
Supplementary File: ICING model and parameters 

The clinically validated ICING (Intensive Care Insulin-Nutrition-Glucose) model of glucose-insulin 

metabolism [1-5] was used to identify [6] patient-specific, time-varying hourly-hour insulin sensitivity 

(SI). The model presented is a physiological compartment model, accounting for the appearance and 

clearance of insulin and glucose in blood and interstitial fluid volumes. Figure S-1 shows this model 

(Figure 2 in the paper) schematically. 

Model equations are defined: 

Where G(t) [mmol/L] is plasma glucose concentration, I(t) and Q(t) [mU/L] are plasma and interstitial 

insulin concentrations. Pancreatic insulin secretion is modelled as a function of plasma glucose and is 

denoted uen(G). The associated parameter values and descriptions are listed in Table S-1.  

 
Figure S-1: Illustration of key dynamics of the glucose-insulin model, where key compartments include 
blood glucose, plasma insulin, and interstitial insulin. Arrows show the direction of glucose flux, and 
key abbreviations include central nervous system (CNS), Endogenous glucose production (EGP),  
parenteral nutrition (PN), insulin sensitivity (SI). Figure originally published in [7]. 
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Table S-1: Parameter values, inputs, and model state descriptions for the glucose-insulin model. 

 UNITS DESCRIPTION 

𝐺(𝑡) mmol/L Plasma glucose concentration  
𝐼(𝑡) mU/L Plasma insulin concentration 
𝑄(𝑡) mU/L Interstitial insulin concentration 

𝑃(𝑡) mmol/min 
Total glucose appearance from enteral and parenteral 
sources 

𝑃𝑁(𝑡) mmol/min Parenteral (IV) glucose appearance 
𝑃1(𝑡) mmol Glucose in the stomach 
𝑃2(𝑡) mmol Glucose in the gut 

𝐷(𝑡) mmol/min 
Glucose appearance in stomach from enteral (oral) 
nutrition 

𝑢𝑒𝑥(𝑡) mU/min Exogenous IV insulin input rate. 

 VALUE/UNITS DESCRIPTION 

SI(t) l/mU/min Insulin sensitivity 
𝛼𝐺  1/65 (0.015) l/mU Saturation of insulin-mediated glucose uptake 
𝑝𝐺  0.006 min-1 Other non-insulin mediated glucose clearance 
𝑉G 13.3 L Glucose distribution volume 

𝐸𝐺𝑃 1.16 mmol/min Endogenous glucose production (hepatic) 
𝐶𝑁𝑆 0.3 mmol/min Glucose uptake by central nervous system 

𝑥𝐿 0.67 
Fractional first pass hepatics insulin clearance from 
portal vein 

𝑛𝐿 0.1578 min-1 Rate parameter: general hepatic insulin clearance 
𝛼𝐼 1.7x10-3 l/mU Saturation of hepatics insulin clearance 
𝑛𝐾 0.0542 min-1 Rate parameter: kidney clearance of insulin 

𝑛𝐶  0.006 min-1 
Rate parameter: cellular degradation of internalised 
insulin 

𝑛𝐼 0.006 min-1 
Rate parameter: diffusion of insulin between plasma 
and interstitium 

𝑘1 14.9 mU·l/mmol/min Insulin secretion model parameter 
𝑘2 -49.9 mU/min Insulin secretion model parameter 

𝑢𝑚𝑖𝑛 16.7 mU/min Minimum insulin secretion 

𝑢𝑚𝑎𝑥  266.7 mU/min Maximum insulin secretion 

𝑉I 4.0 L Insulin distribution volume 

 

Further reading: 

Model development: [4, 5], summarised in a supplementary file within [7] 

Model validation: [1, 8] 

STAR protocol development: [9, 10] 

Clinical outcome validation: For the SPRINT protocol [2, 11, 12] and STAR protocol [3, 13] 

Insulin sensitivity and its variability: Statistical forecasting [14, 15] and relationship with clinical 

variables [16-21]. 
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