Supplemental Tables

Supplemental Table S1.

Dose escalation scheme

Dose level	Evofosfamide IV (mg/m ²) over 60 mins	Ipilimumab IV (mg/kg) over 90		
	on days 1 and 8 every 21 days $ imes$ 2	mins on day 8 every 21 days \times 4		
-1	320	3		
1 (starting level)	400	3		
2	480	3		
3	560	3		
4	640	3		

Supplemental Table S2.

Fifty most differentially expressed genes between responders and non-responders

Up/downregulated in Non-				Up/downregulated in Non-				
Responders Pre-Treatment				Responders On-Treatment				
SPINK13	5.5	HLA-DRB5	-6.52	ALX1	8.38	DDC	-8.78	
GSTM1	5.21	INSM1	-5.77	HOXC10	8.16	GPM6A	-7.61	
CHST9	5.02	BTNL8	-4.61	SOX2	7.96	AC006449.	-7.47	
AC016577.	4.86	FCGBP	-4.19	SLITRK2	7.55	ANKS4B	-6.7	
TNNT1	4.66	FCER1A	-3.86	MAGEA3	7.23	ARID3C	-6.64	
MAGEA1	4.56	CD1E	-3.86	MAGEA6	7.09	CXCL6	-6.37	
CYP3A43	4.48	LINGO3	-3.85	XAGE1B	6.59	MPPED1	-6.2	
MEPE	4.48	SOD3	-3.74	CSAG1	6.55	MROH2A	-5.92	
AARD	4.34	FAM159A	-3.71	HOXD8	6.53	KNDC1	-5.68	
RPRML	4.27	C19orf35	-3.35	KRT75	6.5	CLDN14	-5.52	
LY6K	4.02	NLGN4Y	-3.34	XAGE1A	6.44	CFTR	-5.24	
C1OTNF9B	3.97	CLEC17A	-3.25	MCIDAS	6.28	HLF	-5.23	
MAPK10	3.93	SLC34A3	-3.1	EN1	6.13	PDIA2	-5.08	
SYT16	3.78	RHOH	-3.05	CHL1	5.97	ANKRD30B	-4.84	
NME5	3.74	ADGRL3	-2.78	FBLL1	5.84	NRG1	-4.8	
CES3	3.62	LENG	-2.74	CXorf49B	5.68	ASIC2	-4.59	
CCNO	3 54	TBXAS1	-2 73	CXorf49	5.68	REIN	-4.4	
A2MI1	3 44	TMFM163	-2.7	SHOX2	5 5	KANK4	-4 34	
SETA3	3 36	P2RY14	-2 52		5.4	NDST3	-4 31	
GLOD5	3 36	FMOD	-2.52		5 35	MYOM2	-4 22	
	3 36	CD38	-2.5	HBM	5.23	NCAM2	-4 21	
I RP2	3.50	RNF224	-2.40	RMP7	4 92	SI C16A10	-4 14	
ROPN1B	3.5		-2.72	нохса	4.52		-4 07	
MAPK15	3.27	C16orf54	-2.37		4 36	MAR2113	-4 02	
KAZN	3.24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-2.32	NSG1	4.50		-3 99	
	3.10	PAORS	-2.51		4 21		-3.98	
GDR37	3.15	PTPRCAP	_2.10	TTC39A	4.09	SI C19A3	-3.95	
	2 78	FFRMT3	-1.99	GIC1	4.03		-3.94	
VSTM2I	2.70	MEGE6	-1.87		3.86		-3.84	
SI C13A3	2.54	MTRNR218	-1.87		3.84		-3.04	
SIC7A2	2.34		-1.02	RIIR1	3.69		-3.20	
SDECTAL	2.33		-1.01		3.05		-3.23	
7NE662	2.23	SMDD3	-1.74	WNKA	3.52	DRKAA2	-3.23	
	2.12	GLIDR2	-1.75		3.31	KAAG1	-3.22	
MTFR1	1 99	SEMA4A	-1.66		3.40	MAGI2	-3.13	
FSRP	1 99		-1.63		3.42	RDH3AI	-3.09	
	1.95	CXCR4	-1 59		3.30	KI HI 31	-2.99	
RNIDI	1.90	M7T2A	-1.55	SI C12A5	3.30	GITPD2	-2.55	
TSPANE	1.95	7NF671	-1 54	FRF1	3.34	7NF140	-2.03	
MIPEP	1.93	C5orf56	-1 54	TWIST1	3.54	ST20	-2.51	
ΡςΔΤ1	1.55	GATA6	-1 46		3.3	FRP1	-2.30	
SNX25	1.9		-1.40	TCF711	3.24	MDST	-2.40	
TRY6	1.05	GMIP	-1.45	17751	3.11		-2.23	
ADHEF1	1.84	CBX7	-1.42	ASB2	3.09	OVGP1	-2.24	
HPRT1	1.01	IRE7	_1 22	FAM107A	3.06	NPR	-2.16	
TMFMQQ	1.0	KIF21B	_1.30	CXorf36	3.00	SERINC2	-2.10	
FBX032	1.70	DGK7	_1.30	FARP4	2 99		-2.14	
GCAT	1.7	7C3H12A	-1.37	НОРХ	2.39		-2.15	
RHOT1	1.7	PCDHR4	-1.35	KIF23	2.35	PECR	-2.11	
ZNF572	1.08	CH507-9R2	-1 32	CDC45	2.75	CCBL1	-2.07	
	1.07		1.04		L T		2.01	

Supplemental Figure S1

TH-CR-417 PK parameters: no significant difference between the two highest dose groups

	N	C _{max} (µg/mL)	T _{max} (hr)	AUC _{last} (hr*µg/mL)	AUC _{inf} (hr*µg/mL)	T _½ (hr)			
Evofosfamide at 560 mg/m ²									
Evofosfamide (Prodrug)	7	9.40	1	11.9	12.1	0.725			
Br-IPM (Active Moiety)	7	0.179	1	0.228	NC	NC			
Evofosfamide at 640 mg/m ²									
Evofosfamide (Prodrug)	5	8.87	1	10.6	10.7	0.729			
Br-IPM (Active Moiety)	4	0.182	1	0.203	NC	NC			

* Data presented are geometric means

Supplemental Figure S1.

Evofosfamide serum pharmacokinetics. Serial blood samples were collected from patients receiving evofosfamide at either 560 mg/m² or 640 mg/m² at the time points shown and analyzed for concentration of evofosfamide, the prodrug, and of bromo-isophosphoramide mustard (Br-IPM), the active moiety.

Supplemental Figure S2.

Flow cytometry gating scheme for peripheral blood mononuclear cells. A) Debris and doublets were eliminated. CD3⁺ T cells were subdivided into CD8⁺CD4⁻ cytotoxic T cells and CD4⁺CD8⁻ T cells. which were then subdivided into CD4⁺FOXP3⁺ T_{reg} and CD4⁺FOXP3⁻ T_{eff}. Dendritic cells were identified as HLA⁻DR⁺CD11c⁺CD68⁻ while monocytic dendritic cells were HLA⁻DR⁺CD11c⁺CD68⁺. Myeloid-derived suppressor cells (MDSC) were defined as HLA⁻DR⁻CD11b⁺CD33⁺ and further subdivided into PMN MDSC (CD14⁻CD15⁺), Mo MDSC (CD15⁻CD14⁺), and DN tumor-associated macrophages (CD14⁻CD15⁻). Tumor-associated macrophages were identified as HLA⁻DR⁻CD11b⁺CD33⁻CD68⁺. **B-D**) Representative flow plots showing **B**) Ki67 (left) and Lag3 (right) staining in peripheral blood CD8⁺ T cells, **C)** arginase 1 (left) and PD-L1 (right) staining in circulating dendritic cells, and **D**) Arginase 1 (left) and PD-L1 (right) staining in circulating to isotype control populations.

Supplemental Figure S3.

Changes in circulating T cell phenotype due to treatment. Peripheral blood mononuclear cells were isolated from patients prior to, during, and post treatment and assessed for immune composition and function by 20-color flow cytometry. Proliferation of CD8 and CD4 effector T cells was analyzed by Ki-67 expression and is shown at each time point for each patient. The percentage of exhausted PD-1⁺LAG-3⁺ CD8 T cells is also shown.

Supplemental Figure S4.

Flow cytometry gating scheme for tumor biopsies. A) Debris and doublets were eliminated. CD3⁺ T cells were subdivided into CD8⁺CD4⁻ cytotoxic T cells and CD4⁺CD8⁻ T cells, which were then subdivided into CD4⁺FOXP3⁺ T_{reg} and CD4⁺FOXP3⁻ T_{eff}. Dendritic cells were identified as HLA⁻DR⁺CD11c⁺CD68⁻ while monocytic dendritic cells were HLA⁻DR⁺CD11c⁺CD68⁺. Myeloid-derived suppressor cells (MDSC) were defined as HLA⁻DR⁻CD11b⁺CD33⁺ and further subdivided into PMN MDSC (CD14⁻CD15⁺), Mo MDSC (CD15⁻CD14⁺), and DN tumor-associated macrophages (CD14⁻CD15⁻). Tumor-associated macrophages were identified as HLA⁻DR⁻CD11b⁺CD33⁻CD68⁺. **B-D**) Representative flow plots showing **B**) hypoxia (top) and Ki-67 (bottom) staining in tumor-infiltrating CD8⁺ T cells, **C**) hypoxia (top) and PD-L1 (bottom) staining in tumor-infiltrating dendritic cells, and **D**) Ki-67 staining in tumor-associated macrophages (top) and PMN MDSC (bottom) relative to control populations in peripheral blood mononuclear cells from a healthy donor.

Supplemental Figure S5.

Tumor hypoxia and immune function in individual patients. Patient biopsies were obtained at baseline and at week 7, and assessed for hypoxia and immune composition and function by 20-color flow cytometry. Data are shown for individual patients, color-coded based on response. A) Proliferation of tumor-infiltrating CD8 and CD4 effector T cells was analyzed based on Ki-67 expression. **B)** Patients were given oral pimonidazole 5-24 hours prior to biopsy to evaluate tumor hypoxia using anti-pimonidazole antibody conjugated to the fluorescent dye ATTO 594 (Hypoxyprobe), and densities of T cells and dendritic cells in hypoxic areas were assessed. **C)** Proliferation of immune-suppressive CD33⁺CD14⁻CD15⁻ tumor-associated macrophages was evaluated by Ki-67 expression. D) Hypoxia-exposed (pimonidazole+, circles) vs non-hypoxia resident (pimonidazole-, squares) CD4 effector T cells were analyzed for PD-1 expression pre- and on-treatment (cycle 3, day 8).

Changes in gene expression in response to evofosfamide + ipilimumab therapy. Tumor biopsies were collected pre-treatment and on-treatment (cycle 3, day 8), and RNA was isolated using All-prep (Qiagen). RNA sequencing was performed by Avera and bioinformatic analysis was performed by the Baylor College of Medicine Multi-omics Core.