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Construction of  nanoparticles (NPs) with asymmetric shapes by molecular dynamics 

simulations 

 

In the electronic density of states (DOS) database of NPs, we considered not only symmetric 

but also asymmetric NP structures. To generate the asymmetric NPs, we employed molecular 

dynamics (MD) simulations in which the LAMMPS program was used. The MD time-step was 

chosen as 1 fs and the canonical (NVT) ensemble was used. The box size for the MD simulation 

was 35×35×35 Å3,in which one NP structure was included. The MD procedure is as follows: 

1. Prepare a NP cluster composed of M atoms. (M=40, 45, 50) 

2. For 200 ps, heat the box up to 900 K which is higher than melting temperature of the 

cluster. During the heating process, the unsymmetric shapes of NPs can be generated. 

3. For 10 ps, rapidly cool down the box to 10 K to maintain the asymmetric shapes. 

Then, with the NPs with asymmetric shapes, we calculated their DOS patterns by DFT without 

ionic relaxation. 
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Table S1. Properties used in the atom feature vector 𝑣𝑖 

Property Range Unit Category # 

Group number 1, 3 – 12, 15  12 

Period number 1 – 6  6 

Electronegativity 1.2 – 3.2  10 

1st ionization energy 6.5 – 15 eV 10 

Electron affinity -0.8 – 2.4 eV 10 

Density 0 – 23 g/cm3 10 

Weight 1 – 240 g/mol 10 

Radius 0 – 1.65 Å 10 

Atomic volume 6.5 – 18  cm3/𝑚𝑜𝑙 10 

Melting point -260 – 3500 ℃ 10 

Boiling point -274 – 5600  ℃ 10 

Zeff 1 – 5.3  10 

Heat of vaporization 100 – 750  kJ/mol 10 

Heat of fusion 6 – 30 kJ/mol 10 

Polarizability 25 – 60 Atomic unit 10 

Resistivity 0 – 160 10-8 Ω·m 10 

Atomization energy 250 – 750 kJ/mol 10 

Heat capacity 0.12 – 0.57 J/g·K 10 

Number of valence electrons 0 – 10  10 

Number of d electrons 0 – 10  10 

 

 

Table S2. Properties used in the bond feature vector 𝑢(𝑖,𝑗)  

Property Range Unit Category # 

Atom distance 2.4 – 3.4 Å  40 
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Figure S1. Performance tests of the PCA-CGCNN model for the number of used PCs. Black 

data indicate the ratio of information of PCA analysis and blue data indicate the mean absolute 

errors (MAEs) of the signal vectors. The lowest error of the PCA-CGCNN model is observed 

with 41 PCs. 

 

  



S5 

 

 

Figure S2. Test for the optimization of material features. MAE values are compared as a 

function of various feature combinations. Blue points/line denote the minimum value at each 

feature combination. The best performance is observed with one feature (AW) is used. Here, 

AW, GR, EA, PL, AE, C, and HF means atomic weight, group number, electron affinity, 

polarizability, atomization energy, heat capacity, and heat of fusion, respectively. 
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Figure S3. The DOS pattern similarities (R2 and MAE) between our PCA-CGCNN model and 

DFT methods. Here, pure Pt NPs are considered. Bars indicate R2 value and blue squares 

indicate MAE. Gray bars indicate training data and red bars indicate test data.  
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Figure S4. The DOS pattern similarities (R2 and MAE) between our PCA-CGCNN model and 

DFT methods. Here, pure Pd NPs are considered. Bars indicate R2 value and blue squares 

indicate MAE. Gray bars indicate training data and red bars indicate test data. 
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Figure S5. Training and test datasets for DOS prediction of bimetallic NPs. In the NP structures, 

COh, Ih, Oh, TOh, and Cube indicate cuboctahedral, icosahedral, octahedral, tetraoctahedral, 

and cubic structures, respectively. 
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Figure S6. The DOS pattern similarity (R2 and MAE) between our PCA-CGCNN model and 

DFT methods. Here, Pt@Au core@shell NPs are considered. Bars indicate R2 value and blue 

squares indicate MAE. Gray and red bars indicate training and test data, respectively. In 

addition, line and solid bars indicate total and separate learning methods, respectively. 
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Figure S7. The DOS pattern similarity (R2 and MAE) between our PCA-CGCNN model and 

DFT methods. Here, Pd@Pt core@shell NPs are considered. Bars indicate R2 value and blue 

squares indicate MAE. Gray and red bars indicate training and test data, respectively. In 

addition, line and solid bars indicate total and separate learning methods, respectively. 
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Figure S8. The DOS pattern similarity (R2 and MAE) between our PCA-CGCNN model and 

DFT methods. Here, Pt@Pd core@shell NPs are considered. Bars indicate R2 value and blue 

squares indicate MAE. Gray and red bars indicate training and test data, respectively. In 

addition, line and solid bars indicate total and separate learning methods, respectively. 
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Figure S9. The ratio of information of Au-Pt bimatllic NP DOSs for the total learning and 

separate learning schemes in PCA. Here, the ratio for the total learning scheme is lower than 

the separate learning shceme. 
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Figure S10. The MAE of signal vector in the training and validation sets during the learning 

process of PCA-CGCNN. Black and red dots correspond to the results without the dropout and 

regularization, while blue and green dots correspond to the results with the dropout and 

regularization. 

 


