Reviewers' comments:

Reviewer #1 (Remarks to the Author):

In this manuscript, the authors describe an integrative analysis of single-cell transcriptomes during mouse mammary epithelial development from different studies, strains, and across multiple stages. Based on their results, they define gene sets corresponding to putative mammary stem cells (MaSCs), basal cells, and two luminal populations. These gene sets are used to explore scRNA-seq data of human mammary epithelium and bulk RNA-seq profiles of breast tumors generated by The Cancer Genome Atlas (TCGA). The authors also explore the effect of development, pregnancy, and hormone replacement therapy on the populations in the gland and their implication for the risk of specific breast cancer subtypes.

Overall, the data processing steps are reasonable, and the authors have used accepted and standard approaches for filtering, visualization, and trajectory inference. The visualizations are appealing and corroborate the presented conclusions. The genes selected are also appropriate. While many of the specific findings are largely confirmatory, this work nicely synthesizes existing and newly generated data into the first global single-cell atlas of the life history of the mouse mammary gland, including branches and cell population distributions across different time points and treatment conditions. In addition, a key finding appears to be that the bipotent progenitors present in embryogenesis are not present in postnatal mammary tissue, providing additional evidence that downstream lineages are likely maintained by unipotent progenitors. These cells also appear to be lacking from mature human mammary epithelium (at least at the resolution of sequenced cells).

Despite the strengths of this work, the current manuscript suffers from several issues that dampen enthusiasm, as detailed below.

Major comments:

Giraddi et al. (Cell Reports 2018) described a mouse scRNA-seq atlas capturing developmental stages ranging from fetal MaSCs to adult basal cells and luminal cell subpopulations. Their single-cell multilineage trajectory (Fig. 2) appears nearly identical to the ones reported by the authors. A more thorough exposition of the advantages of the data integration effort undertaken in this study would be beneficial. For example, could similar insights have been derived directly from the Giraddi et al. data, or does the integrative analysis provide more robust gene signatures for the key populations? Perhaps, the authors' integrative analysis can provide new insights into the putative unipotent progenitors of each adult epithelial population? If so, this would be a welcome contribution to the field.
The authors used data integration to show a mapping between mouse and human epithelial populations. However, differences were also apparent. The authors missed an opportunity to delineate commonalities and differences, both for genes and pathways, which would benefit the field.
The authors' approach to project single-cells using gene set enrichments is not novel and has been used previously to show differentiation states in brain cancers (e.g., Fig. 2d of PMID 27806376). The authors should temper their related claims.

4. Many groups have studied the expression of mammary stem cell and epithelial population-specific genes in bulk breast tumor expression data. If candidate unipotent progenitors play a larger role than previously appreciated (e.g., in LumB or Her2 subsets, Fig. 4a,b), it would be useful to explicitly define the gene sets for candidate unipotent progenitors of each epithelial population and reassess their associations with breast cancer molecular subtypes.

5. Breast tumors have been subdivided into clinically-distinct groups that extend beyond pam50 subtypes. For example, TNBC can be subdivided into Vanderbilt subtypes. Additionally, BRCA status is a key risk factor for TNBC. How do these and other key molecular classifications of breast cancer relate to reference maps defined by the authors? Do the authors observe an association between putative cell-of-origin and age in breast cancer patients?

Minor comments:

1. Cluster 1 appears to conflate candidate unipotent progenitors of basal epithelial cells with fetal MaSCs. After refining the clustering to separate these two subsets, it will be important to determine whether any cells in the fMASC cluster are derived from datasets other than Giraddi et al. If so, this may reveal evidence for MaSCs later in development. Tracing such cells to their respective datasets and developmental time points would be warranted.

2. The authors should do a better job in the Results explaining which findings are new and which are confirmatory. The line appears to be blurred in several places.

Reviewer #2 (Remarks to the Author):

In this study the authors report the integration and reanalysis of several (embryonic and adult) mammary epithelial cell (MEC) scRNAseq studies (4 mouse and 1 human). In addition ,they also include their own scRNAseq data which investigates the impact of Ovx and hormone treatment on the MEC composition. The authors then use their new integrated data to investigate the cell of origin of breast tumours using publicly available RNAseq data. Overall the authors have done a good job in combining these publicly available datasets which I believe should be made public. However, there several parts of the manuscript where (in my opinion) the authors are over-interpreting the results. If the authors could address these issues I would support publication.

Major issues:

1) There are other data integration algorithms (and subsequent interpretation) other than Seurat v3. It would be good to see how the data looks like when other methods are applied. I suggest a comparison in a supplementary figure should be included at least for the overall shape of the data (eg. UMAP).

2) The quality control carried out by the authors excluded low quality cells from all the studies. However, according to this analysis some studies had predominantly low-quality cells (eg. Pal B. et al). This needs to be clearly highlighted in the text and implications of this needs to be mentioned with regard to the data interpretation.

3) The 4 mouse datasets were from different genetic backgrounds. This is a key difference and one that need to be presented clearly. I suggest that the proportions contribution of these genetic backgrounds need to be presented for each cell population/cluster.

4) Line 160-164. This a big statement regarding the bi-potent luminal progenitors. I think more analysis is needed here. The authors should show the break-down of the data from the 4 different studies and also a breakdown by mouse background.

5) There is a major problem with the comparison to the human dataset. First of all, there is only one study out there with scRNAseq data (there are many more in progress with much larger sample sizes) so it is premature to make any inferences based on this single study. I think the authors should remove the human analysis part and focus the manuscript on the mouse analysis.

6) Similarly, the comparison of human scRNAseq to the publicly available cancer datasets is premature in my opinion as the authors are relying on effectively 4 individuals form one study. They should wait till there is more data available.

7) It is not clear to me how the Ovx scRNASeq data fits in this paper. This feels like an add on and is also presented in a disjointed way after the human data. I would suggest that the authors either take it out or integrate it into the mouse analysis and discuss it fairly.

8) The discussion section needs to be toned down significanlty. The authors are over interpreting their analysis. This will be made easier if the human data is taken out.

9) Line 408-411. Again the authors are making very serious claims by re-interpreting published data. They don't provide any new experimental evidence to support this claim. In addition, the authors fail to mention the scATACseq papers (Wahl lab) that present data which supports the presence of the bipotent progenitor cells. A more balanced presentation of the data out their (especially if its not their own) is required.

10) The combined dataset of the various mouse studies could be a nice resource for the mammary

gland community and the authors should consider generating a user friendly website to mine the data.

Remarks to the author:

In this manuscript, the authors describe an integrative analysis of single-cell transcriptomes during mouse mammary epithelial development from different studies, strains, and across multiple stages. Based on their results, they define gene sets corresponding to putative mammary stem cells (MaSCs), basal cells, and two luminal populations. These gene sets are used to explore scRNA-seq data of human mammary epithelium and bulk RNA-seq profiles of breast tumors generated by The Cancer Genome Atlas (TCGA). The authors also explore the effect of development, pregnancy, and hormone replacement therapy on the populations in the gland and their implication for the risk of specific breast cancer subtypes.

Overall, the data processing steps are reasonable, and the authors have used accepted and standard approaches for filtering, visualization, and trajectory inference. The visualizations are appealing and corroborate the presented conclusions. The genes selected are also appropriate. While many of the specific findings are largely confirmatory, this work nicely synthesizes existing and newly generated data into the first global single-cell atlas of the life history of the mouse mammary gland, including branches and cell population distributions across different time points and treatment conditions. In addition, a key finding appears to be that the bipotent progenitors present in embryogenesis are not present in postnatal mammary tissue, providing additional evidence that downstream lineages are likely maintained by unipotent progenitors. These cells also appear to be lacking from mature human mammary epithelium (at least at the resolution of sequenced cells).

Despite the strengths of this work, the current manuscript suffers from several issues that dampen enthusiasm, as detailed below.

Authors' response:

We appreciate this reviewer's careful evaluation and valuable comments/suggestions. According to this and the other reviewers' comments, we have made significant revisions to our manuscript, including different data integration methods, additional analyses on the progenitor populations, comparisons between data from mouse and human studies, and a data deposit at the UCSC Cell Browser to allow readers to explore genes of interest interactively. We also removed overinterpretations and overstated sentences to balance our findings and those from others. We hope that our responses properly address the reviewers' comments.

Point-by-point response

#	Reviewer's comment	Authors' response
Major	comment	
#1	Giraddi et al. (Cell Reports 2018)	Relevant new data: Supplementary Fig. 8E and
	described a mouse scRNA-seq	Supplementary Table 5
	atlas capturing developmental	
	stages ranging from fetal MaSCs	Thank you for this valuable comment. We recognize
	to adult basal cells and luminal	that the previous study by Giraddi et al. captured a
	cell subpopulations. Their single-	very similar trajectory to the one obtained in this
	<i>cell multilineage trajectory (Fig. 2)</i>	study. However, as indicated by this reviewer, the
	appears nearly identical to the	strength of our analysis has been that we can identify
	ones reported by the authors. A	putative unipotent progenitor populations by
	more thorough exposition of the	combining the data from five studies examined at
	advantages of the data	different life stages. In this revision, we explored the
	integration effort undertaken in	transitions of gene expressions through
	this study would be beneficial. For	differentiation in each lineage, taking advantage of
	example, could similar insights	their pseudotemporal ordering. We also analyzed the
	have been derived directly from	transcriptomic signatures in unipotent progenitor

the Giraddi et al. data, or does the	populations. As a result, we have found that the
integrative analysis provide more	unipotent progenitors have higher expression of cell
robust gene signatures for the	cycle and myc-related genes, which could be further
key populations? Perhaps, the	explored in the future. We added the gene and
authors' integrative analysis can	pathway lists in Supplementary Fig. 8E and
provide new insights into the	Supplementary Table 5, which could be useful
putative unipotent progenitors of	resources to explore repopulation and differentiation
each adult epithelial population?	machinery in each lineage.
If so, this would be a welcome	
contribution to the field.	We also added the following sentences to our
contribution to the field.	We also added the following sentences to our manuscript:
contribution to the field.	We also added the following sentences to our manuscript:
contribution to the field.	We also added the following sentences to our manuscript: (Results, Line 174)
contribution to the field.	We also added the following sentences to our manuscript: (Results, Line 174) First, we focused on the putative unipotent
contribution to the field.	We also added the following sentences to our manuscript: (Results, Line 174) First, we focused on the putative unipotent progenitor populations (C1, C3, and C5 clusters in Fig.
contribution to the field.	We also added the following sentences to our manuscript: (Results, Line 174) First, we focused on the putative unipotent progenitor populations (C1, C3, and C5 clusters in Fig. 1) that were not clearly identified in the previous
contribution to the field.	We also added the following sentences to our manuscript: (Results, Line 174) First, we focused on the putative unipotent progenitor populations (C1, C3, and C5 clusters in Fig. 1) that were not clearly identified in the previous scRNAseq studies ^{10–13} . For that purpose, we analyzed

process in each lineage (S0_S1: L-Hor differentiation,
S0_S2: L-Alv differentiation, and S3_S4: Basal
differentiation). As a result, the progenitor
populations were found to express genes associated
with cell cycle progression and myc pathways
compared to their mature counterparts
(Supplementary Fig. 8E and Supplementary Table 5).
(Discussion, Line 448)
As a result of the filtering and integration of the
multiple datasets, the trajectory obtained in the
current study could separate the putative unipotent
progenitor populations, which have not yet been
identified in prior scRNAseq studies ^{9–13} . The indicated
characteristics of the progenitor cells were high
proliferation capacity and activation of the myc
pathway, which have been repeatedly associated with
progenitor populations in other tissues ^{51,52} . Although

		further validation studies are warranted, the obtained
		gene and pathway lists could be useful resources to
		explore the repopulation and differentiation
		machinery in each lineage of the mouse mammary
		gland.
#2	The authors used data integration	Relevant new data: Supplementary Fig. 15D and
	to show a mapping between	Supplementary Tables 10-11
	mouse and human epithelial	
	populations. However, differences	Thank you for this important comment. We compared
	were also apparent. The authors	the data between the species and found that human
	missed an opportunity to	and mouse have different lineage gene sets despite
	delineate commonalities and	sharing several well-known marker genes and gene
	differences, both for genes and	signatures. We believe that these results can be good
	pathways, which would benefit	resources to study inter-species commonalities and
	the field.	differences. Accordingly, we added Supplementary
		Fig. 15D and Supplementary Table 9.
		We revised the text as follows:

(Results, Line 275)
When mouse and human lineage-specific gene sets
were compared, both commonalities and differences
were recognized (Supplementary Fig. 15D). While the
known lineage markers and the relevant gene
signatures were preserved in the two species, a
significant number of lineage genes were species-
specific (Supplementary Tables 10 and 11).
(Discussion, Line 467)
On the other hand, when lineage gene sets were
compared between the two species, a significant
number of genes were found to be species-specific.
Recently, scRNAseq data of dairy cattle mammary
gland was reported ⁵⁵ , and those from other
organisms could also appear in the near future. The
gene lists obtained in this study would be a

		foundation to explore core gene sets for the function
		of the mammary gland and the differentiation
		machinery, together with inter-species differences
		and their biological meanings.
#3	The authors' approach to project	We appreciate this information and noticed that some
	single-cells using gene set	of our sentences were misleading.
	enrichments is not novel and has	
	been used previously to show	We made changes to the text as follows:
	differentiation states in brain	
	cancers (e.g., Fig. 2d of PMID	(Results, Line 204)
	27806376). The authors should	A similar approach has been reported previously to
	temper their related claims.	estimate the differentiation status of human
		oligodendroglioma cells ³⁶ .
		(Results, Line 282)
		Therefore, lineage inference based on the gene sets
		defined in this study would predict their cells of origin
		as previously attempted ^{6,38} .

		(Discussion, Line 597)
		In conclusion, we constructed a putative lineage
		trajectory of the mammary epithelium throughout
		important WOS by integration of multiple datasets
		and defined the lineage-specific gene sets to infer the
		location of the given cell population on the trajectory.
#4	Many groups have studied the	Relevant new data: Supplementary Fig 17D and
	expression of mammary stem cell	Supplementary Table 4
	and epithelial population-specific	
	genes in bulk breast tumor	We appreciate an opportunity to explore our data
	expression data. If candidate	from another aspect. According to this comment, we
	unipotent progenitors play a	defined the gene sets for putative progenitor clusters
	larger role than previously	and assessed their associations with breast cancer
	appreciated (e.g., in LumB or Her2	molecular subtypes. As a result, Lum B and Her2
	subsets, Fig. 4a,b), it would be	subtypes had higher LH-pro scores when compared
	useful to explicitly define the	to Lum A subtype. In contrast, Lum A tumors had
	gene sets for candidate unipotent	higher L-Hor scores. We believe that this observation

progenitors of each epithelial	added useful indication regarding cells of origins of
population and reassess their	breast cancer, which have not yet been addressed so
associations with breast cancer	far. The gene sets used for this analysis are also
molecular subtypes.	explicitly presented in the newly added
	Supplementary Table 4.
	We made revisions to the text as follows:
	(Result, Line 311)
	When the transcriptome of the human breast cancer
	was assessed in more detail using the putative
	progenitor clusters-specific gene sets defined in the
	mouse epithelial cell data (Supplementary Table 4),
	LumB and Her2 subtypes had higher LH-pro scores
	when compared to LumA subtype (Supplementary
	Fig. 17D). In contrast, LumA tumors had higher L-Hor
	scores.

		(Discussion, Line 483)
		In this study, identification of the putative unipotent
		progenitor populations led to further assessment of
		cells of origins. The results indicated that LumB type
		cancers are likely to originate from progenitor cells in
		the hormone-sensing cell lineage, while LumA tumors
		would have their origins in more mature L-Hor cells.
		(Discussion, Line 526)
		In summary, the integration analysis and identification
		of putative progenitor populations revealed
		progenitor cells in the hormone-sensing lineage as
		putative cells of origin for LumB and Her2 subtypes.
#5	Breast tumors have been	Relevant new data: Supplementary Fig 18C-E
	subdivided into clinically-distinct	
	groups that extend beyond	This is another important comment. We assessed the
	pam50 subtypes. For example,	data sets again by considering the suggested
	TNBC can be subdivided into	classifications (TNBC subtypes, BRCA status, and age).

Vanderbilt subtypes. Additionally,	The findings from additional analyses were mostly
BRCA status is a key risk factor for	confirmatory of the previous literatures, which
TNBC. How do these and other	supported the robustness of the analysis in this study.
key molecular classifications of	We added new results (Supplementary Figs 18C-E)
breast cancer relate to reference	and revised the manuscript as follows:
maps defined by the authors? Do	
the authors observe an	(Results, Line 325)
association between putative cell-	The TCGA RNA-seq data were further explored by
of-origin and age in breast cancer	considering other clinically relevant aspects. Triple-
patients?	negative breast cancer (TNBC) is a subtype that is
	characterized by lack of the hormone receptors (ER
	and PR), combined with the lack of either
	overexpression or amplification of the HER2 gene ⁴² .
	TNBC has been further classified into six (TNBCtype),
	or more recently four (TNBCtype-4) subtypes by their
	molecular signatures ^{43,44} . When TNBCs in the TCGA
	datasets were evaluated in light of the lineage genes,
	most TNBC tumors were mapped onto the Alv lineage

	(Supplementary Fig. 18C). However, the LAR tumors
	were scattered into the Hor lineage, indicating their
	different origins in the gland hierarchy. The BRCA
	gene mutation status contributes to another
	dimension of heterogeneity in breast cancer. It has
	been reported that the majority of BRCA1 tumors are
	basal-like, and BRCA2 tumors are mainly LumB
	subtype ⁴⁵ . In accordance with the subtype-lineage
	relationship in Fig. 3B, BRCA1 tumors were found in
	the Alv area, while BRCA2 tumors were observed in
	the both the Alv and Hor lineage with higher Hor
	scores (Supplementary Fig. 18D). Although age at
	diagnosis has been also associated with intrinsic
	subtypes, there is no correlation between age and
	lineage scores in this cohort (Supplementary Fig. 18E).
	(Discussion, Line 492)
	BRCA1 mutation carriers have an expanded luminal

		alveolar population ^{6,57} , which would result in the
		transformation of this cell population later in life.
		These results supported the robustness of the gene
		sets-based lineage inference in this study.
		Interestingly, a part of LAR tumors in TNBC might
		have different origins in the hormone-sensing
		lineage. The LAR subtype has been associated with
		androgen receptor expression and luminal lineage
		gene signature ⁴² . Such tumors may lose ER/PR
		expression during transformation from hormone-
		sensing cells, while luminal alveolar cells, which are
		putative cells of origins for most non-LAR TNBCs,
		usually do not express HRs. Contrary to BRCA1,
		research on the effects of BRCA2 mutations are
		currently limited ^{58,59} . Future studies should aim at
		possible dysregulation of L-Hor lineage in BRCA2
		mutation carriers.
Minor	comments	

Minor	Cluster 1 appears to conflate	Relevant new data: Supplementary Figs. 8C and 8D
#1	candidate unipotent progenitors	
	of basal epithelial cells with fetal	Thank you for the comment. We evaluated the cell
	MaSCs. After refining the	compositions in each branch (Supplementary Figs. 8C
	clustering to separate these two	and 8D) by pseudotemporal analysis which separated
	subsets, it will be important to	putative MaSC cells (S5_S3 branch in stream plot)
	determine whether any cells in	from basal lineage cells (S3_S4). Although putative
	the fMASC cluster are derived	MaSC cells can be found in pregnant and pubertal
	from datasets other than Giraddi	glands, their numbers were too low to justify their
	et al. If so, this may reveal	potential existence. However, we think this
	evidence for MaSCs later in	information should be shared with readers and have
	development. Tracing such cells	made the following revisions:
	to their respective datasets and	
	developmental time points would	(Results, Line 166)
	be warranted.	Putative oligopotent MaSC cells in the S5_S3 branch
		were not only composed of cells from embryonic
		glands (Giradi et al. ¹⁰), but also from pregnant (Bach
		et al. ¹²) and pubertal glands (Pal et al. ¹¹)

	(Supplementary Fig. 8C). When the absolute number
	of cells was investigated in each dataset, such cells
	comprised only a very small fraction of the entire
	dataset.
	(Discussion, Line 427)
	The differentiation of MaSC into the luminal lineage
	was found to occur only in the embryonic gland by
	the presence of putative bipotent luminal
	progenitors, indicating that the three different
	lineages would be maintained by the unipotent
	progenitors in the adult gland. Putative MaSCs could
	be present in postnatal glands, but their multipotency
	would be restricted in normal physiological
	conditions as indicated in a recent study ⁴⁷ .

Minor	The authors should do a better	We appreciate the instruction. According to this
#2	job in the Results explaining	comment and others, we have significantly revised
	which findings are new and which	the entire text to clearly distinguish confirmatory and
	are confirmatory. The line appears	novel findings and to remove overstatements and
	to be blurred in several places	irrelevant sentences. As examples of summary
		sentences, we copied the revised version of the first
		paragraph of the Discussion and the conclusion
		below.
		(Discussion, Line 405)
		(Discussion, Line 405) Technical advancement of scRNAseq analysis of the
		(Discussion, Line 405) Technical advancement of scRNAseq analysis of the mammary epithelium has led to revisions in our
		(Discussion, Line 405) Technical advancement of scRNAseq analysis of the mammary epithelium has led to revisions in our understanding of the biology of the gland, which had
		(Discussion, Line 405) Technical advancement of scRNAseq analysis of the mammary epithelium has led to revisions in our understanding of the biology of the gland, which had largely been investigated by population-level
		(Discussion, Line 405) Technical advancement of scRNAseq analysis of the mammary epithelium has led to revisions in our understanding of the biology of the gland, which had largely been investigated by population-level analyses through isolation of distinct, individual cell
		(Discussion, Line 405) Technical advancement of scRNAseq analysis of the mammary epithelium has led to revisions in our understanding of the biology of the gland, which had largely been investigated by population-level analyses through isolation of distinct, individual cell types. However, the lack of existence of the true stem
		(Discussion, Line 405) Technical advancement of scRNAseq analysis of the mammary epithelium has led to revisions in our understanding of the biology of the gland, which had largely been investigated by population-level analyses through isolation of distinct, individual cell types. However, the lack of existence of the true stem cell population in a dataset and the inherent

	interpretations of the individually collected datasets.
	Thanks to the recent developments of analytical tools
	for scRNAseq analyses, our study revealed a putative
	lineage trajectory that comprehensively covered most
	of the developmental stages of the mammary gland,
	which was supported by the five independent studies
	across three mouse strains, using four different
	integration algorithms. The integrated data and its
	reflection to cancer transcriptome comprehensively
	confirmed the previously suggested differentiation
	trajectory and cells of origins for human breast cancer,
	with established catalogues of genes and pathways
	that are specific to each cell types and species. Our
	analysis also identified the putative unipotent
	progenitor populations, which would add important
	clues to understanding the adult gland homeostasis
	and breast carcinogenesis. Finally, by referring the
	scRNAseq data to the lineage trajectory and the

	inferred cells of origin, we visualized how the different
	developmental stages and the external hormonal
	exposures can alter the cellular makeup of the
	mammary epithelium, and ultimately evaluated the
	risk of the gland for developing specific types of
	breast cancer. The results from our comprehensive
	analysis of mouse and human scRNAseq analyses
	present the mammary epithelium organization and its
	relationship with breast cancer development in an
	unprecedented resolution, which could be a good
	resource in the field.
	(Discussion, Line 597)
	In conclusion, we constructed a putative lineage
	trajectory of the mammary epithelium throughout
	important WOS by integration of multiple datasets
	and defined the lineage-specific gene sets to infer the
	location of the given cell population on the trajectory.

Our results revisited and added new insights to the
relationship between the cellular hierarchy in the
gland and the development of the specific subtypes
of breast cancer. The catalogue of identified
gene/pathway lists and the integrated data are fully
accessible in the supplementary data or at the UCSC
Cell Browser website (<u>https://mouse-mammary-</u>
epithelium-integrated.cells.ucsc.edu), both of which
could be a good resource in the mammary gland
development and mammary carcinogenesis fields.

Remarks to the author:

In this study the authors report the integration and reanalysis of several (embryonic and adult) mammary epithelial cell (MEC) scRNAseq studies (4 mouse and 1 human). In addition ,they also include their own scRNAseq data which investigates the impact of Ovx and hormone treatment on the MEC composition. The authors then use their new integrated data to investigate the cell of origin of breast tumours using publicly available RNAseq data. Overall the authors have done a good job in combining these publicly available datasets which I believe should be made public. However, there several parts of the manuscript where (in my opinion) the authors are over-interpreting the results. If the authors could address these issues I would support publication.

Authors' response:

We appreciate this reviewer's careful evaluation and valuable comments/suggestions. According to this and the other reviewers' comments, we have made significant revisions to our manuscript, including different data integration methods, additional analyses on the progenitor populations, comparisons between data from mouse and human studies, and a data deposit at the UCSC Cell Browser to allow readers to explore genes of interest interactively. We also removed overinterpretations and overstated sentences to balance our findings and those from others. We hope that our responses properly address the reviewer's

comments.

Point-by-point response

#	Reviewer's comment	Authors' response
Majo	or comment	
#1	There are other data integration	Relevant new data: Supplementary Figs. 7E-G
	algorithms (and subsequent	
	interpretation) other than Seurat	We appreciate this important comment. We agree that
	v3. It would be good to see how	other integration methods should be applied as well.
	the data looks like when other	Thus, three additional integration algorithms were
	methods are applied. I suggest a	applied. While <i>Seurat v3</i> and <i>Harmony</i> are both
	comparison in a supplementary	anchor-based algorithms, LIGER is an algorithm that
	figure should be included at least	exploits both graph- and anchor-based approaches.
	for the overall shape of the data	Meanwhile, <i>scAlign</i> is a deep learning approach based
	(eg. UMAP).	on a neural network.
		Despite their algorithmic differences, these three
		additional integration algorithms yielded similar UMAP
		projections, which substantially strengthens our
		conclusions in this paper. We have made the data from
		the four different integration algorithms fully available

	to readers and interactively explorable at the UCSC Cell
	Browser, which is detailed in our response below to
	comment #10. Accordingly, we revised the manuscript
	as follows:
	(Results, Line 142)
	To evaluate the robustness of the results, three
	additional algorithms (<i>Harmony</i> ²⁹ , <i>LIGER</i> ³⁰ , and
	<i>scAlign</i> ³¹) were applied to integrate the five datasets.
	The resulting UMAP plots were similar to those
	obtained by <i>Seurat v3</i> : embryonic cells located at the
	center bridging the three lineages (Supplementary
	Figs. 7E-G). The integrated data was deposited to the
	UCSC Cell Browser and interactively explorable on the
	website (https://mouse-mammary-epithelium-
	integrated.cells.ucsc.edu) ³² .
	(Discussion, Line 410)

		Thanks to the recent developments of analytical tools				
		for scRNAseq analyses, our study revealed a putative				
		lineage trajectory that comprehensively covered most				
		of the developmental stages of the mammary gland,				
		which was supported by the five independent studies				
		across three mouse strains, using four different				
		integration algorithms.				
#2	The quality control carried out by	Thank you for the thoughtful comment. We filtered out				
	the authors excluded low quality	low quality barcodes and multiplets as carefully and as				
	cells from all the studies. However,	fair as possible. During our evaluation, we noticed that				
	according to this analysis some	one sample (Adult_Basal: presorted basal cells from the				
	studies had predominantly low-	adult mammary gland) from Pal et al. contained				
	quality cells (eg. Pal B. et al). This	barcodes with much lower feature and UMI counts				
	needs to be clearly highlighted in	(Supplementary Fig. 2C). When we integrated six				
	the text and implications of this	samples in the Pal dataset, that included Adult_Basal,				
	needs to be mentioned with	the cells from Adult_Basal failed to merge with other				
	regard to the data interpretation.	basal cells from adult glands in other samples, possibly				
		due to the lack of marker genes they were supposed to				

have. Therefore, we decided to remove this sample from the analysis. In the original manuscript, this sample only appeared in one figure and was not compared to other samples (PMID: 29158510, Supplementary Figure 5C). However, we realized that analytical methods of scRNAseq is highly critical for readers to evaluate our analyses and they should be clearly highlighted. Accordingly, we revised the manuscript as follows: (Results, Line 90) After reviewing the primary data, one sample (Adult_Basal) from Pal et al. was completely removed from the analysis due to significantly low gene and UMI counts when compared to other samples in the same dataset¹¹ (Supplementary Text and Supplementary Fig. 2C).

		(Discussion 591)
		The filtering process removed a considerable number
		of cells or even a entire sample due to the presence of
		putative multiplets and low quality cells. This should be
		carefully interpreted and revisited because analytical
		pipeline of scRNAseq is still in its infancy.
#3	The 4 mouse datasets were from	Relevant new data: Supplementary Fig. 8C
	different genetic backgrounds.	
	This is a key difference and one	Again, we appreciate the suggestion. In the revised
	that needs to be presented clearly.	version, we include Suplementary Figure 6B and 8C to
	I suggest that the proportions	show the breakdown of clusters/branches identified in
	contribution of these genetic	Seurat v3 and Stream, respectively. However, it was
	backgrounds need to be	hard to comment on potential differences between
	presented for each cell	mouse strains because cells from some important life
	population/cluster.	stages are exclusively from one strain (such as
		embryonic cells from C57BL/6 and pubertal cells from
		FVB only). The total number of cells from each strain
		was also considerably different. Based on these

		assessments, we revised the text as follows:				
		(Results, Line 170)				
		Differences between mouse strains could not be				
		evaluated because cells from some important life				
		stages are exclusively from one strain (such as				
		embryonic cells from C57BL/6 and pubertal cells from				
		FVB only) (Supplementary Figs. 6B and 8C).				
#4	Line 160-164. This a big statement	Relevant new data: Supplementary Figs. 8C and D				
	regarding the bi-potent luminal					
	progenitors. I think more analysis	This is an important comment. Considering comments				
	is needed here. The authors	from both reviewers, we prepared Supplementary Figs.				
	should show the break-down of	8C and 8D. Our results suggest that putative MaSC				
	the data from the 4 different	could be in the postnatal glands (especially in pubertal				
	studies and also a breakdown by	and pregnant glands). However, the bipotent luminal				
	mouse background.	progenitor state was found in embryonic glands almost				
		exclusively. Recently, Centonze et al. reported that				
		putative MaSCs are present in postnatal glands, but				

their multipotency is restricted in normal physiological conditions by luminal cells with TNF signaling after birth (PMID: 32848220). This finding matches our observation that luminal differentiation from MaSC occurs in the embryonic gland only. However, we agree that we cannot guarantee absolutely the presence of "bipotent luminal progenitors" and it should be further evaluated in the future. With additional references, we revised the manuscript as follows: (Result, Line 160) It has been proposed recently that there could be a bipotent luminal progenitor state (S3_S0) in which cell fate would be determined to be a part of of luminal lineage, with the cells being capable of differentiating into either L-Alv and L-Hor cells^{7,34}. However, we have found the predominant occupancy of the S3_S0 branch by the embryonic cells, suggesting that these fate

	determinations	occur	only	during	embryc	onic
	development. Th	ere were	e only a	a few, if a	iny, puta	tive
	bipotent luminal	progeni	tors in	the post	natal gla	nds
	(Supplementary	Figs. 8C	and D).	Putative	oligopot	tent
	MaSC cells in	the S5_	S3 bra	inch wer	e not c	only
	composed of ce	lls from	embryc	onic gland	ls (Girad	i et
	al. ¹⁰), but also	from pr	egnant	(Bach e	t al. ¹²) a	and
	pubertal glands	(Pal et a	l.11) (Su	pplement	ary Fig. 8	8C).
	When the absolu	te numb	er of ce	lls was inv	vestigate	d in
	each dataset, su	ch cells	compris	sed only a	a very sr	nall
	fraction of the en	itire data	set.			
	(Discussion, Line	427, incl	uding r	esponse ⁻	to comm	ent
	#9 of the reviewe	er 2)				
	The differentiatic	on of Ma	aSC into	o the lum	inal line	age
	was found to occ	ur only iı	n the er	nbryonic	gland by	the
	presence of put	tative bi	potent	luminal	progenit	ors,
	indicating that th	ne three	differe	nt lineage	es would	be

dult
atal
d in
n a
the
and
age
For
mes
nary
ture
ER-
olar
to
trus
s on
the
-Alv

		(LP) and L-Hor (ML) clusters, which potentially infered
		the presence of bipotent luminal progenitors in adult
		glands. ^{9,11,12} . However, a detailed examination of the
		data with recently developed algorithms suggested
		that the cluster was composed of multiplets of the cells
		from the two luminal clusters. In addition, a luminal
		intermediate cluster was not found in the other
		scRNAseq studies of the mammary epithelium ^{10,13,14,38} .
		The lineage tracing studies have also revealed that L-
		Alv and L-Hor clusters are sustained by the unipotent
		progenitors in the adult gland ⁷ . On the other hand,
		recent scATACseq study supported the presence of
		bipotent luminal progenitor in adult mammary
		glands ⁵⁰ . Therefore, physical validation about the
		presence of bipotent luminal progenitor in fetal and
		adult glands will be needed for a definitive conclusion.
#5	There is a major problem with the	Relevant new data: Supplementary Figs. 15B and 15C
	comparison to the human dataset.	

First of all, there is only one study	Thank you for pointing out this. We understand the
out there with scRNAseq data	risk of making inferences from just one dataset.
(there are many more in progress	However, at the same time, our analysis of the TCGA
with much larger sample sizes) so	data, based on lineage dataset determined from
it is premature to make any	human scRNAseq, harmonized well with previous
inferences based on this single	literature, which, we believe, supports the robustness
study. I think the authors should	of the gene sets. Therefore, we tried to validate our
remove the human analysis part	gene sets using different datasets. Although currently
and focus the manuscript on the	there is only one fully published study regarding
mouse analysis.	scRNAseq of human breast epithelium, the analysis
	included two datasets, one from four individuals with
	TOX Chromium and the other from three individuals
	with C1 fluidigm. As we generated gene sets from 10X
	with C1 fluidigm. As we generated gene sets from 10X data (training dataset), we used the data from the
	10X Chromium and the other from three individuals with C1 fluidigm. As we generated gene sets from 10X data (training dataset), we used the data from the Fluidigm as a test dataset. We found that the gene sets
	10X Chromium and the other from three individuals with C1 fluidigm. As we generated gene sets from 10X data (training dataset), we used the data from the Fluidigm as a test dataset. We found that the gene sets clearly separated the test data (from three individuals)
	10X Chromium and the other from three individuals with C1 fluidigm. As we generated gene sets from 10X data (training dataset), we used the data from the Fluidigm as a test dataset. We found that the gene sets clearly separated the test data (from three individuals) on the ternary plot according to their definitive cell

that both were from one publication, but the
applicability to the data from seven individuals across
two scRNAseq modalities would support the
robustness of the gene sets to some extent. Still, we
agreed that we should clearly highlight this limitation.
Accordingly, we revised the manuscript as follows:
(Results, Line 269)
To validate the robustness of the obtained gene sets,
scRNAseq data of human breast epithelium from
another three individuals sequenced with Fluidigm C1
in a paper of Nguyen et al. ³⁸ was analyzed. The data
were mounted on Seurat, clustered and definitively
annotated according to the original publication
(Supplementary Fig. 15B). Then, the data were
evaluated by the gene sets obtained from the 10X
dataset (Supplementary Fig. 15C). The results showed
that the lineage gene sets could clearly indicate

lineages of cells from the other dataset, which
supported the robustness of the method.
(Discussion, Line 472)
Although the human lineage genes were validated
across two different scRNAseq modalities, the data
came from only seven individuals in one study. The
trajectory of human mammary gland development
could be refined further when more relevant human
scRNAseq datasets become available.
(Discussion, L594)
The analysis of human data including the TCGA dataset
should be discussed with caution until additional
relevant human scRNAseq becomes available and
refine the lineage-specific gene sets.

#6	Similarly, the comparison of	Thank you for the comment. We agreed with the
	human scRNAseq to the publicly	opinion of the reviewer and revised the manuscript as
	available cancer datasets is	described above.
	premature in my opinion as the	
	authors are relying on effectively 4	
	individuals form one study. They	
	should wait till there is more data	
	available.	
#7	It is not clear to me how the Ovx	We failed to clearly present and explain the meaning of
	scRNASeq data fits in this paper.	the OVX data among the others in the previous version.
	This feels like an add on and is also	One major motivation for this manuscript was to
	presented in a disjointed way after	describe the changes in the gland structure and its
	the human data. I would suggest	association with a risk for developing breast cancer
	that the authors either take it out	during different windows of susceptibility (WOS).
	or integrate it into the mouse	Especially in menopausal WOS, hormone replacement
	analysis and discuss it fairly.	therapy and exposure to hormone mimics (endocrine
		disrupting chemicals, or EDCs) are known to be
		associated with an increased risk. To our knowledge,

	scRNAseq data for the other major WOS are publicaly
	available. However, the extensive analysis of
	menopausal WOS has been lacking. Therefore, we
	performed an experiment using the surgically induced
	model of menopause (OVX) treated with HRT (estrogen
	and progesterone) and EDC. Considering the reviewer's
	comment, we moved and integrated the experimental
	portion before the analysis of the human data
	(Supplementary Fig. 1). We revised the manuscript as
	follows:
	(Introduction, Line 50)
	Considering the facts that a significant number of
	breast cancer cases developed in postmenopausal
	women, and exposure of estrogen or estrogen mimics
	are thought to promote postmenopausal breast
	cancer ¹⁷ , we first designed a new experiment to
	examine the gland in menopausal WOS and its

	response to external stimuli at a single cell resolution.
	(Results, Line 66)
	To reconstruct a complete lineage trajectory of the
	mammary epithelium, four publically available datasets
	of the droplet-based scRNAseq of the mouse
	mammary gland across embryonic, neonatal, pubertal,
	and pregnant WOS were identified (Fig. 1A,
	Supplementary Text, and Supplementary Table 1).
	Furthermore, to address the effect of the loss of ovarian
	hormones (menopausal WOS), and the impacts of
	external hormone usage and the environmental
	exposure to the endocrine disrupting chemicals (EDCs)
	during that period, we surgically menopaused mice
	and treated them with 17β -estradiol (E2), progesterone
	(P4), a mixture of three polybrominated diphenyl ether
	congeners (PBDEs) [i.e., environmental chemicals
	interacting with estrogen receptor-alpha (ER α) ^{8,9,18}], or

	combinations of them. Image analysis of the whole
	mammary gland revealed that E2 treatment re-
	expanded the mammary gland in the surgically
	menopaused mice with increased total duct length,
	branching points, and terminal end bud-like structures
	(TEB-Ls) that are considered to be active proliferation
	sites of the gland ⁹ (Supplementary Fig. 1). The addition
	of P4, in conjunction with E2, further increased
	branching of the gland. Simultaneous exposure to
	PBDEs, potential EDCs, did not have a significant
	impact on these treatments. However, the PBDE groups
	did tend to show weaker regrowth of the gland
	(Supplementary Fig. 1). The mammary glands from
	these treated mice were analyzed with scRNAseq using
	the 10x Genomics Chromium v2 single cell 3' RNA-seq
	platform.
	(Results, Line 372)

		By knowing that significant structural and functional
		changes during specific WOS are associated with an
		increased risk for developing breast cancer, as well as a
		heightened susceptibility to estrogen, progesterone,
		and hormone mimics, such as EDCs ⁸ , we investigated
		the changes in the mammary gland in different WOS,
		HRT, and exposure to EDCs in light of the lineage
		trajectory and inference for the specific types of breast
		cancer.
		(Results, Line 390)
		During the menopausal WOS, the endogenous hormone levels are very low and the mammary tissue is thought to be hyper-sensitive to the exposure of estrogen or its mimics ^{9,17} .
#8	The discussion section needs to be	We have significantly revised the entire text to clearly
	toned down significanlty. The	distinguish confirmatory and novel findings and to
	authors are over interpreting their	remove overstatements and irrelevant sentences. As
	analysis. This will be made easier if	shown above (Comment #5 and 6, reviewer 2), we

	mammary epithelial cell data but with newly added test
	data. As some examples, we include the revised version
	of the first paragraph of the Discussion and the
	Conclusion below.
	(Discussion, Line 405)
	Technical advancement of scRNAseq analysis of the
	mammary epithelium has led to revisions in our
	understanding of the biology of the gland, which had
	largely been investigated by population-level analyses
	through isolation of distinct, individual cell types.
	However, the lack of existence of the true stem cell
	population in a dataset and the inherent differences
	between scRNAseq studies have limited interpretations
	of the individually collected datasets. Thanks to the
	recent developments of analytical tools for scRNAseq
	analyses, our study revealed a putative lineage
	trajectory that comprehensively covered most of the

developmental stages of the mammary gland, which was supported by the five independent studies across three mouse strains, using four different integration algorithms. The integrated data and its reflection to cancer transcriptome comprehensively confirmed the previously suggested differentiation trajectory and cells of origins for human breast cancer, with established catalogues of genes and pathways that are specific to each cell types and species. Our analysis also identified the putative unipotent progenitor populations, which would add important clues to understanding the adult gland homeostasis and breast carcinogenesis. Finally, by referring the scRNAseg data to the lineage trajectory and the inferred cells of origin, we visualized how the different developmental stages and the external hormonal exposures can alter the cellular makeup of the mammary epithelium, and ultimately evaluated the risk of the gland for

	developing specific types of breast cancer. The results
	from our comprehensive analysis of mouse and human
	scRNAseq analyses present the mammary epithelium
	organization and its relationship with breast cancer
	development in an unprecedented resolution, which
	could be a good resource in the field.
	(Discussion, Line 597)
	In conclusion, we constructed a putative lineage
	trajectory of the mammary epithelium throughout
	important WOS by integration of multiple datasets and
	defined the lineage-specific gene sets to infer the
	location of the given cell population on the trajectory.
	Our results revisited and added new insights to the
	relationship between the cellular hierarchy in the gland
	and the development of the specific subtypes of breast
	cancer. The catalogue of identified gene/pathway lists
	and the integrated data are fully accessible in the

		supplementary data or at the UCSC Cell Browser
		website (<u>https://mouse-mammary-epithelium-</u>
		integrated.cells.ucsc.edu), both of which could be a
		good resource in the mammary gland development
		and mammary carcinogenesis fields.
#9	Line 408-411. Again the authors	We confirmed that there were adult mammary cells in
	are making very serious claims by	the branch between the LP/ML and the fetal/basal
	re-interpreting published data.	bifurcations in the Chung et al. paper from Dr. Wahl's
	They don't provide any new	lab (PMID: 31597106, Fig. 4A), which indicated the
	experimental evidence to support	presence of bipotent luminal progenitors. We also
	this claim. In addition, the authors	realized that the explanation was complicated and
	fail to mention the scATACseq	confusing because multiple names have been ascribed
	papers (Wahl lab) that present	to the same subset in the mammary gland. Therefore,
	data which supports the presence	we revised the manuscript to present ours and others'
	of the bi-potent progenitor cells. A	data in a balanced fashion, with some explanatory
	more balanced presentation of the	sentences to describe the terminologies.
	data out their (especially if its not	
	their own) is required.	(Discussion, Line 427, including response to comment

	#4 of reviewer 2)
	The differentiation of MaSC into the luminal lineage
	was found to occur only in the embryonic gland by the
	presence of putative bipotent luminal progenitors,
	indicating that the three different lineages would be
	maintained by the unipotent progenitors in the adult
	gland. Putative MaSCs could be present in postnatal
	glands, but their multipotency would be restricted in
	normal physiological conditions as indicated in a
	recent study ⁴⁷ . These results were consistent with the
	emerging concept of the mammary gland
	development that have been reported by lineage
	tracing studies ^{2,48,49} and scRNAseq analyses ^{3,10,38} . For
	clarification, it should be noted that different names
	have been given to the same cell types in the mammary
	gland. L-Hor cells are analogous to HR+ mature
	luminal cells (ML) and L-Alv cells correspond to ER-
	luminal progenitors (LP), or secretory alveolar

	progenitors,	which	expand	in	response	to
	progesteror	ne and duri	ng pregna	incy a	nd the dies	trus
	phase ⁷ . The	re were a o	couple of s	scRNA	seq studies	s on
	the adult m	nouse marr	nmary glar	nd tha	t reported	the
	presence of	the interm	ediate cell	types	between L	-Alv
	(LP) and L-H	lor (ML) clu	usters, whic	ch pot	entially infe	ered
	the presenc	e of bipote	ent luminal	prog	enitors in a	dult
	glands. ^{9,11,12} .	However,	a detailed	l exan	nination of	the
	data with r	ecently de	veloped a	lgoritł	nms sugges	sted
	that the clus	ter was cor	nposed of	multip	olets of the o	cells
	from the tw	ıo luminal	clusters. Ir	n addi	ition, a lum	inal
	intermediate	e cluster v	was not i	found	in the o	ther
	scRNAseq s	tudies of th	ne mamma	ary epi	thelium ^{10,13,}	^{14,38} .
	The lineage	tracing stu	idies have	also r	evealed tha	nt L-
	Alv and L-H	or clusters	are sustair	ned by	y the unipo	tent
	progenitors	in the adu	ult gland ⁷ .	On t	he other ha	and,
	recent scAT	ACseq stud	dy suppor	ted th	ne presence	e of
	bipotent lu	uminal pro	ogenitor	in ac	lult mamn	nary

		glands ⁵⁰ . Therefore, physical validation about the
		presence of bipotent luminal progenitor in fetal and
		adult glands will be needed for a definitive conclusion.
#10	The combined dataset of the	We greatly appreciate the suggestion. Accordingly, we
	various mouse studies could be a	submitted data to the UCSC Cell Browser
	nice resource for the mammary	(https://mouse-mammary-epithelium-
	gland community and the authors	integrated.cells.ucsc.edu) where readers can explore
	should consider generating a user	gene expressions of interest, as well as download the
	friendly website to mine the data.	processed data. We have provided the link in the
		manuscript as well (Lines 146, 603, and 764).

REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

Overall, the authors have done a very nice job revising the manuscript to address critiques from the prior round of review. That said, there are still a few issues that we would like the authors to address before publication.

1. While we applaud the authors for making an interactive version of the atlas available via the UCSC Cell Browser, we did not see a download link or a file inventory at figshare.com. The authors should ensure that the integrated scRNA-seq atlas is made available for download, including all dataset and cell-level meta-data and annotations, including cluster labels, phenotypes from the original studies, CytoTRACE values, GSVA values, and the coordinates of the integrated embeddings. These data should be made available via figshare.com or GitHub. Separately, the UCSC "Data Download" link stalled and never showed URLs for download.

2. We might have missed it, but gene sets for putative unipotent progenitors should be made available (and clearly labeled) in a supplementary table.

3. Line 66: "To reconstruct a complete lineage trajectory of the mammary epithelium". We understand the authors' ambition, but a "complete" lineage trajectory is clearly an overstatement.

4. Line 485: "The results indicated that LumB type cancers are *likely* to originate from progenitor cells in the hormone-sensing cell lineage". The results support this possibility, but the "likelihood" of this relationship remains unknown. This comment extends to all statements where the authors claim a likely developmental origin based on their results (e.g., line 481). Please temper the wording.

Reviewer #2 (Remarks to the Author):

The authors have addressed all my concerns. The manuscript is much improved. I support its publication.

Remarks to the author:

Overall, the authors have done a very nice job revising the manuscript to address critiques from the prior round of review. That said, there are still a few issues that we would like the authors to address before publication.

Authors' response:

We are very happy to see that our revision answered this reviewer's comments appropriately. We appreciate the previous comments from this reviewer, which improved the significance, scientific correctness, and readability of our manuscript. We hope that our responses described below will solve the remaining issues.

#	Reviewer's comment	Authors' response
#1	While we applaud the authors	Thank you for your careful reviewing comments.
	for making an interactive	According to the editor's recommendation, we
	version of the atlas available via	redeposited the relevant data and scripts in Zonedo
	the UCSC Cell Browser, we did	(<u>http://doi.org/10.5281/zenodo.4674274</u>). We also
	not see a download link or a file	confirmed that "Data Download" tab at the UCSC cell

Point-by-point response

<i>inventory at <u>figshare.com</u>.</i>	browser is currently working and we can download the
The authors should ensure that	relevant integrated data. We also copied our Data
the integrated scRNA-seq atlas	Availability Statement below for more information.
is made available for download,	
including all dataset and cell-	Data availability
level meta-data and	The authors declare that all data supporting the
annotations, including cluster	findings of this study are available within the article, the
labels, phenotypes from the	Supplementary Data, and the data repository or from
original studies, CytoTRACE	the corresponding author upon reasonable request.
values, GSVA values, and the	The data from the Tabula Muris Consortium was
coordinates of the integrated	available in the Figshare with the identifier
embeddings. These data should	doi.org/10.1038/s41586-018-0590-4 ^{13,90} . The other
be made available via	publicly available scRNA datasets were retrieved from
figshare.com or GitHub.	the Gene Expression Omnibus under the following
Separately, the UCSC "Data	accession codes: GSE111113
Download" link stalled and	(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
never showed URLs for	<u>=GSE111113</u> , Girradi et al. ¹⁰), GSE103275
download.	(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc

	=GSE10327	<u>′5,</u>	Pal	et	al. ¹¹),	GSE106273
	(<u>https://ww</u>	w.ncbi.	nlm.nih	n.gov/g	eo/query	//acc.cgi?acc
	<u>=GSE10627</u>	<u>'3</u> , I	Bach	et	al. ¹²),	GSE113197
	(<u>https://ww</u>	w.ncbi.	nlm.nih	i.gov/g	eo/query	//acc.cgi?acc
	<u>=GSE11319</u>	0 <mark>7</mark> , Hun	nan no	rmal b	reast, Ng	juyen et al. ³⁷),
	and					GSE75688
	(<u>https://ww</u>	w.ncbi.	nlm.nih	i.gov/g	eo/query	//acc.cgi?acc
	<u>=GSE75688</u>	, huma	an brea	st canc	er, Chun	g et al. ⁴³). The
	scRNAseq o	data ob	otained	in this	study w	ere deposited
	in the Ger	ne Exp	ression	Omni	ibus alor	ng with their
	associated	I	meta	da	ata	(GSE149949,
	https://www	v.ncbi.r	ılm.nih.	.gov/ge	eo/query,	/acc.cgi?acc=
	GSE149949). The ir	ntegrat	ed data	a are exp	lorable on the
	web brows	er and	l can b	pe dov	vnloaded	as <i>Seurat</i> R
	objects a	at <u>h</u>	ttps://n	nouse-	mammar	y-epithelium-
	integrated.o	cells.uc	<u>sc.edu</u> .	The Mo	ouse and	human FACS-
	sorted mic	roarray	data d	of the	mamma	ry epithelium
	were also	retrieve	ed fror	n the	GSE un	der the code

		GSE19446
		(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
		<u>=GSE19446</u>) and GSE16997
		(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
		=GSE16997), respectively ^{7,36} . The TCGA breast cancer
		data was retrieved from the NCI GDC
		(<u>https://www.cancer.gov/tcga</u>) ³⁹ . The data and custom
		codes in this study were deposited and available in
		Zenodo (http://doi.org/10.5281/zenodo.4674274) ⁶⁹ .
#2	We might have missed it, but	Thank you for your comment and instruction. Gene sets
	gene sets for putative unipotent	for putative unipotent progenitors are provided in
	progenitors should be made	Supplementary Data 4. The associated sentence in the
	available (and clearly labeled) in	main text is copied below.
	a supplementary table.	
		(L267)
		When the transcriptome of human breast cancer was
		assessed in more detail using the putative progenitor
		clusters-specific gene sets defined in the mouse

		epithelial cell data (Supplementary Data 4), LumB and
		Her2 subtypes had higher LH-pro scores when
		compared to LumA subtype (Supplementary Figure
		17d).
#3	Line 66: "To reconstruct a	Thank you again for your careful reviewing and
	complete lineage trajectory of	instruction. We agreed with this comment and deleted
	the mammary epithelium". We	the indicated and similar sentences. We believe that
	understand the authors'	more balanced expressions are used throughout the
	ambition, but a "complete"	revised text.
	lineage trajectory is clearly an	
	overstatement.	
#4	Line 485: "The results indicated	Thank you for your comments. We also agreed this
	that LumB type cancers are	comment and revised the sentence as follows:
	likely to originate from	
	progenitor cells in the	(L402)
	hormone-sensing cell lineage".	Our results support a possibility that LumB-type
	The results support this	cancers are from immature hormone-sensing lineage
	possibility, but the "likelihood"	cells.

of this relationship remains	
unknown. This comment	
extends to all statements where	We also tempered the wording of the similar
the authors claim a likely	statements.
developmental origin based on	
their results (e.g., line 481).	
Please temper the wording.	

Remarks to the author:

The authors have addressed all my concerns. The manuscript is much improved. I support its

publication.

Authors' response:

We appreciate the previous comments from this reviewer, which improved the quality of our

manuscript a lot. We are happy to see that the reviewer supports publication of our work.