 samples have evidence for skipped exon 2, 36

for skipped exon 19 and 22 for skipped exons 18 and 19. MET exon 19 harbours the tyrosine protein kinase domain (green).



Supplementary Table $5.6 —-CLDN18-ARHGAP [26/6] gene fusions identified in low-pass whole
genome sequence and/or RNA sequence data

[») Breakpoints (WGS) Breakpoints (RNA-Seq) 5' gene 3" gene Frame
TCGA-BR-8384-01A No WGS sample 3:137749947|5:142393645 CLDN18 ARHGAP26 IN
TCGA-BR-8284-01A No WGS sample 3:137749947|5:142393645 CLDN18 ARHGAP26 IN
TCGA-BR-6453-01A No WGS sample 3:137749947|5:142393645 CLDN18 ARHGAP26 IN
TCGA-D7-8579-01A No WGS sample 3:137749947|5:142393645 CLDN18 ARHGAP26 IN
TCGA-D7-8576-01A No WGS sample 3:137749947|5:142393645 CLDN18 ARHGAP26 IN
TCGA-CG-4469-01A  3:137750512[5:142377782  3:137749947|5:142393645 CLDN18 ARHGAP26 IN
TCGA-CG-4462-01A No WGS sample 3:137749949|5:142393645 CLDN18 ARHGAP26 IN
TCGA-BR-A41U-01A No WGS sample 3:137749949|5:142393647 CLDN18 ARHGAP26 IN
TCGA-BR-8367-01A No WGS sample 3:137749953|5:142393653 CLDN18 ARHGAP26 IN
TCGA-BR-6852-01A No WGS sample 3:137749947|5:142393645 CLDN18 ARHGAP26  NA?
TCGA-B7-5816-01A  3:137750740(5:142292613 3:137749947|5:142292764 CLDN18 ARHGAP26 IN
TCGA-B7-5816-01A No WGS sample 3:137750565|5:142292834 ARHGAP26 CLDN18 ouT®
TCGA-D7-A4Z0-01A No WGS sample 3:137749947|X:11272827 CLDN18 ARHGAP6 IN
TCGA-BR-8588-01A No WGS sample 3:137749947|X:11272827 CLDN18 ARHGAP6 IN

* No assembled contig. A probe sequence derived from the fusion junction was aligned to sequence
reads and 2 reads identified.

$ Reciprocal fusion product
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$5.7- Differentially expressed genes. We used SAMseq (samr v2.0, R 3.0.2) two-class unpaired
analyses with an FDR threshold of 0.05 to identify genes that were differentially expressed. For each run
on a pair of sample groups, we first reduced the number of genes by removing those with median less
than 5 RPKM in both groups, and those for which the Wilcoxon BH adjusted P-value between the two
groups was greater than 0.05. This subset of genes was submitted to SAMseq. Each run generated a pair
of files: genes ‘up’ and ‘down’. We then ranked the genes by a median-based fold change, and generated
a figure showing up to 10 of the largest fold changes in each direction.

S$5.7a The data file- Differentially expressed genes of multiple subtype combinations can be found on the
TCGA Stomach Adenocarcinoma publication page at
https://tcga-data.nci.nih.gov/docs/publications/stad 2014/.

Figure S5.8. Genes that were differentially abundant between the four molecular subtypes. Refer to
pages 56-57.

$5.9 The data file- Top 20 least variable genes by coefficient of variation can be found on the TCGA
Stomach Adenocarcinoma publication page at https://tcga-data.nci.nih.gov/docs/publications/stad 2014/.
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S5.8 figure- Differentially expressed genes
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Supplementary Figure S5.8. Genes that were differentially abundant between the four molecular subtypes. a) Tumours in one subtype versus all
other tumours. b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based log10 fold change. Right: distributions
of RPKM abundance, log10 scale, with black vertical lines showing medians. Up to 10 of the largest positive and negative fold changes satisfying
FDR = 0.05 are shown.
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Supplementary Figure  S5.8. Genes that were  differentially abundant  between  the four  molecular subtypes. a)  Tumours in one subtype versus all 
other tumours. b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based log10 fold change. Right: distributions 
of RPKM abundance, log10  scale, with black vertical  lines showing medians. Up to 10 of the largest  positive and negative  fold changes  satisfying 
FDR ≤ 0.05 are shown. 
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Supplementary Figure S5.8. Genes that were differentially abundant between the four molecular subtypes. a) Tumours in one subtype versus all
other tumours. b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based log10 fold change. Right: distributions
of RPKM abundance, log10 scale, with black vertical lines showing medians. Up to 10 of the largest positive and negative fold changes satisfying

FDR < 0.05 are shown.
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Supplementary Figure  S5.8. Genes that were  differentially abundant  between  the four  molecular subtypes. a)  Tumours in one subtype versus all 
other tumours. b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based log10 fold change. Right: distributions 
of RPKM abundance, log10  scale, with black vertical  lines showing medians. Up to 10 of the largest  positive and negative  fold changes  satisfying 
FDR ≤ 0.05 are shown. 
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Supplement S$6.1 - miRNA library construction, sequencing and analysis

Two micrograms of total RNA per tumour sample was arrayed into 96-well plates, with controls as
described below. RNA entering library construction was required to have at least a quality (RNA Integrity
Number) >7.0 on the BCR submission documentation. Total RNA was mixed with oligo(dT) MicroBeads
and loaded into a 96-well MACS column, which was then placed on a MultiMACS separator (Miltenyi
Biotec, Germany). The separator's strong magnetic field allows beads to be captured during washes.
From the flow-through after poly(A) selection for messenger RNA ftranscripts, small RNAs, including
microRNAs (miRNA), were recovered by ethanol precipitation. Flow-through RNA quality was checked for a
subset of 12 samples using an Agilent Bioanalyzer RNA Nano chip. miRNA-seq libraries were constructed
using a plate-based protocol developed at the British Columbia Genome Sciences Centre (BCGSC).
Negative controls were added at three stages: elution buffer was added to one well when the total RNA
was loaded onto the plate, water to another well just before ligating the 3’ adapter, and PCR reagents to
a third well before PCR. A 3’ adapter was I|gated using a truncated T4 RNA ligase2 (NEB Canada, cat.
no. M0242L) with an incubation of 1 hour at 22 °C. This adapter is an adenylated, single-strand DNA with
the sequence 5/5rApp/ ATCTCGTATGCCGTCTTCTGCTTGT /3ddC/, which selectively ligates miRNAs.
An RNA 5’ adapter was then added, using a T4 RNA ligase (Ambion USA, cat. no. AM2141) and ATP, and
was incubated at 37°C for 1 hour. The sequence of the single strand RNA adapter is 5'-
GUUCAGAGUUCUACAGUCCGACGAUCUGGUCAA-3'.

When ligation was complete, first-strand cDNA was synthesized using Superscript |l Reverse
Transcriptase (Invitrogen, cat. no. 18064 014) and RT primer (5-CAAGCAGAAGACGGCATACGAGAT-
3’). This cDNA was the template for the final library PCR, into which we introduced index sequences to
enable libraries to be identified from a sequenced pool that contains multiple libraries. Briefly, a PCR
reagent mix was made with the 3° PCR primer (5-CAAGCAGAAGACGGCATACGAGAT-3’), Phusion Hot
Start High Fidelity DNA polymerase (NEB Canada, cat. no. F-540L), buffer, dNTPs and DMSO. The mix
was distributed evenly into a new 96-well plate. A Biomek FX robot (Beckman Coulter, USA) was used
to transfer the PCR template (first-strand cDNA) and indexed 5 PCR primers into the reagent mix plate.
Each indexed 5° PCR primer, (5'-AATGATACGGCGACCACCGACAGNNNNNNGTTCAGAGTTCTACAGTC
CGA-3’), contained a unique six- nucleotide ‘index’ (shown here as N'’s), and was added to each well of the
96-well PCR reagent plate. PCR thermocycling conditions were 98°C for 30 sec, foIIowed by 15 cycles of
98°C for 15 sec, 62°C for 30 sec and 72°C for 15 sec, and finally a 5 min incubation at 72°C.

Quality was checked across the whole plate using a Caliper LabChip GX DNA chip (Perkin Elmer). PCR
products were pooled, then size-selected to remove larger cDNA fragments and smaller adapter
contaminants, using an in-house 96-channel automated size-selection robot. After size-selection, each
pool was ethanol-precipitated, quality-checked using an Agilent Bioanalyzer DNA1000 chip and quantified
using a Qubit fluorometer (Invitrogen, cat. no. Q32854). Each pool was then diluted to a target
concentration for cluster generation and was loaded into a single lane of an lllumina GAllx or HiSeq 2000
flow cell. Clusters were generated, and lanes were sequenced with a 31 bp main read for the insert and a

7 bp read for the index.

Preprocessing, alignment and annotation of miRNA

Briefly, the sequence data were separated into individual samples based on the index read sequences, and
the reads underwent an initial QC assessment. Adapter sequence was then trimmed off, and the
trimmed reads for each sample were aligned to the NCBI GRCh37-lite reference genome. Below we
describe these steps in more detail.

Routine QC assessed a subset of raw sequences from each pooled lane for the abundance of reads from
each indexed sample in the pool, the proportion of reads that possibly originated from adapter dimers (i.e.
a 5’ adapter joined to a 3’ adapter with no intervening biological sequence) and for the proportion of reads
that map to human miRNAs. Sequencmg error was estimated by a method originally developed for Serial
Analysis of Gene ExpreSS|on



Libraries that passed this QC stage were preprocessed for alignment. While the size-selected miRNAs
varied somewhat in length, typically they were ~21 bp long, and so were shorter than the 31 bp read
length. Given this difference, each read sequence extended some distance into the 3' sequencing adapter.
Because this non-biological sequence could interfere with aligning the read to the reference genome, 3’
adapter sequence was identified and removed (trimmed) from a read. The adapter-trimming algorithm
identified as long an adapter sequence as possible, allowing a number of mismatches that depended on
the adapter length found. A typical sequencing run yielded several million reads; using only the first (5’) 15
bases of the 3’ adapter in trimming made processing efficient, while minimizing the chance that a miRNA
read would match the adapter sequence.

The algorithm first determined whether a read sequence should be discarded as an adapter dimer by
checking whether the 3’ adapter sequence occurred at the start of the read. For reads passing this stage,
the algorithm then searched for an exact 15 bp match anywhere within the read sequence. If a match was
not found, the algorithm then started the search from the 3' end, allowing up to 2 mismatches. If the full 15
bp was not found, decreasing lengths of adapter were checked, down to the first 8 bases, allowing one
mismatch. If a match was still not found, from 7 bases down to 1 base was checked, with an exact
match required. Finally, the algorithm trimmed 1 base off the 3’ end of a read if the sequence matched the
first base of the adapter. This was based on two considerations; First, it was preferable to get a perfect
alignment than an alignment that had a potential one-base mismatch. Second, if only 1 base of adapter was
found in the read sequence, the read was likely too long to be from a miRNA and the effect of the trimming
on its alignment would not affect this sample’s overall miRNA profiling result.

After each read was processed, a summary report was generated containing the number of reads at each
read length. Because the shortest mature miRNA in miRBase v16 is 15 bp, any trimmed read that was
shorter than 15 bp was discarded; remaining reads were submitted for alignment to the reference genome.

Burrows-Wheeler alignment(s)3 for each read were checked with a series of three filters. A read with more
than 3 alignments was discarded as ambiguous. For TCGA quantification reports, only perfect alignments
with no mismatches were used. Based on comparing expression profiles of test libraries (data not shown),
reads that failed the lllumina base-calling chastity filter (The chastity of a base call is the ratio of the
intensity of the greatest signal divided by the sum of the two greatest signals) were retained, while reads
that have soft-clipped CIGAR strings (a series of operation lengths plus the operations that store sequence
alignment information) were discarded.

For reads retained after filtering, each coordinate for each read alignment was annotated using the
reference databases (Table S6.1), using a requirement of a minimum 3 bp overlap between the alignment
and an annotation. In annotating reads, we addressed two potential issues. First, a single read
alignment could overlap feature annotations of different types; second, a read could have up to three
alignment locations, and each alignment location could overlap a different type of feature
annotation. By considering heuristically-determined priorities (Table S6.1), we resolved the first issue
by giving each alignment a single annotation. We resolved the second by collapsing multiple
annotations to a single annotation, as follows:

If a read had more than one alignment location, and the annotations for these were different, we used the
priorities from Table S6.1 to assign a single annotation to the read, as long as only one alignment was to a
miRNA. When there are multiple alignments to different miRNAs, the read was flagged as cross-
mapped1, and all of its miRNA annotations were preserved, while all of its non-miRNA annotations were
discarded. This ensured that all annotation information about ambiguously mapped miRNAs was retained,
and allowed annotation ambiguity to be addressed in downstream analyses. Note that



we considered miRNAs to be cross-mapped only if they mapped to different miRNAs, not to
functionally identical miRNAs that are expressed from different locations in the genome. Such cases are
indicated by miRNA miRBase names, which can have up to 4 separate sections separated by "-", e.g. hsa-
mir-26a-1. A difference in the final (e.g. ‘*-1’) section denotes functionally equivalent miRNAs
expressed from different regions of the genome, and we considered only the first 3 sections (e.g. ‘hsa-mir-
26a’) when comparing names. As long as a read mapped to multiple miRNAs for which the first 3 sections
of the name were identical (e.g. hsa-mir-26a-1 and hsa-mir-26a-2), the read was treated as if it mapped to

only one miRNA, and was not flagged as cross-mapped.

From the profiling results for a tumour type, for a minimum of approximately 100 samples, we identified the
depth of sequencing required to detect the miRNAs that were expressed in a sample by considering a
graph of the number of miRNAs detected in a sample as a function of the number of reads aligned to
miRNAs. For the current work, a library from a sequenced pool was required to have at least 1,000,000
reads mapped to miRBase annotations. For any sequencing run that failed to meet this threshold, we
sequenced the sample again to achieve at least the minimum number of miRNA-aligned reads.

Finally, for each sample, the reads that corresponded to particular miRNAs were summed and normalized to
a million miRNA-aligned reads to generate the quantification files that were submitted to the DCC.
Quantification files included information on variable 5’ and 3’ read alignment locations, which can reflect
isoforms, adapter trimming and RNA degradation.

Table $6.2. Annotation priorities that are used to resolve multiple database matches for a single
alignment location and multiple alignment locations for a read.

Priority | Annotation type Database

1 mature strand miRBase v16
2 star strand

3 precursor miRNA

4 stemloop, from 1 to 6 bases outside the mature strand,

between the mature and star strands

"unannotated", any region other than the mature strand in

5 miRNAs where no star strand is annotated

6 snoRNA UCSC small RNAs,
RepeatMasker

7 tRNA

8 rRNA




9 snRNA

10 scRNA

11 srpRNA

12 Other RNA repeats

13 coding exons with zero annotated CDS region length UCSC knownGenes
14 3'UTR

15 5'UTR

16 coding exon

17 intron

18 LINE UCSC RepeatMasker
19 SINE

20 LTR

21 Satellite

22 RepeatMasker DNA

23 RepeatMasker Low complexity

24 RepeatMasker Simple Repeat

25 RepeatMasker Other

26 RepeatMasker Unknown
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Supplement $6.3. NMF expression clustering

For miRNA-seq data, read counts for 295 tumour samples were normalized to RPM, i.e. to reads per million
reads aligned to miRBase 5p and 3p strands. Strands corresponding to miRNAs that had been removed
from v19 miRBase (miRNA.dead) were eliminated from the data matrix. 5p and 3p strands were ranked by
RPM variance across the samples, and the most variant 25% (304 MIMATSs) were retained.

We generated unsupervised consensus-clustering results with NMF v0.5.06 in R v2.12.0, with the default
Brunet algorithm, and 200 iterations for the rank survey and clustering runs. Given NMF outputs for miRNA-
Seq data, we generated abundance heatmaps from the clustering input matrix as follows. The top
differentially expressed miRNAs in each cluster were used to filter the miRNA-seq RPM matrix for
visualization. We reordered columns in the matrix into the NMF output order. Finally, we used Cluster v3.0
(bonsai.hgc.jp/~mdehoon/software/cluster) to log-transform and median-center each row, then to reorder
rows using hierarchical clustering with Pearson correlation distance metric and average linkage.


shethm2
Typewritten Text


Figure S6.4: Unsupervised NMF consensus clustering of miRNA-Seq data
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Supplementary Figure Legend S6.4: Unsupervised NMF consensus clustering of miRNA-Seq data. The heatmap shows normalized abundance for 295 tumour
and 33 adjacent non-malignant samples, for 40 discriminatory 5p or 3p strands (i.e. top differentially expressed miRNAs in each cluster). Tumour samples
(columns) were ordered based on a five-group NMF solution. miRNAs (rows) were ordered by hierarchical clustering of log-transformed, median-centered,
RPM data.
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Supplementary Figure Legend S6.4: Unsupervised NMF consensus clustering of miRNA-Seq data. The heatmap shows normalized abundance for 295 tumour 
and 33 adjacent non-malignant samples, for 40 discriminatory 5p or 3p strands (i.e. top differentially expressed miRNAs in each cluster). Tumour samples 
(columns) were ordered based on a five-group NMF solution. miRNAs (rows) were ordered by hierarchical clustering of log-transformed, median-centered, 
RPM data. 
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Supplement S6.5. Differentially expressed miRs.

We used SAMseq (samr v2.0, R 3.0.2) two-class unpaired analyses with an FDR threshold of 0.05 to
identify miRs that were differentially expressed. Each run generated a pair of files: miRs ‘up’ and ‘down’.
We filtered each file by removing miRs with median expression less than 50 RPM in both of the input
sample groups, and miRs for which the Wilcoxon BH adjusted P-value was greater than 0.05; then ranked
the filtered results by a median-based fold change, and generated a figure showing up to 10 of the largest
fold changes in each direction.

Supplementrary Data File S6.7 The data file Differentially expressed miRs can be found on the TCGA
Stomach Adenocarcinoma publication page at https://tcga-data.nci.nih.gov/docs/publications/stad_2014/.
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Figure S6.6a. miRs that are differentially abundant between the four molecular subtypes
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Supplementary Figure S6.6. miRs that are differentially abundant between the four molecular subtypes. a) Tumours in one subtype versus all other tumours.
b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based fold change, linear scale. Right: distributions of RPM abundance,
log10 scale, with black vertical lines showing medians. Up to 10 of the largest positive and negative fold changes satisfying FDR < 0.05 are shown.
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Supplementary Figure S6.6. miRs that are differentially abundant between the four molecular subtypes. a) Tumours in one subtype versus all other tumours. 
b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based fold change, linear scale. Right: distributions of RPM abundance, 
log10 scale, with black vertical lines showing medians. Up to 10 of the largest positive and negative fold changes satisfying FDR ≤ 0.05 are shown. 
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Supplementary Figure S6.6. miRs that are differentially abundant between the four molecular subtypes. a) Tumours in one subtype versus all other tumours.

b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based fold change, linear scale. Right: distributions of RPM abundance,

log10 scale, with black vertical lines showing medians. Up to 10 of the largest positive and negative fold changes satisfying FDR < 0.05 are shown.
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Supplementary Figure S6.6. miRs that are differentially abundant between the four molecular subtypes. a) Tumours in one subtype versus all other tumours. 
b) Each tumour subtype versus 29 adjacent non-malignant tissue samples. Left: median-based fold change, linear scale. Right: distributions of RPM abundance, 
log10 scale, with black vertical lines showing medians. Up to 10 of the largest positive and negative fold changes satisfying FDR ≤ 0.05 are shown. 
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S$7.1 REVERSE PHASE PROTEIN ARRAY (RPPA)

Methods.

Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 nmol/L Hepes (pH 7.4), 150 nmol/L
NaCl, 1.5 nmol/L MgCI2, 1 mmol/L EGTA, 100 nmol/L NaF, 10 nmol/L NaPPi, 10% glycerol, 1 nmol/L
phenylmethylsulfonyl fluoride, 1 nmo/L Na3VO4 and aprotinin 10 Ag/mL) from human tumours and RPPA
was performed as described prewously Lysis buffer was used to lyse frozen tumours by Precellys
homogenization. Tumour lysates were adjusted to 1 pg/uL concentration as assessed by bicinchoninic acid
assay (BCA) and boiled with 1% SDS. Tumour lysates were manually diluted in fivefold serial dilutions with
lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-
coated slides (Grace Bio-Labs). Slides were probed with 191 validated primary antibodies (see table below)
followed by corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-
Goat IgG). Signal was captured using a DakoCytomation catalyzed system and DAB colorimetric reaction.
Slides were scanned in CanoScan 9000F. Spot intensities were analyzed and quantified using ArrayPro
(http://www.mediacy.com/index. aspx’7page ArrayPro), to generate spot signal intensities (Level 1 data).
The software SuperCurveGUI , available at http://bicinformatics.mdanderson.org/Software/supercurve/)
was used to estimate the EC50 values of the proteins in each dilution series (in log2 scale). Briefly, a fitted
curve ("supercurve") was plotted with the signal intensities on the Y-axis and the relative log2 concentratlon
of each protein on the X-axis using the non-parametric, monotone increasing B-spline model’. During the
process, the raw spot intensity data were adjusted to correct spatial bias before model fitting. A QC metric®
was returned for each slide to help determine the quality of the slide: if the score was less than 0.8 on a 0-1
scale, the slide was omitted. In most cases, the staining was repeated to obtain a high quality score. If more
than one slide was stained with an antibody, the slide with the highest QC score was used for analysis
(Level 2 data). Protein measurements were corrected for loading as described®® usmg median-centering
across antibodies (level 3 data). In total, 191 antibodies and 255 samples were used (255 of which were
represented in the extended sample set) and 224 of which were represented in the core sample set in
Figure 1). Final selection of antibodies was also driven by the avallablhty of high quality antibodies that
consistently passed a strict validation process as previously described’. These antibodies were assessed
for specificity, quantification and sensitivity (dynamic range) in their application for protein extracts from
cultured cells or tumour tissue. Antibodies were labeled as validated or used with caution based on the
degree of validation by criteria previously described’.

Raw data (level 1), SuperCurve nonparameteric model fitting on a single array (level 2), and loading
corrected data (level 3) were deposited at the TCGA Data Coordinating Center (DCC).

Unsupervised hierarchical clustering analysis

We used ConsensusClusterPlus package |n R v2.13.2 to identify robust subtypes of gastric
adenocarcinoma based on protein expressmn The consensus clusters were obtained from 1,000
resampling iterations of the hierarchical clustering, by randomly selecting a fraction of the samples and of
the highly variable protein features (standard deviation > 0.3).

Unsupervised hierarchical clustering analysis revealed three robust RPPA clusters (Figure S7-1). These
three RPPA subtypes were significantly correlated with histology (Pearson’s chi-squared test, P=0.002) as
well as with the subtypes/clusters defined by other genomic data including DNA methylat|on clusters
(P=0.006), MHL1 hg/permethylanon (P=0.006), MSI (0.001), microRNA clusters (P=3.9 x10" ) and mRNA
clusters (P=7.4x10"). RPPA cluster 1 (reactive) were associated with the diffuse subtype and expressed
high levels of CAV1 MYH11, and RICTOR, likely reflecting activation of stromal cells in the tumour
microenvironment, and showed strong concordance with mRNA cluster 1 and microRNA cluster 4. Cluster 2
(invasive) was associated with low expression of CTNNB1 and CDH1 that play key roles in cell adhesion,
suggesting that tumours in cluster 2 might have increased potential of invasion and metastasis (i.e., an EMT
phenotype). Cluster 3 (proliferative) was characterized by high expression of proteins involved in cell
proliferation such as PCNA, CCNB1, TIGAR, MTOR, and FOXM1.

Supervised analysis

Supervised analysis of the RPPA profiing data identified 45 protein features that were significantly
associated (Student’s t-test, P < 0.001) with molecular subtypes of gastric cancer (Figure S7.2). The EBV
subtype had elevated expression of CASP7, PCNA, BAX, SYK, and LCK while the MSI subtype had elevated
expression of CLDN7, VHL, and CCNB1. Likewise, expression of KIT, MYC, AKT, and PRKCA was highly
elevated in the GS subtype. Phosphorylation of EGFR (py1068) was elevated in the CIN subtype,


http://bioinformatics.mdanderson.org/Software/supercurve/

consistent with higher amplification of EGFR in the CIN subtype. Expression of p53, suggestive of increased
levels of DNA damage and the presence of TP53 mutation, was also highly elevated in the CIN subtype.
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S§7.4 The data file- List of antibodies used for sample profiling by RPPA can be found on the TCGA
Stomach Adenocarcinoma publication page at https://tcga-data.nci.nih.gov/docs/publications/stad 2014/.
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Supplement S8: Batch effects analysis for TCGA gastric cancer data sets

S$8.1 Supplemental Methods:

We used hierarchical clustering and Principal Components Analysis (PCA) to assess batch effects in the
gastric cancer data sets. Four different data sets were analyzed: miRNA sequencing (lllumina HiSeq),
DNA methylation (Infinium HM450 microarray), mRNA sequencing (lllumina HiSeq), and protein
expression (Reverse Phase Protein Array (RPPA)). All of the data sets were at TCGA level 3, since that’s
the level on which most of the analyses in the paper are based. We assessed batch effects with respect
to two variables; batch ID and Tissue Source Site (TSS). Detailed results and batch effects analysis of
other TCGA data sets can be found at: http://bioinformatics.mdanderson.org/tcgabatcheffects

For hierarchical clustering, we used the average linkage algorithm with 1 minus the Pearson correlation
coefficient as the dissimilarity measure, We clustered the samples and then annotated them with colored
bars at the bottom. Each color corresponded to a batch ID or a TSS. For PCA, we plotted the first four
principal components, but only plots of the first two components are shown here. To make it easier to
assess batch effects, we enhanced the traditional PCA plot with centroids. Points representing samples
with the same batch ID (or TSS) were connected to the batch centroid by lines. The centroids were
computed by taking the mean across all samples in the batch. That procedure produced a visual
representation of the relationships among batch centroids in relation to the scatter within batches. The
results for the four data sets follow.

miRNA (RNA-seq lllumina HiSeq)

Figures S8.2-S8.4 show clustering and PCA plots for miRNA seq data. miRNAs with zero values were
removed and the read counts were log,-transformed before generating the figures. The figures show a
small batch effect by batch ID, where a slight dichotomy can be observed (batches 95, 129, 152).
However, the magnitude of the batch effect wasn't too great, so we didn’t think that it warranted batch
effect correction for the type of analyses done in this paper. The trade off with batch effects correction
algorithms is the possibility of losing important biological variation in the data, along with the technical
variation.
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Figures S8.5-S8.7 show clustering and PCA plots for the Infinium DNA methylation platform. None of the
batches or tissue source sites stood apart from the others, indicating no serious batch effects were

present.
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RNASeqV2 (RNA-Seq lllumina HiSeq)

Figures S8.8-S8.10 show clustering and PCA plots for the RNA-seq platform. Genes with zero values
were removed and the values were log,-transformed before generating the figures. Once again, none of
the batches or tissue source sites stood apart from the others, indicating no major batch effects were

present.



. L
1 ] _ !
o | anl m,gaﬂmi.ﬁ%%ﬂ%%ﬁ@hmﬁﬁ%ﬁmﬁﬂ

A

80,
60
40
20
o
a0
-20)
s Points: Batchld
- m D04E (7]
-40 1095 (22)
v ® 179 (23)
+ 152 {16)
-60 M
¥ 220 (54)
- 242(27)
-80 & 257 (16)
(} * 269 (46)

714912910080—60740—297(:01 20 40 60 80100120

Fig. S8.9. PCA: First two principal components for
RNA-seq, with samples connected by centroids
according to batch ID.

Protein expression (RPPA)
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Figures S8.11-S8.13 show clustering and PCA plots for the Reverse Phase Protein Array (RPPA)
platform. None of the batches or TSSs stood apart from the others, indicating no major batch effects were

present.
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Batch effects were analyzed in four different data sets. miRNA data showed a small batch effect in
samples from the batches 95, 129, 152. However, the batch effects weren’t considered strong enough to
warrant algorithmic batch effects correction, since that often removes useful biology along with batch
effects. DNA methylation, mRNA seq and protein expression data didn’t show any major batch effects.
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$9.1 Microbial Detection in mMRNA-Seq

To detect microbial transcripts in mMRNA-Seq data, we developed an implementation of Bloom filters' termed
BioBloom, which efficiently tests whether or not a read pair derives from a target microbe. We divided each
75bp mMRNA read sequence into three adjacent 25bp tiles and classified the tiles against 45 Bloom filters
that we generated from human, bacterial, viral, fungal, and vector sequences downloaded from the National
Center for Biotechnology Information (ftp://ftp.ncbi.nim.nih.gov/genomes/). A read pair was considered a
positive match when 2 of the 3 tiles from each read in the pair matched a given filter. Read pairs matching
multiple filters were removed from further analyses.

We applied BioBloom to 237 TCGA STAD tumours (samples sequenced on lllumina GAIll instruments with
50bp reads were excluded from this analysis) and 29 adjacent non-malignant tissue mMRNA-Seq datasets.
Counts Were normalized by millions of quality reads sequenced (number of reads mapped to the
microbe*10%number of chastity-passed reads). We identified 24 EBV-positive tumours (10%) that had
between 4 and 300 normalized counts, averaging 88. These counts were 209-fold higher than those of EBV-
negative samples, including adjacent non-malignant tissue, which had an average of 0.4 normalized counts
ranging from 0 to 1.3.

Samples with more than zero read-pairs classified as EBV by BioBloom went on to EBV gene-expression
analysis. For this analysis, BWA-0.5.7 was used to align reads to a custom-created reference based on the
NCBI EBV type 1 complete genome and gene annotations (NC_007605.1). Reads with an alignment
spanning exon-exon junctions were then transformed into large gapped genomic alignments using JAGuaR.
Reads with a mapping quality of 10 or greater were included in the gene expression quantification analysis.
Results were normalized to reads per kilobase of exon per m|II|on reads mapped to the EBV transcriptome
(number of reads mapped to the gene * ( 1000/gene length ) * ( 10 ®total EBV read's aligned ) ).

$9.2 Microbial Detection in miRNA-Seq data

We extracted unaligned reads from .bam files aligned to the human reference genome (GRCh37) and re-
aligned these to a meta-genome constructed from multiple bacterial, viral and fungal sequences retrieved
from ftp://ftp.ncbi.nim.nih.gov/genomes/, and lllumina adapter sequences. Reads that aligned to only one
microbial reference genome were summed to produce a total count for each microbe for each sample, and
totals were normallzed against the human miRNA read counts for that library (number of reads mapped to
the microbe*10%/number of reads aligned to human miRNAs). Reads from TCGA placental controls were
processed in the same way, and a Wilcoxon test was used to compare distributions of normalized counts
between STAD and control samples.

This independent analysis of miRNA libraries constructed from the same total RNA samples revealed that
26 EBV-positive STAD tumour samples (1 had no mRNA-Seq data) contained an average of >500,000
depth-normalized reads that mapped to known EBV miRNAs, while EBV- negative samples contained <200
reads. Results from these two RNA platforms were in complete agreement with EBV-positive calls from
whole exome sequence and/or low-pass whole genome sequence data.

$9.3 Identification of a chimaeric human-EBV transcript

In the 24 tumour samples identified as EBV-positive, we searched for evidence of chimaeric transcripts in
the mRNA-Seq data. De novo assembly of the mRNA-Seq data from the tumour sample TCGA-FP-7998
revealed a single 507bp contig representing a potential human-EBV chimaeric gene transcript (Figure S9.4).
Performing BLAST against the National Center for Biotechnology Information non-redundant nucleotide
database revealed that bases 1 to 410 of this contig had perfect homology with the complete genome
sequence of EBV (human herpesvirus 4) type Il strain AG876 (DQ279927.1). Bases 404 to 507 of the
sequence contig showed 100% identity to human chromosome 9 (Genome Reference Consortium GRCh37
positions chr9:5431895-5431985 and 5436568-5436583) corresponding to the plasminogen receptor, C-
terminal lysine transmembrane (PLGRKT) gene positions 261 to 362 of NM_018465.3. The contig
represents a gene fusion between exon 3 of PLGRKT and EBV gene BHLF1 at an AG/GT splice site
(AC/CT on the reverse strand, Figure S9.4). A six-frame translation of the contig revealed a stop codon in
the BHLF1 portion of the peptide sequence. However, there is evidence that BHLF1 has a non-coding
function? and thus we cannot exclude the possibility that the fusion product was functional.

In support of the de novo-assembled chimaeric transcript, we identified 15 x 75bp reads spanning the fusion
breakpoint. Of note, a 7bp sequence (ACACTGAA) at the fusion junction was shared between EBV and



human genome loci and thus microhomology-mediated end joining® may explain the mechanism for the
fusion transcript.

References:

1. Burton H. Bloom (1970) Space/time trade-offs in hash coding with allowable errors Communications
of the ACM 13(7);422-426

2. Lin, Z et al. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J. Virol.
2013 Jan;87(2):1172-82.

3. McVey, M. and Lee, S.E. MMEJ repair of double-strand breaks (director’s cut): deleted sequences
and alternative endings. Trends Genet 2008 Nov;24(11):529-38
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Figure S9.4 EBV-human chimeric transcript
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Figure S9.4 — Identification of a chimaeric human-EBV transcript

Human and EBV transcripts, including chimaeras can be found in the mRNA-Seq data (A). A de novo
assembly of the mRNA-Seq data from the tumour sample TCGA-FP-7998 revealed a single 507bp

contig representing a potential human-EBV chimaeric gene transcript. Bases 1 to 410 of this contig
exhibited perfect homology with the complete genome sequence of Epstein Barr Virus (EBV or human
herpesvirus 4) strain AG876 (DQ279927.1). Bases 404 to 507 of the sequence contig showed 100%
identity to human chromosome 9 (Genome Reference Consortium GRCh37 positions
chr9:5431895-5431985 and chr9:5436568-5436583) corresponding to the plasminogen receptor,
C-terminal lysine transmembrane (PLGRKT) gene positions 261 to 362 of NM_018465.3 (B). The

contig represents a gene fusion between exon 3 of PLGRKT and EBV gene BHLF1 at an AG/GT splice
site (AC/CT on the reverse strand, panel C). Six-frame translation of the contig revealed a stop codon (*)
in the BHLF1 portion of the peptide sequence. In support of the assembled chimaeric transcript contig, we
identified 15 x 75bp reads spanning the fusion breakpoint (D). A 7 base-pair sequence exhibiting
microhomology is shown in square brackets and contains the splice site ACACT (reverse strand) in bold

type.



$9.5 Epstein-Barr virus and Helicobacter pylori detection methods in WGS and WES

The PathSeq’ algorithm was used to perform computational subtraction of human reads, followed by
alignment of residual reads to human reference genomes and microbial reference genomes (which
includes bacterial, viral, archaeal, and fungal sequences - downloaded from NCBI in June, 2012). These
alignments resulted in the identification of reads mapping with Epstein-Barr virus (EBV; also referred to as
human herpes virus 4, HHV4) and Helicobacter pylori in whole genome sequencing (WGS) and whole
exome sequencing (WES) data.

In brief, human reads were subtracted by first mappinzg reads to a database of human genomes
(downloaded from NCBI in November 2011) using BWA® (Release 0.6.1, default settings), Megablast
(Release 2.2.25, cut-off E-value 107, word size 16) and Blastns(ReIease 2.2.25, cut-off E-value 10™, word
size 7, nucleotide match reward 1, nucleotide mismatch score -3, gap open cost 5, gap extension cost 2).
Only sequences with perfect or near perfect matches to the human genome were removed in the
subtraction process. In addition, low complexity and highly repetitive reads were removed using Repeat
Masker* (version open-3.3.0, libraries dated 2011-04-19).

To identify EBV and H. pylori reads, the residual reads were aligned with Megablast to a database of
microbial and human reference genomes. Raw read counts were calculated using the reads that were
mapped to EBV and H. pylori with at least 90% identity and 90% query coverage.

Using the raw read counts, the abundance metric of a given microbe in a sample was calculated as

Abundance metric #reads mapped tothe microbe

#reads mapped to human inthe sample . Genome size of the microbe
Average # reads mapped to human inthe sample cohort Average genome size of the microbes inthat kingdom

Samples were considered to be EBV positive if the abundance metric exceeded 1000 by WGS or 100 by
WES.

1. Kostic, A.D. et al. PathSeq: software to identify or discover microbes by deep sequencing of
human tissue. Nat Biotechnol 29, 393-6 (2011).

2. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics 25, 1754-60 (2009).

3. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 25, 3389-402 (1997).

4. Smit, AFA. et al. RepeatMasker Open-3.0. 1996-2010 <http://www.repeatmasker.org>.
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S$9.6 text-Sequencing-based determination of tumour EBV status.

All 295 gastric tumour samples were analyzed for the presence of viral nucleic acids by at least two
sequencing platforms. EBV read counts were determined by miRNA (n=293), mRNA (n=237), whole
exome (n=263) and whole genome (WGS; n=77) sequencing and normalized to human sequence
counts, as described above (S9.1, S9.2 and S9.5). Numbers of EBV reads in individual samples were
bimodally distributed, with distinct separation of a minority of tumours having much higher counts for
each platform (Figure S9.7). Empiric cut-offs (shown as red lines) of 5000 for miRNA, 4 for mRNA, 100
for exome and 1000 for WGS had perfect concordance for identifying 26 (9%) EBV-positive samples
among the tumours analyzed. Quantitative counts were moderately correlated, with Spearman rank
correlation coefficients (p) ranging from 0.24 to 0.77 (p-values < .001).
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S9.7 figure-Pairwise comparisons of normalized EBV read counts by four sequencing platforms
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Figure 9.8. Transcription profiling of the EBV genome.
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Figure S9.8 Transcription profiling of the EBV genome. Box plots displaying expression level
(RPKM) across 25 samples (vertical axis) of each transcript from the EBV genome (horizontal axis).
Genes are arranged from left to right according to their EBV genomic coordinate (NCBI: NC_007605.1).
Insert. Diagram showing the locations and transcription levels [median logo(RPKM+1)] of the EBV
genes mapped to the viral DNA episome.
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Supplement $10.1 Molecular Subtpype Definitions obtained through Integrative Clustering- Overview and Flowchart

The overarching goal of integrative clustering was to utilize the multi-dimensional molecular/genomic data from our tumour
cohort to identify robust classes of GC. Following identification of these robust classes using multi-dimensional data, we
then sought to develop a simpler classification model to enable assigning GC tumours into molecular subgroups
(Manuscript Figure 1b). The integrative clustering methods (outlined in the flowchart below) identify groups of tumours that
show similar features as assayed by the multiple platforms used in this study: somatic DNA copy number aberrations,
somatic mutation, CpG methylation, mRNA, miRNA, and protein expression. Thus, the process by which we identified
molecular subtypes was based on a composite analysis across distinct data types, each providing a view of the molecular
features of GC. By considering measurements across different platforms, we obtained robust groupings beyond what
could be achieved by analyzing a single platform. Two integrative clustering methods were used, and they are
complementary in their approach. The first method (described in subsection $10.2)is similar to a previously described
technique1 and begins with cluster analysis of each of the molecular platforms individually (as described in S2-S7).
Integrative analysis of these diverse platform-specific cluster assignments was then performed to identify groups of
tumours that shared features across multiple data platforms. The second technique, termed iCluster+ (summarized in
S10.3), has also been applied to other large cancer genomics studies”*®and takes as input features from multiple
platforms (without first performing clustering for each individual data platform) and performs joint clustering with
simultaneous feature reduction to identify structure within the dataset. Despite these differences in approach, the
resulting sample groupings were quite comparable (summarized in S10.4).

Our goal was to identify a small group of markers that could be used to assign tumours to a subgroup, in order to
facilitate the classification of GC cases in the setting of clinical care, where it is not practical to obtain comprehensive
molecular data. Notably, the groupings developed through our integrative analysis were found to be strongly correlated
with specific features of the samples. Both methods yielded tumour groups that were predominantly EBV-positive or MSI-
H, and the remaining sample groups had distinctly high or low overall degree of copy number derangement. Therefore, we
used the following features: EBV, MSI and high or low aneuploidy to classify each of the 295 tumours in our dataset into
one of four molecular subtypes, as described in the classification schema in Figure 1b. Analyses described in this
manuscript were thus performed with these four molecular subtypes in order to generate results that could most readily be
applied to future patient samples and to guide development of new clinical approaches to treat this disease. Additionally,
we showed that the molecular subtypes were reflected in an analysis of principal components of the tumour samples
(S10.5).

The procedure used to arrive at the molecular classification is illustrated on the next page, including references to the
corresponding supplementary text.
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Supplement S10.2 Integrative clustering by platform-specific subtypes

As described in the preceding sections, subtype discovery was first performed through an
analysis of cluster assignments in which each data platform was analyzed independently. The clustering
approach for each of these platforms is described in the respective sections for each of the molecular
platforms. For gene expression, four subtypes were identified (Supplement S5); for miRNA expression,
five (Supplement S6); for protein expression, three (Supplement S7); for copy number, two
(Supplement S2); and for DNA methylation, four, of which two can be jointly characterized as “non-
CIMP” (Figure 2a, Supplement S4). In addition, mutation rates were found to fall into three
categories (Supplement S3). Thus, a total of 20 platform-specific subtypes (PSSs) were identified.

We began by constructing a matrix with 20 rows, one for each PSS, and a column for each
of the 295 samples. Each matrix element indicated whether a sample was a member of the PSS of
that row (1) or not (0). If a PSS was not identified, the corresponding entry was set to “NA”. There
were 214 samples for which we had complete subtype information. Clustering was then performed on
rows and columns independently. Clustering of rows identified which groups of PSSs were similar.
Clustering of columns utilized information on sample similarity, in terms of their shared subtypes, in
order to identify integrative tumour subtypes. Notably, no information other than PSS membership was
used. Following the identification of these integrative clusters, we identified additional data elements,
such as specific mutations and clinical attributes that were associated with individual clusters.

Clustering of subtype assignments (rows) To compare subtypes, we scored the 2-way contingency
table for a pair of PSSs using Fisher's exact test. We then took the negative of the (base 10) logarithm
of the Fisher p-value, and multiplied that by +1 for positive associations and -1 for negative associations.
Hence, the resulting score was large and positive if the two subtypes were positively correlated, and highly
negative if the subtypes were negatively correlated (in the case of continuously-valued variables), or if
they tended to be mutually exclusive (for dichotomous variables). If there was no association,
the score was near zero. For example, there was a strong association between Gene Expression
Cluster 2 and Gastric EBV-CIMP. The fraction of Gastric EBV-CIMP cases that were also in Gene
Expression Cluster 2 was 20/26 (76.9%), and the fraction of Gene expression Cluster 2 cases that
were also in Gastric EBV-CIMP was 20/59 (33.9%). The null model of no association was rejected at p-
value of 9.47x107°, corresponding to an association score of -logo(9.47x107'°)=9.02. A heatmap
illustrating the score for this subtype pair and all other pairs is displayed in Sup. Fig. S10.6a.
Average-linkage agglomerative clustering was done using a distance defined from this
association score, yielding the dendrogram shown in Supp. Fig. S10.6b. Notably, the DNA and
expression-based molecular subtypes were found to group into five triplets:
A: High Copy Number, Standard Mutation Rate and non-CIMP DNA Methylation,
B: Gene Expression Cluster 1, MicroRNA Cluster 4, and RPPA Cluster 1;
C: Gene Expression Cluster 2, GASTRIC-EBV-CIMP, and MicroRNA Cluster 3.
D: Gene Expression Cluster 3, MicroRNA Cluster 2, and RPPA Cluster 3; and finally
E: GASTRIC-CIMP, Low Copy Number, and Hypermutated.
These triplets were also found using a different choice of distance, based on the Jaccard
score. The remaining PSSs (MicroRNA cluster 5, MicroRNA cluster 1, Gene Expression 4,
Ultramutated, RPPA Cluster 2) were all among the last clusters to be incorporated into the
agglomerative clustering procedure, and were not consistently grouped by the two methods (data
not shown).



Clustering of samples (columns)

To compare two samples, one can count the co-occurrence of their subtype assignments. For

example, TCGA-BR-4187 and TCGA-BR-4279 were both non-CIMP, microRNA Cluster 4, Low Copy
Number, and Standard Mutation Rate, but differed in their RPPA and Gene Expression clustering
assignments. As such, 4 of 6 assignments matched, and this ratio could be used as the basis of a
comparison score for clustering. However, when the possible subtypes were relatively few for a given
data type (e.g. copy number), there was a greater chance of co-occurrence. Thus, a weighting scheme
that accounts for the inherent probability of co-occurrence was desirable.
Here, we used the inverse frequencies of each of the 20 PSSs as a weight when adding co-
occurrences. The score was converted to a distance prior to clustering (maximum score minus score)
and the calculation was done on the 214 samples for which we had complete subtype information. We
used the ConsensusClusterPlus R- package with 1000 resamplings of 80% of tumour samples, using
k-means on the distance matrix. To determine an appropriate number of clusters, we looked at the
change in the Cumulatlve Distribution Function (CDF), and the cluster co-occurrence over variation
in the number of clusters®. The transition to the four-cluster solution led to a substantially lesser
increase in CDF difference (between adjacent k values) than did subsequent steps (Supp. Fig. $S10.6c).
The four-cluster solution also provided a relatively clean separation in the clustered consensus
matrix (Supp. Fig. $S10.6d), and had 54, 56, 74 and 30 samples in the clusters assigned numbers 1
through 4 by ConsensusClusterPlus.

To further evaluate the stability of the clustering of platform-specific subtype results, we
performed leave-one-out validation in which one of each of the six data platforms was omitted, and the
calculation was otherwise performed identically. In each case, we evaluated the recovered fraction,
defined as the fraction of the integrated cluster that was found in the five-data-type calculation (four
clusters in six experiments, for a total of 24 values in all). The mean recovered fraction was 85%,
and the per-cluster average recovery ranged from 83% to 89%. In nearly all cases, 3 out of 4 clusters
were reproduced with a recovery fraction of 73.2% or better, with the exception being the experiment
excluding the mutation rate category (64.8%). The recovery rate of the remaining clusters varied from 56%
t0 91%.

The four-cluster integrated subtype solution is shown in Supp. Fig. S10.6e and cluster
assignments are provided in Supplementary Data File S11.1a. The integrated clusters were next
compared with all available data and were each found to have strong associations with specific molecular
S|gnatures Cluster 1 with MSI-H and MLH1 methylation (45/49 MSI-H tumours were in CIuster 1,
p=2. 1x107 ) Cluster 2 with diffuse tumours (31/56 diffuse tumours were in Cluster 2 p=3.0x10 ) Cluster
3 with TP53 mutations (25/38 samples in Cluster 3 had TP53 mutatlons p=4.9x10" ) and Cluster 4 with
EBV (19/20 EBV positive samples were in Cluster 4, p=1. 5x10 ) These and other associated variables
are displayed above the clustered matrix in Supp. Fig. S10.6e. The strength of the integrated cluster
associations with EBV and MSI-H supports their use in defining molecular subtypes in this manuscript
(Figure 1b).

$10.3 Integrative clustering using iCluster

As a second means to identifying subgroups of GC, we utilized iCluster, which formulates the
problem of subgroup discovery as a joint multivariate regression of multiple data types with reference to
a set of common latent variables that represent the underlying tumour subtypes2 "8 Unlike the first
integrative approach (from S10.2), platform-specific clustering was not performed. Apenallzed likelihood
approach was used for estimation, and a Monte Carlo Newton—Raphson algorithm was employed to
maximize the penalized log-likelihood. Due to the computational intensity of the parameter-tuning
procedure, the current implementation of iCluster+ takes as input up to four data types.

Data processing

Data processing methods were similar to those previously described?® and are outlined below. For
somatic mutation data, the mutation MAF file was used. A gene-by-sample matrix of binary values (1-
mutated, O0-wildtype) was generated for clustering. The top 1000 mutated genes ranked by the Mutsig
analysis were included for clustering. Segmented somatic copy number profiles (after removal of CNVs)
were obtained, and dimension reduction was performed to obtain non-redundant copy number regions, as



previously described®*. For the methylation data, the median absolute deviation was employed to select
the top 4,000 most variable CpG sites based on the [(B-value for input to the clustering framework. For
mRNA and miRNA sequence data, lowly expressed genes were excluded based on median-normalized
counts, and variance filtering led to 361 mRNAs and 145 miRNAs for clustering. mMRNA and miRNA
expression features were combined as a single data type, representing transcriptomic measurements. For
the RPPA (proteomic) data, 121 antibodies were employed in downstream analyses. Given that iCluster+
can accept four data types, and five were available, we built two models (A and B), including either the
transcriptome (MRNA+miRNA) data or the RPPA data. Supp. Fig. S10.7 shows that the results were
highly comparable for model A (transcriptome) versus model B (proteome), indicating the robustness of
this approach and lack of sensitivity to a particular data type.

Model selection

To determine the optimal combination of the penalty parameter values, a large search space was
required. We employed an efficient sampling method that utilized uniform design (UD)Q, such that for a
given K, we determined the penalty parameter vector that minimized a Bayesian information criterion. A
theoretical advantage of the uniform design over an exhaustive grid search is the uniform space-filling
property that avoids wasteful computation at close-by points.

The number of clusters (K) was estimated. We computed a deviance ratio metric, where K
was chosen to maximize the deviance ratio. As shown in Supp. Fig. S10.7A, for model A an “elbow”
point was noted at K=3, beyond which point the increase in the deviance ratio diminished, increasing
again at K=5. For model B (Supp. Fig. S10.7B), an elbow point was similarly noted at K=3. While these
results suggested that K=3 represented an optimal solution, it was of interest to compare this with
the alternate K=5 cluster solution, which provided greater granularity. Cluster assignments are
provided in Supplementary Data File S11.1. A heatmap representation of the associated subtype
assignments for all data platforms and the association with other sample attributes (top panel) is shown
in Supp. Fig. S10.8 for K=3 and K=5. Both the 3- and 5-cluster solutions showed an association with
the Lauren classification and were enriched for diffuse histologic type tumours (iClust1). For the K=3
and K=5 solutions, iClust3 and iClust5, respectively, were enriched for Gastric-CIMP, MLH1 methylated,
and MSI-H samples. In contrast, only the K= 5 solution revealed the clear separation of an EBV-positive
group (iClust2), consistent with other molecular features of these data. Hence, the K=5 solution was
used in comparisons with the alternative clustering strategies. Importantly, these distinct integrative
clustering approaches both robustly partitioned gastric tumour samples on the basis of EBV-positivity,
MSI status, and SCNAs, supporting their use in defining the four molecular subtypes presented
throughout the text (Supp. Fig. 1b).

Supplement S10.4. Cross-comparison of subtypes

A comparison of cluster assignments based on the 4-cluster integrative clustering by platform-
specific subtypes with the K=3 and K=5 iCluster results is shown in Supp. Fig. $S10.9, as is the
cross-tabulation of each of these two approaches with the 4 molecular subtypes defined in Supp. Fig.
S10.6e. From tables A and C, we see that the EBV molecular subtype has almost complete overlap with
the integrative cluster from the both procedures (Clusters C1, and iClust2, respectively). Similarly, the MSI
molecular subtype has a very strong overlap with integrative clusters. CIN is found most commonly in
cluster C3 from the platform-specific subtypes and iCluster 3. Table B shows that overall there is good
overlap between sample groupings obtained from the two integrative clustering methods. A primary
difference between the 5-cluster solution from the iCluster analysis and the 4-cluster solution from
the integrative clustering based upon platform-level cluster assignments is that the aneuploidy/CIN
group of tumours is split into two subgroups using the iCluster approach.

Supplement S10.5. Subtypes in the context of Principal Component Analysis of tumour samples

In order to investigate the validity of the molecular subtypes without reference to integrative
clustering or to the results thereof, we examined the correspondence between the subtypes and the first
few principal components of the tumour sample set. The principal components are the main directions of
variance in the multi-dimensional space in which the samples reside. The dimensionality of the space is
equal to the length of the data vector of any given sample. To simplify the calculation, we use the vector of
20 values described in $S10.2. In Figure S10.10, projections into the first few principal components are
shown for the data, and each tumour data point is coloured according to subtype. The first two principal



components, PC1, and PC2, have strong contributions from mutation rate and copy number, and this is
reflected in the separation of CIN and MSI in this subspace (panel A). Looking into dimension three (panel
B: PC3 vs PC2), we see the emergence of EBV samples from other samples. This implies that the main
directions of variance in the data have good correspondence with the molecular subtypes.
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Figure $10.6e Platform-Specific Subtype Membership and the Four-Cluster Consensus
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Supplementary Figure $10.6. Similarity and grouping of DNA and gene expression subtypes based on integrative
clustering by platform-specific subtypes. a) Similarity among platform-specific subtypes. Each of the 20 subtypes,
represented by rows and columns, was obtained from a single molecular platform. The heatmap shows a similarity score
based on the Fisher p-value for the contingency table comparing the two platform-specific subtypes in the corresponding
row and column. A red cell corresponds to two subtypes that are highly similar: they tend to have many tumour samples
in common. A blue cell corresponds to subtypes that are highly dissimilar. b) Subtype similarity dendrogram. The distance
metric was based on the score shown in panel a. The highlighted subtype triplets were consistently grouped when the
comparison metric was varied. Note that these are groupings of similar platform-specific subtype classifications, not
groupings of tumour samples. c¢) Relative change in area under CDF. ConsensusClusterPlus plot comparison of samples
using weighted co-occurrence. d) Consensus matrix for the four-cluster solution from ConsensusClusterPlus. €)
Integrative subtype assignments. The red box defines a subtype membership matrix, in which rows correspond to
platform-specific subtypes, and columns represent 214 tumour samples. Blue indicates subtype membership. Rows are
arranged as in panel b, and columns are arranged according to the similarity of sample pairs based on platform-specific
molecular subtype membership. Integrated subtypes are numbered 1 through 4. Above the membership matrix are
dichotomous attributes of samples, each shown in red: non-silent mutations in PIK3CA; non-silent mutations in TP53;
MSI-H; diffuse, as opposed to intestinal histologic types; and EBV-positivity. Unassigned values are indicated in gray.
Below each integrative cluster, data elements enriched in that subgroup are indicated.
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Figure S10.7- robustness of iCluster results to different data inputs and model selection
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Figure S10.7- robustness of iCluster results to different data inputs and model selection


Supplementary Figure S10.7: Robustness of iCluster results to different data inputs and model
selection. Cluster membership results were highly comparable, regardless of whether mRNA+miRNA
(transcriptome) or RPPA (proteome) features were included with somatic mutation, copy number, and
CpG methylation data. a) The deviance ratio is plotted versus the number of clusters for Model A,
which includes transcriptome data (mMRNA + miRNA), where an “elbow” point at K=3 is noted, beyond
which the increase in the deviance ratio diminished. b) As in A, but for Model B, which included RPPA
data rather than transcriptome data. c) The cluster membership assignments were highly concordant
regardless of whether transcriptome (Model A) or proteome data (Model B) were included for the K = 3
solutions. d) The cluster membership assignments for Models A and B were also highly concordant for the
K =5 solutions.
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Figure S10.8: Heatmap representation of iCluster subtype assignments for K=3 solution



iClust1 iClust2 iClust3 iClust4 iClust5

castiociup ] | [ TR} P<0 o001

Gastric-EBV-CIMP ~ —| |- P<0.0001
P<0.0001

P=0.25

P<0.0001
P<0.0001
P<0.0001

T

Hypermutated =

I 1 II nmm
Ultramutated =
MLH1 methylated I I |
MSI
Lauren " “
"':'E’ZZ‘ T f”qlll fl i
PrcoA BEL N 1 I LTI 1
aners L F
APC 1 1
wd i

P (11 1
sLcaan 1

T

T

T

1

uoneInpy

LR | I
eve I 1 LI |

AR

|

Jaquinu Adod yNa

NP,
- = =
smowd

L]

CG

uonejAylaw yNa

FYR-LtrS

EPCAM
T8

=
2

KRT18

IGFBP7

mir-199a/b
mir-100, mir125b
mir-155
mir-181a/b

uolssaldxa YNYoDIW m uolssaidxa YNYW
falO=hy

BaxRY

el e e
L IL,-'%' F {8 1
ooty ihm‘hmh # U 1

e 1 'u -rl'H Iw & 'hh -

Cyclin_D1-RV

- ' i =
.-1 ot
J\.u l A . 2

Vddd

;.uj .,.nu-pu.ulm Lt A
Capase 7 cleavedD198RC | b g o T i g1 o el o e
W

.“ k _',... R VG A | T e DR Eg
--?r-ﬂ}'r-'. & kR hadh i o ety L ) 0
;l:; ..I..I:n.',;r.;,:';;,.,.' 0 PR A D L P RE T Sl o ey LT R 3

Figure S10.8: Heatmap representation of iCluster subtype assignments for K=5 solution




Supplementary Figure S$10.8: Heatmap representation of iCluster subtype assignments. Heatmap
illustrating the iCluster subtypes for all data platforms based on clustering of mutation, copy number,
methylation, and transcriptome (MRNA + mRNA) features (note that RPPA data were not included
here, but yield comparable results when exchanged for transcriptome data). The
association between cluster membership and other sample attributes is illustrated in the top panel. a)
Results for the K = 3 solution and b) for the K = 5 solution.
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Figure $S10.9 Comparison of cluster membership using different integrative clustering approaches



Supplementary Figure $10.9. Comparison of cluster membership using different integrative clustering
approaches. Cross-tabulation of cluster membership assignments comparing the integrative clustering approaches
(iCluster K=5, iCluster K=3, and the four-cluster solution from clustering of platform-specific subtypes) with each other and
with the molecular subtypes defined in the manuscript. a) Integrative clustering by platform-specific subtypes four-cluster
solution (Row, C1 through C4) compared with molecular subtype (Column). b) Integrative clustering by platform-specific
subtypes four cluster solution (Row) compared with iCluster K=3 sample membership (Column) c) Integrative clustering
by platform-specific subtypes four cluster solution (Row) compared with iCluster K=5 sample membership (Column). d)
Molecular subtype (Row) compared with iCluster K= 5 sample membership (Column). 3) Molecular subtype (Row)
compared with iCluster K= 3 sample membership (Column).
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Figure S10.Mmn1 - Principal Components and Molecular Subtypes




Supplementary Figure S10.10: Principal Components and Molecular Subtypes. Projection of
samples into the subspace of the first two (panel A) and the second two (panel B) principal components is
shown. The points represent samples and are colored by molecular subtype. In panel A, dotted lines have
been inserted to denote regions that are predominantly CIN (upper left) and MSI (lower right). In panel B,
the dotted line encloses a region that is almost exclusively EBV.
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Supplement $11.1. Master Patient Table and Feature Matrix

STAD Feature Matrix. To facilitate the identification of associations among the diverse clinical and molecular
data in this study, a “feature matrix” (FM) was constructed by integrating values from all data types. Each row in
the FM represents one of the 295 tumor samples or 91 matched- normal samples, and the columns contain all
available clinical, sample, and molecular data for each sample: mMRNA and microRNA expression levels, protein
levels, copy number alterations, DNA methylation levels, and somatic mutations. Each column in the FM
represents a single clinical, sample, or molecular data element, and the individual data values may be numerical
(continuous or discrete) or categorical, as appropriate. Missing values are indicated within the FM by “NA”, and the
number of non-NA data values varies significantly across the different data types (columns). Overall,
approximately 77% of the matrix elements are non-NA (94% for the tumor samples). Data were retrieved from the
DCC on Jan 20, 2014 and further processed into columns as follows.

Clinical and sample data (567 features): DCC clinical and sample data were processed into a matrix. Assignments
from EPC review (Supplement S1) were used for anatomic site, histology, and TNM AJCC Stage. Additionally,
columns were included for ABSOLUTE calls for tumor purity (Supplement S2), estimated leukocyte percentage
(Supplement S4), and MLH1 and CDKN2A epigenetic silencing (Supplement S4). Cluster assignments obtained
via clustering of cluster assignments (Supplement S10) and iCluster (Supplement S10) were added, as were
results of unsupervised clustering for each of the individual molecular data types: SCNA (Supplement S2),
RNAseq (Supplement S5), miRNA-seq (Supplement S6), DNA methylation (Supplement S4), and RPPA
(Supplement S7). Mutation rates and rate categories (Supplement S3) were included, as were fusion events such
as ARHGAP-CLDN18 (Supplement S3). In addition, variables were generated that contrast pairs of subgroups in
a non-dichotomous classification.

Molecular Data. Gene expression (22,277 features): Gene level RPKM values from RNA-seq (Supplement S5)
were log2 transformed, and filtered to remove low-variability genes (bottom 25% removed, based on interdecile
range). MicroRNA expression (697 features): The summed and normalized microRNA quantification files
(Supplement S6) were log2 transformed, and filtered to remove low-variability microRNAs. (An initial filter
removed any microRNA not observed in at least 6 samples, and a second filter removed the bottom 25% by
interdecile range.) Somatic copy number alterations: Copy number and focal copy number changes were obtained
for peaks identified by GISTIC as described above (Supplement S2, 188 features). DNA methylation (19,711
features): Probe-specific Level 3 B-values were obtained as described above (Supplement S4). We started with
26,258 probes in common between the two methylation platforms, and then removed the bottom 25% based on
interdecile range. RPPA (189 features) (Supplement S7). Somatic mutations (8,220): The Mutations Annotation
Format file (Supplement S3), was used to generate a binary indicator vector indicating whether a particular
nonsilent mutation is present in a specific sample. Mutation features found in fewer than five tumor samples were
removed.

The Synapse platform[1], by Sage Bionetworks (www.sagebase.org), was used during the development of this
project for distributing versioned data to project researchers and as a staging area for assembling files into the
Feature Matrix.

STAD Master Patient Table. Key variables, including those discussed in the manuscript, were extracted from the
FM to create Supplementary Data File 11.1a: Master Patient Table. This file can be found on the TCGA
Stomach Adenocarcinoma publication page at

https://tcga-data.nci.nih.gov/docs/publications/stad_2014/

[1]1Enabling transparent and collaborative computational analysis of 12 tumor types within The Cancer Genome
Atlas; Larsson Omberg, Kyle Ellrott, Yuan Yuan, Cyriac Kandoth, Chris Wong, Michael R Kellen, Stephen H
Friend, Josh Stuart, Han Liang & Adam A Margolin; Nature Genetics 45, 1121-1126 (2013).


https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
https://tcga-data.nci.nih.gov/docs/publications/stad_2014/
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$11.2 NCI-PID Pathway Expression Associated with Molecular Subtypes.

In order to gain insight into the underlying differences between the four main molecular subtypes
identified, we performed pathway-level analysis of the mRNA expression differences across different
stratifications of the tumour and adjacent non-tumour tissue samples in this dataset. In this analysis,
pathways were defined as lists of genes. Specifically, we used gene lists describing the 224 pathways
from the NCI-PID pathway database[1]. Given a stratification of the samples into two non-overlapping
subgroups A and B (which may represent, for example, EBV tumours vs. adjacent non-tumour samples,
or MSI tumours vs. CIN tumours), a p-value was computed for each gene using the non-parametric
Kruskal-Wallis one-way analysis of variance by ranks. This p-value estimates the statistical significance
that the expression of gene X is elevated or reduced in subgroup A relative to subgroup B. For each
pathway, the gene-level p-values were log-transformed and summed (using an approach based on
Fisher's combined statistic[2]) to obtain a pathway-level composite score:

n

S= —Z log (p)

The significance of this score, ps, was then estimated empirically by similarly scoring 10000 randomly
generated pathways for each NCI-PID pathway, using the same distribution of pathway sizes and gene
membership. Finally, a heatmap was created using the absolute value of log(ps), with the sign (+ or -)
indicating whether the pathway was elevated (or reduced) in subset A relative to B.

References:

1. Schaefer, Carl F; Anthony Kira, Krupa Shiva, Buchoff Jeffrey, Day Matthew, Hannay Timo, Buetow
Kenneth H (Jan 2009). "PID: the Pathway Interaction Database". Nucleic Acids Res. 37 (Database
issue): D674-9. doi:10.1093/nar/gkn653. PMC 2686461. PMID 18832364

2. Fisher, R.A. Questions and answers #14. The American Statistician 2, 30-31 (1948).
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Figure S11.2a: Each molecular subtype was compared with every other molecular subtype as well

as with the adjacent non-tumour samples. This pairwise comparison resulted in 16 columns, with
each column indicating which pathways were elevated (or reduced) when comparing the two subsets
indicated by the colors at the top of the heatmap. For example, the first column (on the left) is a
comparison between the EBV and MSI subsets, in which we see that the genes involved in the TCR
signaling pathways (rows 3 and 4) were expressed at much higher levels in the EBV samples than in
the MSI samples. The reverse is seen in column 5, in which the comparison is reversed: MSI relative
to EBV. Within each group of four columns, the rightmost column is the comparison to the non-tumour
samples (indicated by a grey box at the top).
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Figure S11.2a:  Each molecular subtype was compared with every other molecular subtype as well 
as with the adjacent non-tumour samples.  This pairwise comparison resulted in 16 columns, with 
each column indicating which pathways were elevated (or reduced) when comparing the two subsets indicated by the colors at the top of the heatmap.  For example, the first column (on the left) is a 
comparison between the EBV and MSI subsets, in which we see that the genes involved in the TCR 
signaling pathways (rows 3 and 4) were expressed at much higher levels in the EBV samples than in 
the MSI samples.  The reverse is seen in column 5, in which the comparison is reversed: MSI relative 
to EBV.  Within each group of four columns, the rightmost column is the comparison to the non-tumour samples (indicated by a grey box at the top). 
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S$11.3 Characterization of RHOA mutations and CLDN18-ARHGAP fusions led to a predicted
activation of the RHOA- ROCK signaling pathway.

Frequent mutations in the RHOA gene and also gene fusions involving ARHGAP26 and ARHGAP6 were
identified in the genome-stable (GS) molecular subgroup. To evaluate whether these specific events may
be activating or inactivating RHO signaling, we employed the PARADIGM-SHIFT algorithm, which assigns
a pathway impact score for each event'. Pathway signatures for the ARHGAP26 and ARHGAPG6 fusion
events were analyzed jointly with the RHOA mutations to provide clues about the impact of these mutations
and fusion events.

Within the GS group, 50 samples had available copy number and expression data required to run
PARADIGM-SHIFT analysis, with 6 RHOA mutations and 8 CLDN18-ARHGAP fusions occurring in this set.
PARADIGM parameters were trained on the complete cohort of 258 samples with available copy number
and expression data. The RHOA-ROCK signaling pathway was constructed from MetaCore™ and RHOA
mutation neighborhoods (the network of interactions surrounding RHOA) were selected in a supervised
fashion by selecting features based on Fisher score. PARADIGM-SHIFT (P-Shift) scores for RHOA, which
reflect the discrepancy in upstream versus downstream pathway signals, were calculated as the difference
in inferred activity between the two runs of PARADIGM: one in which only the connections with the
upstream regulators were retained (R-run) and one in which only the connections with the downstream
targets were retained (T-run). The accuracy of the model was then assessed by using the absolute P-Shift
score as a classifier to predict the presence of an alteration (RHOA mutation or ARHGARP fusion). The
model was able to predict alteration status with an average area under the curve of 0.62 across 5-fold
cross-validation, suggesting that the PARADIGM-SHIFT model was able to distinguish samples altered in
this pathway.

When the distribution of P-Shift scores for samples with alterations in either RHOA or ARHGAP were
compared to samples without either of these alterations, an enrichment of positive P-Shift scores was
identified, indicating gain-of-function (GOF) on average through the RHOA signaling pathway
(Supplemental Figure S11.4a). The significance of this aggregated GOF score was determined by running
a background model in which the selected network topology was fixed, but the data were permuted, thus
assigning random genes to the surrounding network neighborhood of the RHOA protein. Using this
background model, the GOF-aggregated score was found to have a p-value of 0.047 (Supplemental Figure
S11.4b). Altogether, these findings suggest that the signaling consequences of RHOA mutations or
ARHGAP fusions lead to GOF, based on the discrepancy of up- vs. down- stream activity signals.

PARADIGM-SHIFT was run on the complete cohort to determine the functional impact of alterations on the
network, and its network was viewed with a CircIeMap2 display (Supplemental Figure S11.4c). As
expected from prior knowledge, RHOA activation was found to be mediated through the transcription factor
STAT3. The pattern of expression for downstream targets IRF1 and IL1B mirrored the profile of P-Shift
score concordant with RHOA pathway activation in the samples with alterations. Interestingly, downstream
targets IFNG and PLA2G4A appeared to be active in the case of either RHOA mutation or ARHGAP
fusion. This concordance suggests that different alterations in the RHOA pathway may not be equivalent,
leading to slightly different phenotypes. Additionally, the presence of samples with high P-Shift scores in
the non-altered set suggests that there may be additional events within the GS subgroup that lead to
RHOA signaling activation.

1. Ng, S. et al. PARADIGM-SHIFT predicts the function of mutations in multiple cancers using
pathway impact analysis. Bioinformatics 28, 1640-1646 (2012).
2. Wong, C.K. et al. The UCSC Interaction Browser: multidimensional data views in pathway

context. Nucleic Acids Res 41, W218-24 (2013).
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Figure S11.4. PARADIGM-SHIFT analysis of RhoA pathway alterations, RHOA mutations and ARHGAP fusions. (A)
Comparison of the distribution of P-Shifts for samples with alterations (red) and samples without (black). (B)
Distribution of t-statistics of the difference in P-Shift scores between samples with alterations versus samples
without. Red line shows t-statistic based on actual data. (C) Circlemap display of mutation neighborhood selected
for RHOA. Solid lines indicate transcriptional regulation and dashed lines indicate protein regulation. Samples were
sorted first by the RHOA alteration status (Black: RHOA mutation, Grey: ARHGAP fusion), then by P-Shift score.




S.11.5. HotNet Analysis

We used HotNet2' to identify subnetworks of a protein-protein interaction network that contained
genes with significant number of mutations. HotNet2 identifies significantly mutated subnetworks
according to both scores of individual genes and the topology of interactions between genes.
HotNet2 uses a localized heat diffusion process to model mutations on the topology of interactions,
and a partitioning procedure that distinguishes the directionality of heat flow on the network.
Hotnet2 improves our previous HotNet algorithm2 that was used in earlier TCGA publications. For
this analysis, the score, or heat, assigned to each gene (node in the network) is the fraction of
samples that have a mutation in the gene, using mutation data described below.

HotNet2 uses a permutation test similar to the one employed by HotNet, in which the gene scores
are permuted among the measured genes. A two-stage statistical test was used to assess the
significance of the list of subnetworks obtained by HotNet. In the first stage, a p-value for the
number of subnetworks in the list was computed. In the second stage, we derived an estimate of
the false discovery rate (FDR) of the list of subnetworks. Finally, we tested whether the identified
subnetworks were significantly enriched for genes in known pathways and protein complexes.

Mutation Data and Interaction Network for HotNet Analysis

We analyzed the non-silent mutations (single nucleotide variants and small indels) from the MAF file
in 289 STAD samples. We also included focal driver copy number aberrations from GISTIC2 output
via Firehose (Supplement S11.9), fusion genes (Table S5.6), rearrangements (Table S3.7) and
splicing events (Figure S5.5). We removed 74 samples identified as hypermutators in
Supplementary Table S11.1a. We removed genes with non-silent mutations in < 2% of samples and
also genes with mutations in > 3% of samples that with MutSigCV ¢>0.25 (Table S3.5). After this
processing, the dataset included 217 samples and 879 genes with mutations.

We also ran HotNet2 separately on each of the four subtypes: GS, CIN, EBV and MSI. For each
subtype, we removed genes with non-silent mutations in < 2% of samples of subtypes CIN and MSI
due to their high mutation rate, and in > 8% of samples that with MutSigCV g>0.25 in each subtype.
Following this filtering, GS contained 55 samples and 4290 mutated genes; CIN contained 140
samples and 2674 mutated genes; EBV contained 22 samples and 2193 mutated genes; MSI
contained 64 samples and 4868 mutated genes.

We built a protein-protein interaction network by combining high-quality protein-protein interactions
from HINT® with recent high-throughput interactions from the HI-2012* set of protein-protein
interactions. The network contained a total of 9859 proteins and 40705 interactions.

HotNet2 Analysis

HotNet2 identified 6 subnetworks containing at least 3 genes (p < 0.001) with a corresponding FDR
= 0.439. Two subnetworks contained core genes in the p53 signalling pathway and ErbB pathway
(Table S11.6, Figure S11.7a). Another subnetwork contained RHOA, a master regulator of actin
organization, focal adhesion and cell motility and upregulated in various cancer types. Moreover,
RHPN2 in the subnetwork may function normally in a Rho pathway to limit stress fiber formation
and/or increase the turnover of F-actin structures in the absence of high levels of RhoA activity’

Another subnetwork contained SMAD4, and interacting genes. SMAD4 has been reported as a
tumour suppressor gene during gastric carcinoma progression. Several copy number deletions and
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inactivating mutations shown in SMAD4 indicate the functional loss of SMADA4.

In the analysis of the subtype GS, HotNet2 identified 4 subnetworks containing at least 6 genes (p <
0.019) with a corresponding FDR = 0.597. One subnetwork contained RHOA and PKNZ2 (Figure
S11.7¢). RHOA has been reported to regulate PKN2 and control entry into mitosis and exit from
cytokinesisg. In addition, the other subnetwork contained four cadherin family genes CDH1, CDH2,
CDH3, CDH5, CTNNA1 and PTPRM (Figure S11.7b). Somatic mutations and deletions of CDH1
gene have related to poor survival of patients with gastric cancer’. Moreover, CDH1 and CTNNA1
mutations might be important, because their germline mutations underlie Hereditary Diffuse Gastric
Cancer (HDGC)§ (Table S11.6).

In the analysis of the CIN subtype, HotNet2 identified 5 subnetworks containing at least 5 genes (p
< 0.002) with a corresponding FDR = 0.41. A candidate subnetwork contained core genes in the
p53 signalling pathway, i.e. CDKN2A, CDK6 and TP53 (Table S11.6).

In the analysis of the EBV subtype, HotNet2 identified 4 subnetworks containing at least 6 genes (p
< 0.001) with a corresponding FDR = 0.517. We observed that a subnetwork containing PIK3CA,
KRAS, and NRAS was mutated in 18 of the 22 samples. In addition, an exon-skipping event on
MET and an ITGB4 mutation in another subnetwork alter genes from a list reported to be
biomarkers of gastric cancer® (Table S11.6).

In the analysis of the MSI subtype, HotNet2 identified 2 subnetworks containing at least 5 genes (p
< 0.329) with a corresponding FDR = 1. Thus, these results were not statistically significant. A
subnetwork with 8 genes contains the core of MHC class | including B2M, HLA-B and HLA-E, and
CD8A a co-receptor of T-cells that interacts with MHC class | genes (Figure S11.7d). In addition,
the HFE gene is related to gastric cancer due to its association with iron overload™ (Table S11.6).

Pathway Enrichment

To focus attention on subnetworks with known biological function, we computed the overlap
between the genes in candidate subnetworks and known pathways from the KEGG database [11].
Subnetworks returned by HotNet2 in STAD and in the CIN subtype had statistically significant
(corrected p < 0.05) overlap with at least one KEGG pathway. Of those 4 subnetworks in the GS
subtype, 3 had statistically significant overlap with one KEGG pathway, including cell adhesion,
TGF-beta signalling, and complement and coagulation cascade pathways. In the EBV subtype, 2
subnetworks were enriched in at least one KEGG pathway. In MSI, the subnetwork containing B2M
showed statistically significant overlap with the KEGG antigen processing and presentation pathway
(Table S11.6).

All results can be reached in the link: http://compbio.cs.brown.edu/public/stad/
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Tables and Figures

SUBNETWORKS gene (# mutations) KEGG PATHWAYS ENRICHMENTS
(corrected p-value)

STAD
TP53 (107), CDKN2A (47), CDK6é (31), | Cell cycle (0.011),
MTA1 (19), PTEN (7) Pathways in cancer (0.015),

p53 signaling pathway (2.34e-06),

ERBB2 (61), EGFR (23), CD44 (22), ERBB3
(10), ANK1 (6), ITPR3 (6), PTPRZ1 (6),
SPTB (6), TLN1 (6), TRPC6 (6), ANKS1B
(5), FER (5), IRS4 (5)

SMADA4 (54), APBB2 (5), HDLBP (5)

MYC (52), EP400 (6), SMC4 (5)

RHOA (13), RHPN2 (10), FAM65B (6)

FBLN2 (5), HSPG2 (5), NID1 (5)

GS
CDH1 (21), CDH2 (4), CTNNA1 (3), CDH5 | Cell adhesion molecules (CAMs) (2.17e-
(2), PTPRM (2), CDH3 (1) 06)

RHOA (8), FAM65B (3), MPRIP (2), PKN2
(2), CIT (1), RHPN2 (1)

ACVR2A (3), MAGI2 (3), INHBA (2), | TGF-beta signaling pathway (0.022)
ACVR1B (1), DSCAMLA1 (1), PLCL2 (1)

C3 (3), CR1 (2), CFB (1), CFH (1), CRP (1), | Complement and coagulation cascades

ITGAM (1), ITGAX (1) (7.43e-05)

CIN

TP53 (99), CDKN2A (40), CDK6 (32), MTA1 | Cell cycle (0.03),
(21), PDZD2 (10), LAMA4 (8), WRN (6) Pathways  in  cancer  (0.027),

p53 signaling pathway (0.0091),

ERBB2 (53), EGFR (21), CD44 (17), TRPC4
(8), ITPR2 (7), ITPR3 (6), ANK1 (5),
ANKS1B (4), FER (4), PTPRZ1 (4), SPTB




(4), SUPT6H (4), TLN1 (4),
TRPC5 (4), IRS4 (3), SH2B3 (3)

TNS3 (4),

CELSR3 (8), SPTBN4 (8), BAHCC1 (6),
CLSTN1 (6), SCAPER (4), TRIP12 (4)

THSD7B (9), HECTD1 (6), IGSF1 (5),
CNTNAP4 (4), RANBP10 (3)
DSCAML1 (5), PLXNB3 (4), CUL9 (3),

MAGI3 (3), PLCL2 (3)

EBV

PIK3CA (18), ITIH1 (1), KRAS (1), NRAS
(1), PLCE1 (1), SHOC2 (1)

Neurotrophin signaling pathway (0.027),
Insulin  signaling pathway (0.048),
VEGF signaling pathway (0.019),
T cell receptor signaling pathway (0.027),
Fc epsilon RI signaling pathway (0.011),
B cell receptor signaling pathway (0.027)

MET (8), GIPC1 (1), ITGA6 (1), ITGB4 (1),
NRP1 (1), PLEC (1)

JAK2 (3), CSF2RB (1), GHR (1), MPL (1),
PTPN2 (1), SOCS3 (1), STAT5B (1)

Jak-STAT signaling pathway ()

COL1A2 (1), COL5A1 (1), DCN (1), F2 (1),
IGF1 (1), IGF2 (1), IGFALS (1), IGFBP5 (1),
THBS1 (1)

MSI

ERBB3 (35), RASA1 (20), ARHGAP5 (17),
DOK2 (5), ANXAG (4)

B2M (23), HLA-B (13), CD8A (5), HFE (5),
KLRD1 (5), TFRC (5), HLA-E (4), KLRC3 (3)

Natural killer cell mediated cytotoxicity
(0.0007),
Graft-versus-host  disease  (0.0039),
Antigen processing and presentation
(2.13e-08)
Cell adhesion molecules (CAMs) (0.037)

Table S11.6: The candidate subnetworks identified by HotNet, and corresponding KEGG pathways
with significant overlap with each subnetwork. For the pathways, we list the name of the pathway
and the (multiple hypothesis corrected) p-value of the hypergeometric enrichment test.
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Figure S11.7a: The oncoprint, transcript annotation, copy number aberrations, and protein-protein
interaction network of the candidate subnetwork contained the ErbB pathway.
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candidate subnetwork contain the cadherin gene family in the subtype GS; 29 of 55 GS samples
were mutated.
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Figure S11.7c: The oncoprint, transcript annotation and protein-protein interaction network of the
candidate subnetwork contained the RhoA signaling pathway in the subtype GS; 15 of 55 GS
samples were mutated.
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Figure S11.7d: The oncoprint, transcript annotation and protein-protein interaction network of the
candidate subnetwork contained MHC class | in the subtype MSI; 43 of 64 MSI samples were
mutated.



Supplement S11.8: All-by-all Pairwise Associations, Regulome Explorer, and
GeneSpot

Statistical association among the diverse data elements in this study was evaluated by comparing
pairs of columns in the feature matrix (Supplement S11.1). Hypothesis testing was performed by
testing against null models for absence of association, yielding a p-value. P-values for the association
between and among clinical and molecular data elements were computed according to the nature of
the data levels for each pair: discrete vs. discrete (Fisher's exact test); discrete vs. continuous
(ANOVA F- test, equivalently t-test for binary vs. continuous) or continuous vs. continuous (F-test).
Ranked data values were used in each case. To account for multiple- testing bias, the p-value was
adjusted using the Bonferroni correction.

In order to allow researchers to further explore potentially interesting relationships in this dataset,
including primary data, the statistically significant pairs of associations were loaded into the
Regulome Explorer web application, which is designed to allow researchers to explore associations
among multiple data types in cancer genomics (http://explorer.cancerregulome.org). Prior to loading,
a p-value threshold was chosen specific to each pair of data types (e.g. clinical data vs. gene
expression data) in such a way as to strike a balance between making potentially interesting
associations available to queries by the tool, while still allowing the tool to be responsive, since the
number of loaded graph edges (each corresponding to a statistically significant relationship) is in the
millions.

All identified pairwise relationships, including those described in this manuscript can be found at
http://explorer.cancerregulome.org-

To allow researchers to explore this dataset in the context of other TCGA data types and to provide
additional plotting and querying capabilities, the data have been made available in the GeneSpot
web application at www.genespot.org. This software tool for systems biology provides a way to
view TCGA data from a gene-centric point-of-view.


http://explorer.cancerregulome.org/
http://explorer.cancerregulome.org/all_pairs/?dataset=stad_23jan14_seq_tumor_only&hidden=true
http://www.genespot.org/

S$11.9 Firehose Analysis

The Broad Institute GDAC Firehose provides TCGA preprocessed data and analysis pipelines to
the cancer research community. It generates regular standard runs as well as customized runs to
coordinate with the TCGA analysis working groups (AWGs). The Stomach Adenocarcinoma
(STAD) AWG runs were based on the AWG data.

The AWG run generated Nozzle' reports for the analyses of copy number?, mutation®*,
methylation, mMRNA and miRNA expression, and protein quantification. In addition to the analysis
reports of individual data types, the AWG runs also generated reports of the associations
between multiple selected data types, including clinical data.

Reports of the GDAC STAD AWG runs in line with the data freeze for manuscript submission are
reflected on the Firehose webpage
at http://gdac.broadinstitute.org/runs/awg_stad__2013 09 30/
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$11.10. MIRACLE Analysis

We used MIRACLE (Master mIRna Analysis for Cancer moLecular subtypE)1 to identify a miRNA
regulatory network driven by epigenetically silenced miRNAs in the EBV subtype. MIRACLE
identifies a miRNA-gene regulatory network by integrating the DNA methylation, miR-seq and RNA-
seq data.

miR-seq, DNA methylation, and RNA-seq Data for MIRACLE Analysis

MiRNA isoform expression files were downloaded from Synapse. The expression levels of 3p/5p
mature miRNA were summarized by the MIRACLE pipeline. Briefly, read numbers mapped to
the same miRNA isoform (based on MIMAT ID) were summed up regardless of their sequence
variations. The MIMAT IDs were further converted to miRNA mature product names according to
miRBase V19 annotations®. The numbers of reads that were mapped to the precursors, stemloops
and unannotated/retired miRNAs were summed up as “Precursor/Stemloop/Unannotated” in each
tumour sample. We also identified the DNA methylation probes which represent the
methylation status of miRNA promoters by mapping the ~450k HumanMethylation450 probes with
1kb region regions of miRNAs. This analysis identified 3439 probes. Among the 289 STAD
samples, 98 cases had complete HumanMethylation450 microarray, miR-seq and RNA-seq data.
We first integrated DNA methylation data with microRNA expression data to identify the microRNAs
that are probably directly regulated by DNA methylation. We ran MIRACLE using the EBV subtype
versus the other three non-EBV subtypes. Spearman rank correlation was used to analyze the
correlation between miRNA expression level and DNA methylation status of the same miRNA. A
refined subset of epigenetically silenced miRs was then selected according to two criteria: 1) each
miRNA was significantly inversely correlated with DNA methylation (FDR<1%) and 2) the miRNA
was also significantly altered (FDR<1%) between the EBV subgroup and other subgroups. After
we identified the epigenetically silenced miRNAs, we performed the regulatory network prediction
as previously described’. The miRNA seed binding information was from TargetScan®.

Epigenetically silenced miRNAs and predicted network

MIRACLE identified nine miRNAs that are potentially regulated by DNA methylation (Figure
S11.11). Further network analysis revealed the miRNA-regulatory network, including seven
epigenetically silenced miRNAs and 83 predicted targets. Among the most regulated miRNAs is
miR-9, which has been reported as a potential tumour suppressing miRNA in multiple cancer types4.
miR-9 has recently been established to be epigenetically silenced in gastric cancer’. The DNA
methylation of the miR-9 gene and its reverse association with 3p and 5p miRNA-products can be
seen in Figure S11.12. Pathway enrichment analysis on the targets predicted to be regulated by
epigenetically silenced miRNAs yielded DNA repair, leukocyte activation and cell adhesion
pathways.
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Figure S11.11. miR-RNA regulatory network for epigenetically silenced miRNAs.
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Figure S11.12. DNA methylation and expression of miR-9 


Figure S11.13. DNA methylation and expression of miR-196b
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Figure S11.13. DNA methylation and expression of miR-196b 
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