S1 Text: Markov Chain Monte Carlo (MCMC) algorithm for eGST

Our model for the phenotype of individual *i* is:

$$
y_i = \alpha_1 + \mathbf{x}_{1i}'\beta_1 + \epsilon_{1i} \text{ if } C_i = 1
$$

= $\alpha_2 + \mathbf{x}_{2i}'\beta_2 + \epsilon_{2i} \text{ if } C_i = 2$ (6)

Here, α_k is the baseline tissue-specific trait mean, x_{ki} is the vector of normalized genotype values of individual *i* at the eQTL SNPs specific to tissue $k, \beta_k = (\beta_{k1}, \beta_{k2}, \dots, \beta_{km_k})$ are their effects on the trait under $C_i = k$, and ϵ_{ki} is a noise term, $i = 1, \ldots, n$ and $k = 1, 2$. The random errors are distributed as: $\epsilon_{1i} \sim N(0, \sigma_{\epsilon_1}^2)$ and $\epsilon_{2i} \sim \text{N}(0, \sigma_{\epsilon_2}^2).$

Given that $i = 1$, we note that: $V(\beta_{1j}) = \sigma_{x_1}^2$ and $V(\mathbf{x}_{11} \beta_1) = m_1 \sigma_{x_1}^2$; $V(\beta_{2j}) = \sigma_{x_2}^2$ and $V(\mathbf{x}_{21} \beta_2) =$ $m_2 \sigma_{x_2}^2$. We define τ_1 and τ_2 such that: $V(\mathbf{x}_{11}'\mathbf{\beta}_1) = \tau_1 V(\epsilon_{11}) = \tau_1 \sigma_{\epsilon_1}^2$ and $V(\mathbf{x}_{21}'\mathbf{\beta}_2) = \tau_2 V(\epsilon_{21}) = \tau_2 \sigma_{\epsilon_2}^2$. Thus, under $C = 1$, total variance of the trait is: $V(\mathbf{x}_{11}^{\prime}\boldsymbol{\beta}_1) + V(\epsilon_{11}) = m_1\sigma_{x_1}^2 + \sigma_{\epsilon_1}^2 = \tau_1\sigma_{\epsilon_1}^2 + \sigma_{\epsilon_1}^2 =$ $(\tau_1 + 1)\sigma_{\epsilon_1}^2$. Hence, when $C = 1$, the heritability of the trait is: $\frac{\tau_1 \sigma_{\epsilon_1}^2}{(\tau_1 + 1)\sigma_{\epsilon_1}^2} = \frac{\tau_1}{\tau_1 + 1}$. So, k^{th} tissue-specific subtype heritability of the trait is $\frac{\tau_k}{\tau_k+1}$. Since, specifying $\sigma_{\epsilon_k}^2$ and τ_k determine $\sigma_{x_k}^2 = \frac{\tau_k \sigma_{\epsilon_k}^2}{m_k}$, we place prior distributions on $\sigma_{\epsilon_k}^2$ and τ_k and update these parameters in the MCMC. From the MCMC sample of τ_k , we can estimate the *kth* tissue-specific subtype heritability of the trait. The prior distributions of the *kth* tissue-specific set of parameters are given by: for $k = 1, 2$,

$$
\alpha_k \sim N(0, \sigma_\alpha^2); \ \beta_k \sim N(\mathbf{0}, \sigma_{x_k}^2 I_{m_k}); \ \sigma_{\epsilon_k}^2 \sim \text{Inverse-Gamma}(a_\epsilon, b_\epsilon);
$$

$$
\tau_k \sim \text{Beta}(\psi, 1); \ P(C_i = k | w_1, w_2) = w_k; \ (w_1, w_2) \sim \text{Beta}(s_1, s_2).
$$

For ease in presentation of the MCMC algorithm, we define the following terms:

- 1. m_k = number of k^{th} tissue-specific eQTLs.
- 2. $n_k = \#\{i : C_i = k\}$ = number of individuals assigned to k^{th} tissue-specific subtype.

3.
$$
\sigma_{\alpha_k}^2 = \frac{1}{\frac{n_k}{\sigma_{\epsilon_k}^2} + \frac{1}{\sigma_{\alpha}^2}}.
$$

4. G_k is a $(m_k \times n_k)$ matrix which is a sub-matrix of X_k of order $(m_k \times n)$, the columns of G_k are selected from the columns of X_k corresponding to the individuals such that $C_i = k$. Of note, G_k and X_k both have m_k rows. $y_k = \{y_i - \alpha_k : C_i = k\}$, i.e., it is a sub-vector of $(y - \alpha_k)$ corresponding to the individuals such that $C_i = k$. So, the sub-vector has length n_k .

MCMC algorithm for eGST

- S1 Algorithm: MCMC algorithm based on Gibbs sampling to implement eGST
- 1: Initialization: First we run the MAP-EM algorithm for 15 iterations to obtain an initial values of the various parameters to be updated in each MCMC step. We initialize $\sigma_{x_k}^2$, $k = 1, 2$, as the sample variance of β_k values obtained from the last iteration of the MAP-EM algorithm, and initialize τ_k accordingly. Next, we update the different parameters in each MCMC step.
- 2: **Loop:** For each $k = 1, 2$:
- 3: Update α_k which has the full conditional posterior distribution $N(\mu_{\alpha_k}, \sigma_{\alpha_k}^2)$ with $\mu_{\alpha_k} = \frac{\sigma_{\alpha_k}^2}{\sigma_{\epsilon_k}^2} \sum_{i:C_i=0} z_{ik}$; where $z_{ik} = y_i - \boldsymbol{x}_{ki}'\boldsymbol{\beta}_k$.
- 4: Update β_k from the following: $N_{m_k}(\mu_k, S_k)$, $S_k = \left(\frac{1}{\sigma_{\epsilon_k}^2} G_k G_k' + \frac{1}{\sigma_{\epsilon_k}^2} I_{m_k}\right)^{-1}$, $\mu_k = \frac{1}{\sigma_{\epsilon_k}^2} S_k G_k$ **y**_k.
- 5: Separately update each C_i , $i = 1, \ldots, n$, with 1^{st} tissue-specific posterior probability $q_{i1} = \frac{1}{1+\text{ratio}_{ik}}$, where ratio_{ik} = $\frac{w_2}{w_1} \frac{\sigma_{\epsilon_1}}{\sigma_{\epsilon_2}}$ $\frac{\sigma_{\epsilon_1}}{\sigma_{\epsilon_2}} exp[\frac{1}{2}(comp_{i1} - comp_{i2})],$ where $comp_{i1} = \frac{1}{\sigma_{\epsilon_1}^2}(y_i - \alpha_1 - x_{1i}^{'})\beta_1)^2$ and $comp_{i2} = \frac{1}{\sigma_{\epsilon_1}^2}$ $\frac{1}{\sigma_{\epsilon_2}^2}(y_i - \alpha_2 - x_{2i}'\beta_2)^2$. We note that: $q_{i2} = 1 - q_{i1}$.
- 6: Update w_1 as: $w_1 \sim \text{Beta}(n_1 + s_1, n_2 + s_2)$. We note that: $w_2 = 1 w_1$.
- 7: Update $\sigma_{\epsilon_k}^2$ from Inv-Gamma $(\frac{n_k}{2} + \frac{m_k}{2} + a_{\epsilon}, T_{1k} + T_{2k} + b_{\epsilon})$; where $T_{1k} = \frac{1}{2} \sum_{i:C_i=k} (y_i \alpha_k x_{ki}^{\prime} \beta_k)^2$, and $T_{2k} = \frac{m_k \beta'_k \beta_k}{2\tau_k}, k = 1, 2.$
- $8: \tau_k \sim \text{truncated Inv-Gamma}(\frac{m_k}{2} \psi, CT_k), 0 < \tau_k < 1, CT_k = \frac{m_k}{2\sigma_{\epsilon_k}^2} \beta'_k \beta_k$
- 9: Compute $\sigma_{x_k}^2 = \frac{\tau_k \sigma_{\epsilon_k}^2}{m_k}$, and k^{th} tissue-specific subtype heritability $= \frac{\tau_k}{\tau_k + 1}$.
- 10: Go back to step 2 until all the MCMC iterations are completed.