OMTO, Volume 21

Supplemental information

Preclinical evaluation of a novel

antibody-drug conjugate targeting DR5

for lymphoblastic leukemia therapy

Shuyong Zhang, Dongdong Zhou, Chao Zheng, Peng Xiong, Wan Zhu, and Dexian Zheng

Supplementary Methods

In vitro binding assay by ELISA

High binding 96-well plates were coated with the recombinant DR5 extra-cellular domain (ECD) from mouse, SD rat, cynomolgus monkey and human (Sino Biological Inc., Beijing, China) and blocked with 0.05% Tween-20 containing 1% BSA in PBS (PBST). Oba01 at varying concentrations were added and incubated at 37 °C for 1.0 h, then washed with PBST and incubated with HRP-labeled donkey anti-human IgG-H&L (Abcam, ab102438) at 37 °C for 1.0 h. The excess probe was washed with PBST. Then TMB (3,3',5,5'-Tetramethylbenzidine) substrate solution (Solarbio, Shanghai, China, PR1200) was added and incubated at room temperature for 5 to 10 min followed by adding stop solution (1.0 M H₂SO₄). The optical density at 450 nm was determined on SPARK 10M multiplate reader (TECAN, 1703004862, Switzerland).

Analysis of DR5 expression in various ALL cells by flow cytometry

DR5 expression in Jurkat E6-1, Jurkat, J.gamma1, Reh, A3, MT-4, TF-1, Kasumi-1 and Daudi cells was examined by flow cytometry following immunofluorescent staining. Briefly, cells $(1 \times 10^6 \text{ cells/tube})$ were incubated in duplicate in the presence of Oba01 $(1 \ \mu\text{g/mL})$ at 4°C for 30 min. Normal human IgG antibody was used as a negative control. After washing, the cells were stained with 1 $\mu\text{g/mL}$ goat anti-Human IgG (H+L) cross-adsorbed secondary antibody labeled with Alexa Fluor 488 (Invitrogen) at 4°C for 1 h, and then washed twice with FCM buffer (PBS + 1% BSA). The fluorescent signals in individual samples were analyzed by flow cytometry using a FCM Calibur (ACEA, NovoCyte 2060R, USA).

Histopathology analysis

Samples were fixed overnight in 10% NBF and transferred to Dehydration machines. Paraffin embedding and cutting of tissue sections was performed by the Embedding Machine and LEICA Semi-Automated Rotary Microtome. For HE Staining on tissue Slides were baked 60 min at 60°C and were deparaffinized with

four rinses in xylene, hydrated using an alcohol gradient. Slides were then counterstained using hematoxylin and bluing reagents. Slides were then counterstained using eosin and dehydrated using an alcohol gradient. Slides were then cleared using xylene and sealed using medium. Imaging was done on a Leica Fluorescent Microscope.

Preclinical safety evaluation and pharmacokinetic assay

The GLP studies were performed at JOINN Laboratories, Inc. (Suzhou, China) in compliance with the animal welfare policies and guidelines approved by the National Medical Products Administration (NMPA) of China. Sprague-Dawley (SD) rats aged 6-8 weeks were purchased from Beijing Vital River Laboratory Animal Technology Co. (Beijing, China). Cynomolgus monkeys aged 3-5.5 years were purchased from Guangxi grandforest scientific primate Co. (Guangxi, China).

For acute toxicity study, SD rats and cynomolgus monkeys were randomized into four groups. SD rats were single-dosed intravenously on day 1 with vehicle, 12 mg/kg, 24 mg/kg and 48 mg/kg of Oba01, and 0.46 mg/kg MMAE (a dose equivalent to the dose administered as the Oba01 24 mg/kg), respectively (n = 5 male/5 female/group). Cynomolgus monkeys were single-dosed intravenously on days 1 with vehicle, 5 mg/kg, 10 mg/kg and 20 mg/kg of Oba01, and 0.19 mg/kg MMAE (a dose equivalent to the dose administered as the Oba01 10 mg/kg), respectively (n = 1 male/1 female/group). All animals were examined for mortality and clinical signs every day. Assessment of toxicity was based on mortality, clinical signs, food consumption, body weight, clinical and anatomic pathology. Necropsies were performed on Day 22 and tissues were routinely processed.

For multiple doses toxicity study, 40 SD rats and 8 cynomolgus monkeys (half males and half females) were randomly divided into four groups. Oba01 was intravenously administered once per 3 weeks for 6 weeks followed by a week treatment-free phase, with vehicle, 12 mg/kg and 36 mg/kg of Oba01, and 0.23 mg/kg MMAE (a dose equivalent to the dose administered as the Oba01 12 mg/kg) (n = 5

male and 5 female) in 40 SD rats and vehicle, 5 mg/kg and 15 mg/kg of Oba01, and 0.10 mg/kg MMAE (a dose equivalent to the dose administered as the Oba01 5 mg/kg) (n = 1 male and 1 female) in 8 cynomolgus monkeys. Various parameters, including clinical signs, and body weight were monitored. Two days after the last administration, all rats (half males and half females) from each group were sacrificed for gross and histopathological examination.

For pharmacokinetic (PK) analysis, six SD rats (3 male/3 female) in each group were administered single-dosed intravenously with Oba01 of 10 mg/kg. Blood samples were drawn prior to dosing on day 0, and at 5min, 1h, 4h, 8h, 24h, 48h, 72h, 120h (D6), 168h (D8), 240h (D11), 336h (D15), 408h (D18), 504h (D22), 576h (D25), 672h (D29) after dosing. Blood was collected from tail veins at specified time points, and serum was isolated and stored at -80 °C. Six cynomolgus monkeys (3 male/3 female) in each group were administered single-dosed i.v. infusion (20 min) with Oba01 of 4 mg/kg. Blood samples were drawn prior to dosing on day 0, and at 10min, 1h, 4h, 8h, 24h, 48h, 72h, 120h (D6), 168h (D8), 240h (D11), 336h (D15), 408h (D18), 504h (D22), 576h (D25), 672h (D29) after dosing. Blood was collected from vena cephalica antebrachii or vena saphena at specific time points, and serum was isolated at -80 °C. Quantification of total antibody and ADC were determined by optimized ELISA. The determination of free MMAE was performed using the software WinNonlin (V6.4, Pharsight, Princeton, USA).

Supplementary Tables

Cell Line	Source	Origin	Cell Growth Medium
Jurkat E6-1	Cell Bank of Chinese Academy of Shanghai Institutes for Biological Sciences (Shanghai, China)	T-cell acute lymphoblastic leukemia	RPMI 1640+10%FBS
Jurkat	Cell Bank of Chinese Academy of Shanghai Institutes for Biological Sciences (Shanghai, China)	T-cell acute lymphoblastic leukemia	RPMI 1640+10%FBS
J.gamma1	iCell Bioscience Inc. (Shanghai, China)	T-cell acute lymphoblastic leukemia	RPMI 1640+10%FBS
Reh	Cell Bank of Chinese Academy of Shanghai Institutes for Biological Sciences (Shanghai, China)	non T/B acute lymphoblastic leukemia	RPMI 1640+10%FBS
A3	iCell Bioscience Inc. (Shanghai, China)	Acute lymphoblastic leukemia	RPMI 1640+10%FBS
MT-4	iCell Bioscience Inc. (Shanghai, China)	T- Acute lymphoblastic leukemia	RPMI 1640+10%FBS +1% β-Mercaptoethanol
TF-1	iCell Bioscience Inc. (Shanghai, China)	Erythroid leukemia	RPMI 1640+10%FBS +1%GM-CSF
Kasumi-1	Cell Bank of Chinese Academy of Shanghai Institutes for Biological Sciences (Shanghai, China)	Acute Myeloid Leukemia	RPMI 1640+10%FBS
Daudi	Cell Bank of Chinese Academy of Shanghai Institutes for Biological Sciences (Shanghai, China)	Burkitt's lymphoma	RPMI 1640+10%FBS

Table S1. Source of cell lines and cell growth media

Table S2. High molecular weight, low molecular weight and monomer designation by size exclusion chromatography showing area and percentage of each fraction occupying total area under curve at 280 nm, related to Figure 1.

Retention Time (min)	Designation	Area280nm(mAU*s)	% Area280nm
7.996	HMW Aggregates	64.01737	1.2496
9.273	Monomer	4972.25293	97.0538
10.027	LMW Fragment	86.92017	1.6966

Table S3. Individual DAR components as determined by Hydrophobic Interaction Chromatography showing percentage of each fraction occupying total area under curve at 280 nm, related to Figure 1.

Retention Time (min)	Designation	Area280nm(mAU*s)	% Area280nm
3.409	DAR1	75.43899	1.8986
4.336	DAR 2	302.80391	7.6206
5.42	DAR 3	1012.66406	25.4858
6.309	DAR 4	1473.97003	37.0954
7.149	DAR 5	791.88899	19.9295
7.963	DAR 6	316.45347	7.9701

Crown	Sex	Day(s) Relative to Start Date							
Group	Sex	-1	7	14	21				
Control	Male	220.8 ± 2.7	282.6 ± 2.9	335.2 ± 3.8	376.0 ± 6.4				
Control	Female	205.8 ± 2.1	224.8 ± 2.7	242.2 ± 4.7	260.6 ± 7.4				
Oba01	Male	221.6 ± 2.6	272.8 ± 5.7	322.4 ± 10.5	369.0 ± 14.4				
12 mg/kg	Female	205.8 ± 2.4	230.0 ± 2.1	240.4 ± 5.2	256.6 ± 5.2				
Oba01	Male	220.4 ± 2.1	245.6 ± 8.5	291.2 ± 11.0	350.0 ± 8.6				
36mg/kg	Female	205.2 ± 3.0	209.4 ± 7.7	226.0 ± 12.3	252.6 ± 6.3				
MMAE	Male	222.6 ± 2.8	258.0 ± 3.4	312.0 ± 4.7	358.2 ± 7.0				
0.23mg/kg	Female	205.2 ± 2.8	222.0 ± 3.5	241.6 ± 5.6	262.6 ± 8.8				

Table S4. Body weight in SD rat, related to Figure 6.

Crown	Sex	Day(s) Relative							
Group	Sex	28	35	42	44				
Control	Male	404.6 ± 6.9	432.8 ± 7.1	454.4 ± 7.6	437.6 ± 8.0				
Control	Female	271.4 ± 3.0	275.4 ± 4.0	272.8 ± 3.6	263.2 ± 3.4				
Oba01	Male	389.6 ± 16.1	422.4 ± 18.1	449.2 ± 19.8	431.8 ± 18.0				
12mg/kg	Female	268.2 ± 8.3	278.8 ± 6.8	273.0 ± 7.3	261 ± 7.7				
Oba01	Male	360.6 ± 9.9	400.4 ± 10.3	435.4 ± 7.2	413.8 ± 5.9				
36mg/kg	Female	251.2 ± 10.1	247.2 ± 22.9	275.0 ± 5.3	266.0 ± 5.1				
MMAE	Male	375.6 ± 7.9	409.2 ± 11.4	435.8 ± 12.9	427.0 ± 14.8				
0.23mg/kg	Female	268.4 ± 9.2	283.0 ± 11.3	283.4 ± 10.0	279.4 ± 7.8				

 Table S5. Body weight in cynomolgus monkeys, related to Figure 6.

Group	Sex		Day(s) Relative								
Group	Sex	-2	7	11	14	21	28	32	35	42	44
Control	Male	4.06	4.12	-	4.10	4.08	4.20	-	4.14	4.06	4.08
Control	Female	2.54	2.46	-	2.50	2.52	2.54	-	2.58	2.56	2.56
Oba01	Male	2.48	2.48	-	2.50	2.50	2.58	-	2.58	2.50	2.54
5mg/kg	Female	2.54	2.60	-	2.56	2.52	2.70	-	2.64	2.62	2.62
Oba01	Male	2.84	2.88	2.72	-	-	-	-	-	-	-
15mg/kg	Female	2.80	2.74	-	2.70	2.68	2.68	2.54	-	-	-
MMAE	Male	3.94	3.92	-	3.76	3.84	3.94	-	3.98	4.02	4.00
0.10mg/kg	Female	2.46	2.40	-	2.36	2.42	2.46	-	2.54	2.36	2.32

Group	Sex	ALT	AST	ALP	GGT	СК	LDH	СНО	TG
Group	Sex	(U/L)	(U/L)	(U/L)	(U/L)	(U/L)	(U/L)	(mM)	(mM)
Ctl	male	73±8	190±47	167±31	0.4±0.5	426±167	817±362	1.99±0.24	0.54±0.12
Cu	female	53±12	134±20	64±14	1 ± 0	461±254	938±565	2.37 ± 0.60	0.61±0.11
12 mg/kg	male	78±5	170 ± 17	182±41	0.8 ± 0.4	328 ± 70	616±166	2.14±0.24	0.51±0.12
Oba01	female	60±4	147±16	68±14	0.8 ± 0.4	430±163	943±380	2.43±0.69	0.47 ± 0.15
36 mg/kg	male	103±11	293±57	257±67	3.4±2.2	812±426	1352±721	2.98±0.63	0.64±0.21
Oba01	female	211±145	564±377	114±35	4.5±5.5	942±318	1922±746	3.51±0.54	0.74±0.13
0.23 mg/kg	male	118±34	327±73	243±45	1.8±1.6	503±182	867±553	3.12±0.40	1.45 ± 0.51
MMAE	female	96±15	273±17	75±18	1.2±0.4	492±77	713±170	2.67±0.44	1.85 ± 0.55

 Table S6. Primary blood-chemistry parameters in SD rats

 Table S7. Primary blood-chemistry parameters in male cynomolgus monkeys

Group	Day	ALT	AST	ALP	GGT	СК	LDH	СНО	TG
Oloup	Day	(U/L)	(U/L)	(U/L)	(U/L)	(U/L)	(U/L)	(mM)	(mM)
	-1	163	190	623	63	7560	1160	3.29	0.59
0	8	140	48	676	53	286	542	3.25	0.93
mg/kg	29	82	50	703	60	323	427	3.69	0.98
(Oba01)	43	62	46	635	60	286	363	3.98	0.60
	44	123	144	573	57	7145	1180	3.38	0.52
	-1	71	47	435	59	362	539	3.81	0.45
5	8	71	46	419	53	174	565	3.80	0.48
mg/kg	29	81	45	463	59	227	508	4.11	0.50
(Oba01)	43	64	37	450	61	242	446	4.42	0.64
	44	63	57	382	54	422	516	3.53	0.45
15	-1	55	80	381	56	761	479	3.33	0.47
mg/kg	8	62	152	398	61	1410	1602	5.17	0.34
(Oba01)	11	170	728	238	60	62000	6580	2.22	0.79
	-1	86	88	739	96	396	494	2.51	0.37
0.10	8	89	28	703	72	165	406	2.50	0.31
mg/kg	29	49	23	759	71	154	374	2.47	0.35
(MMAE)	43	39	28	689	75	215	316	2.59	0.46
	44	79	130	641	73	3415	977	2.31	0.44

Group	Day	ALT	AST	ALP	GGT	СК	LDH	СНО	TG
Oroup	Day	(U/L)	(U/L)	(U/L)	(U/L)	(U/L)	(U/L)	(mM)	(mM)
	-1	35	62	372	78	236	387	2.68	0.57
0	8	26	38	337	73	171	351	2.70	0.42
mg/kg	29	28	38	345	85	209	331	2.80	0.39
(Oba01)	43	32	46	389	91	223	348	3.01	0.59
	44	35	44	367	93	284	428	3.07	0.36
	-1	101	184	246	60	690	632	3.11	0.52
5	8	112	73	299	50	352	473	3.87	0.57
mg/kg	29	61	48	293	62	218	434	4.09	0.56
(Oba01)	43	39	36	283	56	235	327	3.72	0.45
	44	49	69	244	52	793	492	3.21	0.36
15	-1	201	335	403	61	1725	1320	1.92	0.58
mg/kg	8	221	358	454	63	4020	2340	2.59	0.56
(Oba01)	29	48	102	553	61	245	969	1.89	0.38
	-1	59	38	304	32	142	241	3.65	0.53
0.10	8	70	31	223	26	149	252	3.16	0.53
mg/kg	29	38	18	259	28	90	170	3.20	0.53
(MMAE)	43	40	19	221	29	89	171	3.63	0.56
	44	60	48	222	29	1148	395	3.51	0.69

Table S8. Primary blood-chemistry parameters in female cynomolgus monkeys

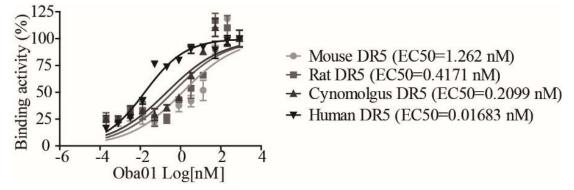
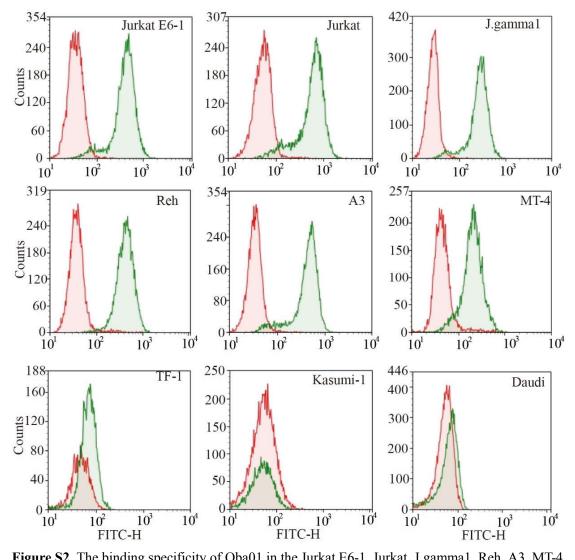

Analyt	e	t _{1/2} h	T _{max} h	C _{max} μg/mL	AUC _{last} h∙mg/mL	AUC _{inf} h∙mg/mL	MRT _{last} h
	male	238	0.0833	209	9.63	10.0	108
Total ADC	female	140	1.00	177	9.62	9.82	117
T (1 A 1	male	209	0.0833	222	12.0	12.8	135
Total Ab	female	148	1.00	185	12.3	12.9	152
	male	66.6	24	0.237	19.6	28.6	52.4
MMAE	female	NA	48	0.233	20.4	NA	49.2

Table S9. PK parameters in SD rats related to Figure 6.

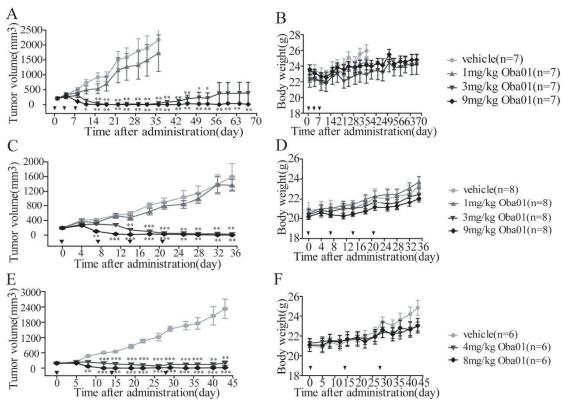
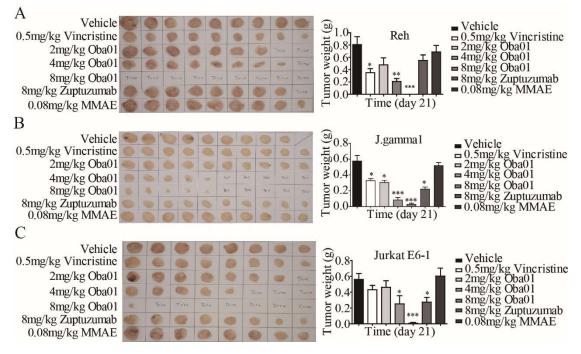
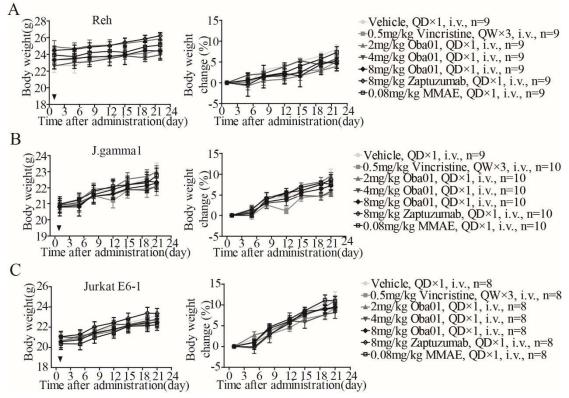

Table S10. PK parameters in cynomolgus monkey related to Figure 6.

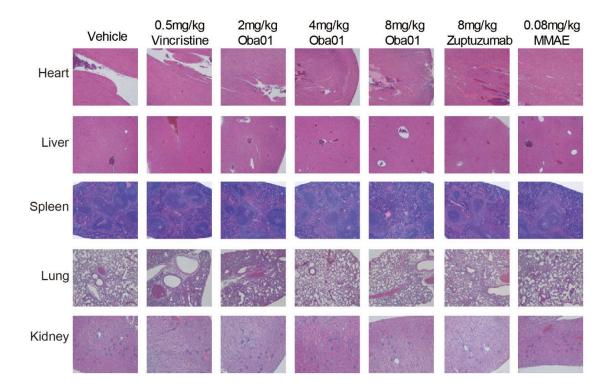
Analyt	e	t _{1/2} h	T _{max} h	C _{max} µg∕mL	AUC _{last} h·mg/mL	AUC _{inf} h∙mg/mL	MRT _{last} h
	Mean	136	101	96.7	6.07	6.17	0.444
Total ADC	SD	38.0	3.82	13.7	0.785	0.847	0.272
T (1 A1	Mean	167	105	123	7.35	7.63	0.333
Total Ab	SD	49.8	4.34	17.2	1.10	1.34	0.00
	Mean	115.4	0.13	68.29	14.75	25.80	40.00
MMAE	SD	42.68	0.03	11.33	2.86	3.54	12.39

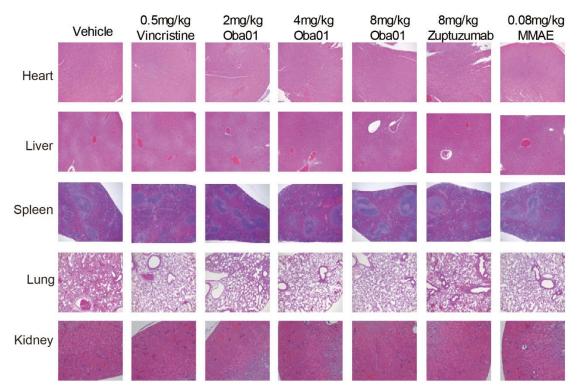
Supplementary data

Figure S1. Binding activity of Oba01 to different species DR5. The binding activity of Oba01 in the recombinant mouse, SD rat, cynomolgus monkey and human DR5 antigen as estimated by ELISA.

Figure S2. The binding specificity of Oba01 in the Jurkat E6-1, Jurkat, J.gamma1, Reh, A3, MT-4, TF-1, Kasumi-1 and Daudi cells. Anti-human IgG antibody was used as control and the cell-associated fluorescence was determined by FACS.


Figure S3. In vivo antitumor efficacy of Oba01 in subcutaneously implanted Reh xenograft model. The transplanted tumor volume and mouse body weights were assessed after administration. BALB/c nude mice bearing xenografts of human Reh lymphocyte leukemia were intravenously injected saline and Oba01 once every three days for 3 different times (Q3D×3) at 1, 3 and 9 mg/kg (A), once every week for 4 times (Q1W×4) at 1, 3 and 9 mg/kg (B), and once every two weeks for 3 times (Q2W×3) at 4 and 8 mg/kg (C), respectively. The dosing frequency has been shown by triangular arrowheads in the figures. The *p* values were found to be two-tailed, **p* ≤ 0.05 , ***p* ≤ 0.01 , ****p* ≤ 0.001 . versus vehicle control.


Figure S4. Efficacy of Oba01 in the mouse xenografts of human acute lymphocyte leukemia cells J.gamma1 (A), Reh (B) and Jurkat E6-1 (C), related to Figure 4 as indicated above. The representative transplanted tumor images and tumor weights were assessed at the end of the experiment. The *p* values were found to be two-tailed, $*p \le 0.05$, $**p \le 0.01$, $***p \le 0.001$. versus vehicle control.

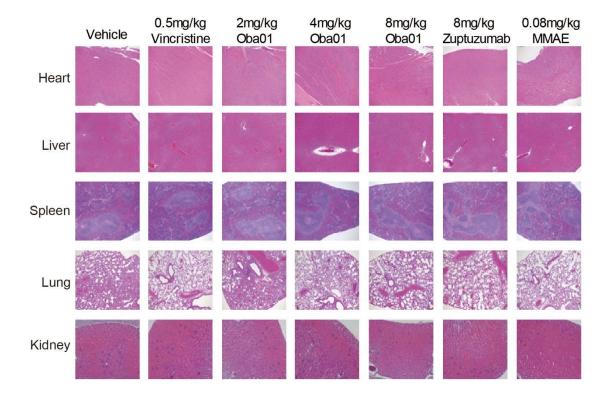

Figure S5. Efficacy of Oba01 in mouse xenografts of human acute lymphocyte leukemia cells Reh (A), J.gamma1 (B) and Jurkat E6-1 (C), related to Figure 4 as indicated above. Representative transplanted tumor mouse body weights and the changes of the body weights were assessed twice every week. The dosing frequency has been shown by triangular arrowheads in the figures.

Figure S6. Oba01 had no effects on heart, liver, spleen, lung and kidney in human Reh mouse CDX models. H&E staining assay for the evaluation of pathological changes in these organs of human Reh mouse CDX models, related to Figure 4. Images captured at $40 \times$ magnification. Scale bars = 50 µm.

Figure S7. Oba01 had no effects on heart, liver, spleen, lung and kidney in human J.gammal mouse CDX models. H&E staining assay for the evaluation of pathological changes in these organs of human J.gammal mouse CDX models, related to Figure 4. Images captured at $40 \times$ magnification. Scale bars = 50 µm.

Figure S8. Oba01 had no effects on heart, liver, spleen, lung and kidney in human Jurkat E6-1 mouse CDX models. H&E staining assay for the evaluation of pathological changes in these organs of human Jurkat E6-1 mouse CDX models, related to Figure 4. Images captured at $40 \times$ magnification. Scale bars = 50 µm.