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Supplementary Table 1: Primary antibodies used in this study

Antibody Species Source Cat. No. Application
(dilution)
o-o1AT rabbit Dako GA50561-2 WB (1/1000)
IF (1/100)
o-AFP chicken R&D Systems AF1369 WB (1/1000)
IF (1/100)
o-TF sheep Philip Woodman, WB (1/1000)
Manchester, UK IF (1/100)
o-FGA mouse Santa Cruz sc-398806 WB (1/1000)
o-apokE mouse Santa Cruz sc-13521 WB (1/1000)
o-ALB rabbit Sigma A6684 WB (1/1000)
o-Stx5 rabbit Synaptic Systems 110053 WB (1/5000)
o-TfR mouse Invitrogen 13-6800 WB (1/1000)
o-OST48 rabbit In house WB (1/1000)
o-Bagb mouse Abnova H00007917-B0O1P | WB (1/1000)
o-BiP goat Santa Cruz sc-1051 WB (1/1000)
a-GRP94 rat Enzo ADI-SPA-850 WB (1/1000)
a-Hsp70 mouse Abcam ab47455 WB (1/5000)
a-Hsc70 rat Enzo ADI-SPA-815 WB (1/1000)
a-Hsp90 rabbit Enzo ADI-SPA-846 WB (1/2000)
a-ATF4 rabbit Cell Signaling 11815 WB (1/1000)
o-ATF6 rabbit Cell Signaling 65880 WB (1/1000)
o-tubulin mouse Keith Gull, Oxford, UK WB (1/1000)
o-TGN46 sheep Vas Ponambalam, IF (1/400)
Leeds, UK
o-CRT rabbit David H. Llewellyn, IF (1/100)

Cardiff, UK
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Supplementary Figure 1: Ipom-F reduces signal peptide-cleavage of a1AT in vitro.
al1AT was translated in rabbit reticulocyte lysate supplemented with [*S]Met/Cys,
canine rough microsomes and either DMSO or Ipom-F (1 uM). Membrane-associated
products were isolated by ultracentrifugation, resolved by SDS-PAGE and analysed
directly by phosphorimaging. Samples were treated with EndoH to distinguish
N-glycosylated (g) from non-glycosylated (Og) products. Ipom-F treatment produced
non-translocated, signal peptide-containing precursor forms of a1AT (arrowhead) that
were non-glycosylated, and therefore EndoH-resistant. Diagram of a1AT precursor is
shown on the left. The cleavage site of its N-terminal signal peptide (scissors symbol)
and its endogenous N-glycosylation sites (orange Y symbols) are indicated.
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Supplementary Figure 2: Ipom-F does not impair N-glycosylation of TF under harsh treatment
conditions. HepG2 cells were treated with DMSO, 100 nM Ipom-F over a time-course or with
increasing concentrations of Ipom-F for 24 h. Clarified lysates were analysed by immunoblotting

for the indicated proteins. EndoH digestion was performed to distinguish N-glycosylated () from
non-glycosylated (Oy) species. Post-ER, complex-glycosylated and ER resident, core-glycosylated
al1AT products are shown. Solid line indicates different parts of the same gel. Full-length immunoblots
are presented in Supplementary Figure 6.
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Supplementary Figure 3: The observed Ipom-F-mediated induction of stress-inducible cytosolic
chaperones correlates with the appearance of non-imported secreted protein precursors.
HepG2 cells were treated with DMSO for 24 h, tunicamycin (tun) for 17 h or Ipom-F for the indicated
times. Detergent-soluble lysates were blotted for endogenous a1AT or AFP. Tunicamycin treatment
effectively prevented N-glycosylation (indicated by ) to yield non-glycosylated (Oy) species. Complex-
and core-glycosylated a1AT products are shown. Non-glycosylated precursors of a1AT and AFP,
whose ER import was inhibited by Ipom-F are indicated by an arrowhead. Note that these products
migrate slightly slower than the corresponding ER-located precursors in tunicamycin-treated cells (0y),
as predicted by signal peptide cleavage of the latter. The asterisk indicates a truncated form of AFP'>.
Full-length immunoblots are presented in Supplementary Figure 6.
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Supplementary Figure 4: Characterisation of Ipom-F-dependent ER stress.

(a) Cytosolic stress induced by the proteasome inhibitor MG-132 or the Hsp90-specific inhibitor
17-AAG does not activate the UPR. HepG2 cells were treated with DMSO, Ipom-F or 17-AAG

for 24 h, with tunicamycin (tun) for 12 h or MG-132 for 4 h. XBP1 mRNA splicing was determined

by reverse transcription-PCR. Unspliced and spliced XBP1 mRNA are indicated. GAPDH served

as a cDNA loading control. (b) Phosphorylation of elF2a cannot be detected in Ipom-F-treated cells.
HepG2 cells were treated with DMSO for 24 h, tunicamycin (tun) for 12 h or Ipom-F for the indicated
times. Detergent-soluble lysates were blotted with elF2a phospho-specific antibodies using elF2a
and tubulin as loading controls. (¢) ER stress triggered by Ipom-F-mediated Sec61 blockade does
not cause transcriptional upregulation of BiP and GRP94. HepG2 cells were treated with DMSO

for 24 h, tunicamycin (tun) for 12 h or Ipom-F for the indicated times. RNA was isolated from cells
and mRNA levels of BiP and GRP94 was determined by reverse transcription-PCR. GAPDH served
as a cDNA loading control. Full-length immunoblots and agarose gels are presented in Supplementary
Figures 6 and 7, respectively.
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Supplementary Figure 5 (continued)

related to Figure 7a
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Supplementary Figure 5: Full-length phosphorimaging exposures from Figures 1a and 7a.
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Supplementary Figure 6 (continued)
related to Figure 4a
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also used for Figure 6e, where it accompanies
the signal for ATF6.
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related to Supplementary Figure 4b
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Supplementary Figure 6: Full-length, infrared-based scans of immunoblots from the indicated main and
supplementary figures. The brightness of the entire scans was generally increased so that borders of
membranes are easier to see. Please note that for Figures 4c and 6e, the same membrane was incubated
with rat anti-Hsc70 and rabbit anti-ATF6 antibodies (two-colour detection system with Odyssey Infrared
Imager), and therefore the same anti-tubulin immunoblot is shown in both figures.
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Supplementary Figure 7 (continued)
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Supplementary Figure 7: Full-length scans of agarose gels from Figure 6a and
Supplementary Figure 4a and c.
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