S1 Text: Markov Chain Monte Carlo (MCMC) algorithm for eGST

Our model for the phenotype of individual i is:

$$y_{i} = \alpha_{1} + \boldsymbol{x}_{1i}^{'}\boldsymbol{\beta}_{1} + \epsilon_{1i} \text{ if } C_{i} = 1$$

$$= \alpha_{2} + \boldsymbol{x}_{2i}^{'}\boldsymbol{\beta}_{2} + \epsilon_{2i} \text{ if } C_{i} = 2$$
(6)

Here, α_k is the baseline tissue-specific trait mean, \boldsymbol{x}_{ki} is the vector of normalized genotype values of individual i at the eQTL SNPs specific to tissue k, $\boldsymbol{\beta}_k = (\beta_{k1}, \beta_{k2} \dots, \beta_{km_k})$ are their effects on the trait under $C_i = k$, and ϵ_{ki} is a noise term, $i = 1, \dots, n$ and k = 1, 2. The random errors are distributed as: $\epsilon_{1i} \sim N(0, \sigma_{\epsilon_1}^2)$ and $\epsilon_{2i} \sim N(0, \sigma_{\epsilon_2}^2)$.

Given that i = 1, we note that: $V(\beta_{1j}) = \sigma_{x_1}^2$ and $V(\mathbf{x}'_{11}\beta_1) = m_1\sigma_{x_1}^2$; $V(\beta_{2j}) = \sigma_{x_2}^2$ and $V(\mathbf{x}'_{21}\beta_2) = m_2\sigma_{x_2}^2$. We define τ_1 and τ_2 such that: $V(\mathbf{x}'_{11}\beta_1) = \tau_1V(\epsilon_{11}) = \tau_1\sigma_{\epsilon_1}^2$ and $V(\mathbf{x}'_{21}\beta_2) = \tau_2V(\epsilon_{21}) = \tau_2\sigma_{\epsilon_2}^2$. Thus, under C = 1, total variance of the trait is: $V(\mathbf{x}'_{11}\beta_1) + V(\epsilon_{11}) = m_1\sigma_{x_1}^2 + \sigma_{\epsilon_1}^2 = \tau_1\sigma_{\epsilon_1}^2 + \sigma_{\epsilon_1}^2 = (\tau_1 + 1)\sigma_{\epsilon_1}^2$. Hence, when C = 1, the heritability of the trait is: $\frac{\tau_1\sigma_{\epsilon_1}^2}{(\tau_1+1)\sigma_{\epsilon_1}^2} = \frac{\tau_1}{\tau_1+1}$. So, k^{th} tissue-specific subtype heritability of the trait is $\frac{\tau_k}{\tau_k+1}$. Since, specifying $\sigma_{\epsilon_k}^2$ and τ_k determine $\sigma_{x_k}^2 (= \frac{\tau_k\sigma_{\epsilon_k}^2}{m_k})$, we place prior distributions on $\sigma_{\epsilon_k}^2$ and τ_k and update these parameters in the MCMC. From the MCMC sample of τ_k , we can estimate the k^{th} tissue-specific subtype heritability of the trait. The prior distributions of the k^{th} tissue-specific subtype heritability of the trait are given by: for k = 1, 2,

$$\alpha_k \sim N(0, \sigma_{\alpha}^2); \ \boldsymbol{\beta}_k \sim N(\mathbf{0}, \sigma_{x_k}^2 I_{m_k}); \ \boldsymbol{\sigma}_{\epsilon_k}^2 \sim \text{Inverse-Gamma}(a_{\epsilon}, b_{\epsilon});$$

$$\tau_k \sim \text{Beta}(\psi, 1); \ P(C_i = k | w_1, w_2) = w_k; \ (w_1, w_2) \sim \text{Beta}(s_1, s_2).$$

For ease in presentation of the MCMC algorithm, we define the following terms:

1. m_k = number of k^{th} tissue-specific eQTLs.

2. $n_k = \#\{i : C_i = k\}$ = number of individuals assigned to k^{th} tissue-specific subtype.

3.
$$\sigma_{\alpha_k}^2 = \frac{1}{\frac{n_k}{\sigma_{\epsilon_k}^2} + \frac{1}{\sigma_{\alpha}^2}}$$
.

4. G_k is a $(m_k \times n_k)$ matrix which is a sub-matrix of X_k of order $(m_k \times n)$, the columns of G_k are selected from the columns of X_k corresponding to the individuals such that $C_i = k$. Of note, G_k and X_k both have m_k rows. $\mathbf{y}_k = \{y_i - \alpha_k : C_i = k\}$, i.e., it is a sub-vector of $(\mathbf{y} - \alpha_k)$ corresponding to the individuals such that $C_i = k$. So, the sub-vector has length n_k .

MCMC algorithm for eGST

S1 Algorithm: MCMC algorithm based on Gibbs sampling to implement eGST

- 1: Initialization: First we run the MAP-EM algorithm for 15 iterations to obtain an initial values of the various parameters to be updated in each MCMC step. We initialize $\sigma_{x_k}^2, k = 1, 2$, as the sample variance of β_k values obtained from the last iteration of the MAP-EM algorithm, and initialize τ_k accordingly. Next, we update the different parameters in each MCMC step.
- 2: **Loop**: For each k = 1, 2:
- 3: Update α_k which has the full conditional posterior distribution $N(\mu_{\alpha_k}, \sigma_{\alpha_k}^2)$ with $\mu_{\alpha_k} = \frac{\sigma_{\alpha}^2}{\sigma_{e_k}^2} \sum_{i:C_i=0} z_{ik};$ where $z_{ik} = y_i - \boldsymbol{x}'_{ki}\boldsymbol{\beta}_k$.
- 4: Update β_k from the following: $N_{m_k}(\boldsymbol{\mu}_k, S_k)$, $S_k = \left(\frac{1}{\sigma_{\epsilon_k}^2} G_k G'_k + \frac{1}{\sigma_{x_k}^2} I_{m_k}\right)^{-1}$, $\boldsymbol{\mu}_k = \frac{1}{\sigma_{\epsilon_k}^2} S_k G_k \boldsymbol{y}_k$. 5: Separately update each C_i , i = 1, ..., n, with 1^{st} tissue-specific posterior probability $q_{i1} = \frac{1}{1 + \text{ratio}_{ik}}$, where $\text{ratio}_{ik} = \frac{w_2}{w_1} \frac{\sigma_{\epsilon_1}}{\sigma_{\epsilon_2}} exp[\frac{1}{2}(comp_{i1} comp_{i2})]$, where $comp_{i1} = \frac{1}{\sigma_{\epsilon_1}^2} (y_i \alpha_1 \boldsymbol{x}'_{1i} \beta_1)^2$ and $comp_{i2} = \frac{1}{\sigma_{\epsilon_1}^2} (y_i \alpha_1 \boldsymbol{x}'_{1i} \beta_1)^2$ $\frac{1}{\sigma_{\epsilon_2}^2} (y_i - \alpha_2 - \boldsymbol{x}'_{2i}\beta_2)^2$. We note that: $q_{i2} = 1 - q_{i1}$.
- 6: Update w_1 as: $w_1 \sim \text{Beta}(n_1 + s_1, n_2 + s_2)$. We note that: $w_2 = 1 w_1$. 7: Update $\sigma_{\epsilon_k}^2$ from Inv-Gamma $(\frac{n_k}{2} + \frac{m_k}{2} + a_{\epsilon}, T_{1k} + T_{2k} + b_{\epsilon})$; where $T_{1k} = \frac{1}{2} \sum_{i:C_i=k} (y_i \alpha_k \boldsymbol{x}'_{ki} \boldsymbol{\beta}_k)^2$, and $T_{2k} = \frac{m_k \boldsymbol{\beta}_k' \boldsymbol{\beta}_k}{2\tau_k}, \ k = 1, 2.$
- 8: $\tau_k \sim \text{truncated Inv-Gamma}(\frac{m_k}{2} \psi, CT_k), \ 0 < \tau_k < 1, \ CT_k = \frac{m_k}{2\sigma_{z_k}^2} \beta'_k \beta_k$
- 9: Compute $\sigma_{x_k}^2 = \frac{\tau_k \sigma_{\epsilon_k}^2}{m_k}$, and k^{th} tissue-specific subtype heritability $= \frac{\tau_k}{\tau_k+1}$. 10: Go back to step 2 until all the MCMC iterations are completed.