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SUPPLEMENTARY FIGURES 

Figure S1: Association of a rare missense variant in ZC3HAV1 and COVID-19. 

 

Association between an ultra-rare missense variant in ZC3HAV1  (rs769102632:A) and higher risk 

of COVID-19. (A) Regional association plot centered on rs769102632. Orange triangles: 

individual rare variants (MAF<0.5%). Green squares: burden tests. Grey circles: individual 

common variants (MAF>0.5%). (B) Forest plot showing association in the two individual datasets 

included in the meta-analysis of this variant. 
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SUPPLEMENTARY TABLES  
 

Tables S1 to S8 are provided in a separate Excel document. 

Table S1. Demographics and clinical characteristics of study participants. 

Table S2. Breakdown of COVID-19 status across the four studies included in the analysis. 

Table S3. Definitions used for the seven COVID-19 phenotypes analyzed. 

Table S4. Genomic inflation factor (lGC) observed in the analysis of exome sequence variants for 

each of the eight phenotypes tested. 

Table S5. No carriers of the rare rare missense variant rs769102632 in ZC3HAV1 were observed 

in an additional 6,223 individuals with COVID-19. 

Table S6. Nominally-significant associations (P<0.05) among 14,050 burden tests performed 

across 281 genes located in 15 susceptibility loci identified by the COVID-19 Host Genetics 

Initiative.  

Table S7. Results from burden association tests for 13 genes related to interferon signaling and 

recently reported to contain rare (MAF<0.1%), deleterious variants in patients with severe 

COVID-19.   

Table S8. Results from burden association tests for an additional 32 genes that are involved in the 

etiology of SARS-CoV-2, encode therapeutic targets or have been implicated in other immune or 

infectious diseases through GWAS. 

  



SUPPLEMENTARY METHODS 

 

Participating Studies 

Geisinger Health System (GHS). The GHS MyCode Community Health Initiative study has been 

described previously [1]. Briefly, the GHS study is a health system-based cohort from central and 

eastern Pennsylvania (USA) with ongoing recruitment since 2006. A subset of 144,182 MyCode 

participants sequenced as part of the GHS-Regeneron Genetics Center DiscovEHR partnership 

were included in this study. All subjects consented to participation and the analysis was approved 

by the Geisinger Institutional Review Board under project number 2006-0258.  Information on 

COVID-19 outcomes were obtained through GHS’s COVID-19 registry. Patients were identified 

as eligible for the registry based on relevant lab results and ICD-10 diagnosis codes; patient charts 

were then reviewed to confirm COVID-19 diagnoses. The registry contains data on outcomes, 

comorbidities, medications, supplemental oxygen use and ICU admissions.  

 

Penn Medicine BioBank (PMBB) study.  PMBB study participants are recruited through the 

University of Pennsylvania Health System, which enrolls participants during hospital or clinic 

visits. After providing consent, participants donate blood or tissue and allow access to EHR 

information[2]. The PMBB COVID-19 registry consists of patients who have positive qPCR 

testing for SARS-COV-2. We then used electronic health records to classify COVID-19 patients 

into hospitalized and severe (ventilation or death) categories and the study was approved by the 

University of Pennsylvania Institutional Review Board (protocol #813913). 

 

UK Biobank (UKB) study. We studied the host genetics of SARS-CoV-2 infection in participants 

of the UK Biobank study, which took place between 2006 and 2010 and includes approximately 

500,000 adults aged 40-69 at recruitment[3]. In collaboration with UK health authorities, the UK 

Biobank has made available regular updates on COVID-19 status for all participants, including 

results from four main data types: qPCR test for SARS-CoV-2, anonymized electronic health 

records, primary care and death registry data. We report results based on the 8 March 2021 data 

refresh and excluded from the analysis 28,547 individuals with a death registry event prior to 2020.  

The study was approved by the research ethics committee under approval number 11/NW/0382. 

 



COVID-19 phenotypes used for genetic association analyses 

We grouped participants from each study into three broad COVID-19 disease categories (Table 

S2): (i) positive – those with a positive qPCR or serology test for SARS-CoV-2, or a COVID-19-

related ICD10 code (U07), hospitalization or death; (ii) negative – those with only negative qPCR 

or serology test results for SARS-CoV-2 and no COVID-19-related ICD10 code (U07), 

hospitalization or death; and (iii) unknown – those with no qPCR or serology test results and no 

COVID-19-related ICD10 code (U07), hospitalization or death. We then used these broad COVID-

19 disease categories, in addition to hospitalization and disease severity information, to create 

seven COVID-19-related phenotypes for genetic association analyses, as detailed in Table S3.  

 

Array genotyping  

Genotyping was performed on one of four SNP array types: Illumina OmniExpress Exome array 

(OMNI; 59345 samples from GHS), Illumina Global Screening Array (GSA; PMBB and 82,527 

samples from GHS), Applied Biosystems UK BiLEVE Axiom Array (49,950 samples from UKB), 

or Applied Biosystems UK Biobank Axiom Array (438,427 samples from UKB). We retained 

variants with a minor allele frequency (MAF) >1%, <10% missingness, Hardy-Weinberg 

equilibrium test P-value>10-15. Array data were then used: (i) to define ancestry subsets; and (ii) 

as part of the exome-wide association analyses carried out in REGENIE (see below). 

 

Exome sequencing 

Sample Preparation and Sequencing.  Genomic DNA samples normalized to approximately 16 

ng/ul were transferred to the Regeneron Genetics Center from the UK Biobank in 0.5ml 2D matrix 

tubes (Thermo Fisher Scientific) and stored in an automated sample biobank (LiCONiC 

Instruments) at -80°C prior to sample preparation.  Exome capture was completed using a high-

throughput, fully-automated approach developed at the Regeneron Genetics Center.  Briefly, DNA 

libraries were created by enzymatically shearing 100ng of genomic DNA to a mean fragment size 

of 200 base pairs using a custom NEBNext Ultra II FS DNA library prep kit (New England 

Biolabs) and a common Y-shaped adapter (Integrated DNA Technologies [IDT]) was ligated to 

all DNA libraries.  Unique, asymmetric 10 base pair barcodes were added to the DNA fragment 

during library amplification with KAPA HiFi polymerase (KAPA Biosystems) to facilitate 

multiplexed exome capture and sequencing.  Equal amounts of sample were pooled prior to 



overnight exome capture, approximately 16 hours, with either (i) a slightly modified version of 

IDT’s xGen probe library (for UKB, PMBB and 81,620 samples of GHS); or (ii) NimbleGen 

VCRome (58,856 samples of GHS). Captured fragments were bound to streptavidin-coupled 

Dynabeads (Thermo Fisher Scientific) and non-specific DNA fragments removed through a series 

of stringent washes using the xGen Hybridization and Wash kit according to the manufacturer’s 

recommended protocol (Integrated DNA Technologies).  The captured DNA was PCR amplified 

with KAPA HiFi and quantified by qPCR with a KAPA Library Quantification Kit (KAPA 

Biosystems).  The multiplexed samples were pooled and then sequenced using: (i) for UKB 

samples – 75 bp paired-end reads with two 10 base pair index reads on the Illumina NovaSeq 6000 

platform using S2 or S4 flow cells; (ii) for GHS samples captured with VCRome – 75 bp paired-

end reads with two 8 bp index reads on the Illumina HiSeq 2500; (iii) for GHS captured with IDT 

– two 8 bp index reads on the Illumina HiSeq 2500 or two 10 bp index reads on the Illumina 

NovaSeq 6000 on S4 flow cells; (iv) for UPENN-PMBB – two 10 bp index reads on the Illumina 

NovaSeq 6000 on S4 flow cells. 

 

Variant calling and quality control. Sample read mapping and variant calling, aggregation and 

quality control were performed via the SPB protocol described in Van Hout et al. [4]. Briefly, for 

each sample, NovaSeq WES reads are mapped with BWA MEM to the hg38 reference genome. 

Small variants are identified with WeCall and reported as per-sample gVCFs. These gVCFs are 

aggregated with GLnexus into a joint-genotyped, multi-sample VCF (pVCF). SNV genotypes with 

read depth (DP) less than seven and indel genotypes with read depth less than ten are changed to 

no-call genotypes. After the application of the DP genotype filter, a variant-level allele balance 

filter is applied, retaining only variants that meet either of the following criteria: (i) at least one 

homozygous variant carrier or (ii) at least one heterozygous variant carrier with an allele balance 

(AB) greater than the cutoff (AB ³ 0.15 for SNVs and AB ³ 0.20 for indels). 

 

Identification of low-quality variants from exome-sequencing using machine learning. Briefly, in 

each study, we defined a set of positive control and negative control variants based on: (i) 

concordance in genotype calls between array and exome sequencing data; (ii) Mendelian 

inconsistencies in the exome sequencing data; (iii) differences in allele frequencies between exome 

sequencing batches (UKB and GHS); (iv) variant loadings on 20 principal components derived 



from the analysis of variants with a MAF<1%; (v) transmitted singletons. The model was then 

trained on up to 30 available WeCall/GLnexus site quality metrics, including, for example, allele 

balance and depth of coverage. We split the data into training (80%) and test (20%) sets. We 

performed a grid search with 5-fold cross-validation on the training set to identify the 

hyperparameters that return the highest accuracy during cross-validation, which are then applied 

to the test set to confirm accuracy. This approach identified as low-quality a total of 7 million 

variants in the UKB study (86% in the buffer region), 7.2 million across the two GHS datasets 

(IDT and VCRome; 84% in the buffer region) and 1.1 million in the PMBB study (88% in the 

buffer region). These variants were removed from analysis in the respective studies. 

 

Gene burden masks. Briefly, for each gene region as defined by Ensembl [5], genotype information 

from multiple rare coding variants was collapsed into a single burden genotype, such that 

individuals who were: (i) homozygous reference (Ref) for all variants in that gene were considered 

homozygous (RefRef); (ii) heterozygous for at least one variant in that gene were considered 

heterozygous (RefAlt); (iii) and only individuals that carried two copies of the alternative allele 

(Alt) of the same variant were considered homozygous for the alternative allele (AltAlt). We did 

not phase rare variants; compound heterozygotes, if present, were considered heterozygous 

(RefAlt). We did this separately for four classes of variants: (i) predicted loss of function (pLoF), 

which we refer to as an “M1” burden mask; (ii) pLoF or missense (“M2”); (iii) pLoF or missense 

variants predicted to be deleterious by 5/5 prediction algorithms (“M3”); (iv) pLoF or missense 

variants predicted to be deleterious by 1/5 prediction algorithms (“M4”). Variants were annotated 

using SnpEff 4.3[6] and the most severe consequence for each variant was chosen, considering 

complete protein-coding transcripts for each gene. The following variants were considered to be 

pLoF variants: frameshift-causing indels, variants affecting splice acceptor and donor sites, 

variants leading to stop gain, stop loss and start loss. The five missense deleterious algorithms used 

were SIFT [7], PolyPhen2 (HDIV), PolyPhen2 (HVAR) [8], LRT [9], and MutationTaster [10]. 

For each gene, and for each of these four groups, we considered five separate burden masks, based 

on the frequency of the alternative allele of the variants that were screened in that group: <1%, 

<0.1%, <0.01%, <0.001% and singletons only. Each burden mask was then tested for association 

with the same approach used for individual variants (see below). 

 



Genetic association analyses 

Association analyses in each study were performed using the genome-wide Firth logistic 

regression test implemented in REGENIE [11]. In this implementation, Firth’s approach is applied 

when the p-value from standard logistic regression score test is below 0.05. As the Firth penalty 

(i.e., Jeffrey’s invariant prior) corresponds to a data augmentation procedure where each 

observation is split into a case and a control with different weights, it can handle variants with no 

minor alleles among cases. With no covariates, this corresponds to adding 0.5 in every cell of a 

2x2 table of allele counts versus case-control status. 

 

In the UKB study, we included in step 1 of REGENIE (i.e. prediction of individual trait values 

based on the genetic data) array variants with a minor allele frequency (MAF) >1%, <10% 

missingness, Hardy-Weinberg equilibrium test P-value>10-15 and linkage-disequilibrium (LD) 

pruning (1000 variant windows, 100 variant sliding windows and r2<0.9). In the GHS and PMBB 

studies we instead used exome (not array) variants in step 1. We did this in the GHS study because 

two different exome capture technologies (IDT and VCRome) were used to sequence the GHS 

samples, and so it was important to capture in step 1 of REGENIE any differences in exome 

sequencing performance between IDT and VCRome. For the PMBB study, array data were not yet 

available for about 40K samples, and so we used exome data for step 1 to maximize the sample 

size available for analysis. We excluded from step 1 any SNPs with high inter-chromosomal LD, 

in the major histo-compatibility (MHC) region, or in regions of low complexity.  

 

The association model used in step 2 of REGENIE included as covariates (i) age, age2, sex, age-

by-sex and age2-by-sex; (ii) 10 ancestry-informative principal components (PCs) derived from the 

analysis of a set of LD-pruned (50 variant windows, 5 variant sliding windows and r2<0.5) 

common variants from the array (imputed for the GHS study; exome for PMBB) data generated 

separately for each ancestry; (iii) an indicator for exome sequencing batch (GHS: two IDT batches, 

one VCRome batch; UKB: six IDT batches); and (iv) 20 PCs derived from the analysis of exome 

variants with a MAF between 2.6x10-5 (roughly corresponding to a minor allele count [MAC] of 

20) and 1% also generated separately for each ancestry. We corrected for PCs built from rare 

variants because previous studies demonstrated PCs derived from common variants do not 

adequately correct for fine-scale population structure [12, 13]. 



 

Within each study, association analyses were performed separately for different continental 

ancestries defined based on the array data: African (AFR), Admixed American (AMR), European 

(EUR) and South Asian (SAS). We determined continental ancestries by projecting each sample 

onto reference principal components calculated from the HapMap3 reference panel.  Briefly, we 

merged our samples with HapMap3 samples and kept only SNPs in common between the two 

datasets. We further excluded SNPs with MAF<10%, genotype missingness >5% or Hardy-

Weinberg Equilibrium test p-value < 10-5.  We calculated PCs for the HapMap3 samples and 

projected each of our samples onto those PCs. To assign a continental ancestry group to each non-

HapMap3 sample, we trained a kernel density estimator (KDE) using the HapMap3 PCs and used 

the KDEs to calculate the likelihood of a given sample belonging to each of the five continental 

ancestry groups. When the likelihood for a given ancestry group was >0.3, the sample was assigned 

to that ancestry group. When two ancestry groups had a likelihood >0.3, we arbitrarily assigned 

AFR over EUR (NGHS = 36 [0.9%], NUKB = 56 [0.6%], NUPENN-PMBB = 7 [0.1%]), AMR over EUR 

(NGHS = 455 [22.5%], NUKB = 436 [47.8%], NUPENN-PMBB = 138 [23.5%]), AMR over EAS (NGHS 

= 2 [0.05%], NUKB = 2 [0.2%], NUPENN-PMBB = 1 [0.2%]), SAS over EUR (NGHS = 32 [7.8%], NUKB 

= 592 [9.6%], NUPENN-PMBB = 36 [6.3%]), and AMR over AFR (NGHS = 192 [9.5%], NUKB = 51 

[5.6%], NUPENN-PMBB = 77 [13.1%]). Samples were excluded from analysis if no ancestry 

likelihoods were >0.3, or if more than three ancestry likelihoods were > 0.3 (NGHS = 821, NUKB = 

1205, NUPENN-PMBB = 384). 

Results were subsequently meta-analyzed across studies and ancestries using an inverse variance-

weighed fixed-effects meta-analysis.  

  

 

Frequency of ZC3HAV1 rare missense variant in COVID-19 cases from independent studies 

To help understand if the association between COVID-19 risk and rs769102632 in ZC3HAV1 was 

likely to be a true-positive association, we determine its frequency in 6,223 cases from three 

additional studies. 

 GenOMICC (n=4,851). Individuals with severe COVID-19 were ascertained as described 

previously[14]. DNA samples were then whole-genome sequenced on the Illumina NovaSeq 6000 

platform, aligned to the human reference genome hg38 and variant called to GVCF stage on the 



DRAGEN pipeline (software v01.011.269.3.2.22, hardware v01.011.269) at Genomics England. 

rs769102632 +/-50bp was genotyped with the GATK GenotypeGVCFs tool v4.1.8.1 and filtered 

to minimum depth 8X. Ancestry for individuals with array genotyping (n=2,048) was inferred 

using ADMIXTURE[15] populations defined in 1000 Genomes[16]. When one individual had a 

probability > 80% of pertaining to one ancestry, then the individual was assigned to this ancestry 

(n=1,837), otherwise the individual was considered to be of admixed ancestry (n=211), as 

performed in the Million veteran program [17]. Of the remaining samples (n=3,014), Somalier 

v0.2.12[18] was used to estimate ancestry from the whole-genome sequencing data: 2,606 samples 

could be confidently (³92.5% probability) assigned to a population, while the remaining 408 were 

assigned to admixed ancestry. 

 Columbia University COVID-19 biobank (n=1,152). This cohort has previously been 

described in detail[19]. Briefly, 1,152 COVID-19 patients that were treated for COVID-19 at the 

Columbia University Irving Medical Center were recruited to the Columbia University COVID-

19 Biobank between March and May 2020. All patients had PCR-confirmed SARS-CoV-2 

infection and the vast majority had severe COVID-19 requiring hospitalization. For all cases, 

exomes were captured with the IDT xGen Exome Research Panel V1.0 and sequenced on 

Illumina’s NovaSeq 6000 platform with 150 bp paired-end reads according to standard protocols. 

All cases were processed with the same bioinformatic pipeline for variant calling. In brief, reads 

were aligned to human reference GRCh37 using DRAGEN and duplicates were marked with 

Picard. Variants were called according to the Genome Analysis Toolkit (GATK) Best Practices 

recommendations v3.66[20]. Finally, variants were annotated with ClinEff[6] and the IGM’s in-

house tool ATAV[21]. A centralized database was used to store variant and per site coverage data 

for all samples enabling well controlled analyses without the need of generating jointly called VCF 

files (see Ren et al. 2021 for details[21]). For each patient, we performed ancestry classification 

into one of the six major ancestry groups (European, African, Latin, East Asian, South Asian and 

Middle Eastern) using a neural network trained on a set of samples with known ancestry labels. 

We used a 50% probability cut-off to assign an ancestry label to each sample and labeled samples 

that did not reach 50% for any of the ancestral groups as “Admixed”. We only included samples 

that had at least 90% of the consensus coding sequence (CCDS release 20[22]) covered at ≥ 10x 

and ≤ 3% contamination levels according to VerifyBamID[23]. Additionally, we removed samples 

with a discordance between self-declared and sequence-derived gender and samples with an 



inferred relationship of second-degree or closer according to KING[24]. All cases had at least 10x 

coverage at the position of rs769102632. 

 Biobanque Québec Covid-19 (n=220). The Biobanque Québec COVID-19 

(www.BQC19.ca) is a provincial biobank prospectively enrolling patients with suspected COVID-

19, or COVID-19 confirmed through SARS-CoV-2 PCR testing and was previously described[19]. 

For this study, we used results from patients with available WGS data and who were recruited at 

the Jewish General Hospital (JGH) in Montreal. The JGH is a university affiliated hospital serving 

a large multi-ethnic adult population and the Québec government designated the JGH as the primary 

COVID-19 reference center early in the pandemic. In total, Biobanque Quebec contained 533 

participants with WGS, including 62 cases of COVID-19 who required invasive ventilatory support 

(BiPAP, high flow oxygen, or endotracheal intubation) or died, 128 COVID-19 patients who were 

hospitalized but did not require invasive ventilatory support, 30 individuals with COVID-19 did not 

require hospitalization, and 313 SARS-CoV-2 PCR-negative participants. Using genetic PCAs 

derived from genome-wide genotyping, 76% of participants were of European ancestry, 9% were 

of African ancestry, 7% were of east Asian ancestry, and 5% were of south Asian ancestry. We 

performed WGS at a mean depth of 30x on all individuals using Illumina’s Novaseq 6000 platform 

(Illumina, San Diego, CA, USA). Sequencing results were analyzed using the McGill Genome 

Center bioinformatics pipelines[25], in accordance with Genome Analysis Toolkit (GATK) best 

practices recommendations[20]. Reads were aligned to the GRCh38 reference genome. Variant 

quality control was performed using the variantRecalibrator and applyVQSR functions from 

GATK.  
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