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Supplementary Figure 1 
 

 
 
Supplementary Figure 1: Characterization and validation of chemotaxis assay. a) Top view of 
chemotaxis chamber with fluorescein gradient, stitched from tiled confocal fluorescence images. 
The gradient is established in a 1 mm long central channel (magenta) between two large 
reservoirs (left and right). White dashed line indicates approximate line scan shown in panel b. 
b) Temporal establishment and stability of the fluorescein gradient assessed by confocal 
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fluorescence imaging along a line in the center of the channel. c) Relative gradient in the center 
of the device as a function of time after closing the device, normalized relative to the intensity in 
the right reservoir. d) Mean swimming speed of the E. coli motile population (defined as having 
a mean swimming speed larger than 10 µm s-1) over time after closing the device. Gray dashed 
lines in panels c and d serve to guide the eye. e) Average E. coli bacterial velocities measured in 
all 3 dimensions in the presence and absence of a 1 mM/mm MeAsp gradient, and when the 
device is rotated by 180° about the z axis. The magnitude of the measured drift up the gradient 
changes by less than 1% when the chamber is flipped. All error bars are standard errors of the 
mean. f) Distribution of individual average swimming speeds for the full population of bulk 
trajectories (red, weighted by trajectory duration) and of instantaneous swimming speeds for the 
motile population (blue), defined as having an average speed larger than a threshold (grey), set 
at 15 µm s-1 for this experiment. Data shown are for the same experiment as for Fig. 1b. g) E. coli 
drift velocity versus z position is reproducible between the three replicates combined in Fig. 1d.  
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Supplementary Figure 2 
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Supplementary Figure 2: Additional characterization of C. crescentus motility and chemotaxis. 
Examples of trajectories whose bulk segments show a) no turns and b) a turning frequency close 
to the population average. c) Instantaneous swimming speed distributions for the full motile bulk 
population (black, set 2 in Supplementary Table 2), the smooth-swimming population (grey, set 
4) and that retained for run duration analysis (red, set 7), containing all trajectories with at least 
one run of defined duration and bacterial orientation. We attribute the subtle deviation in 
average swimming speed to selection bias, rather than biological differences. Conditions that are 
more likely to be met by longer trajectories select for bacteria of lower speed because they spend 
more time in the field of view. d) Distribution of turning angles and turn classification. Turns by 
an angle smaller than 130° are considered flicks and those by an angle larger than 150° are 
considered reversals. Flick angles have a magnitude of 80° ± 24° (mean ± standard deviation). e) 
Backward and forward swimming speed (vbw and vfw, respectively) in the same individuals reveal 
that backward runs are approximately 2.5% faster. Cyan: orthonormal linear fit with zero 
intercept (grey: unity, for comparison). f) Fraction of runs longer than τ for backward and forward 
runs, going up (yellow) or down (cyan) the gradient, defined as falling within a 36° cone around 
the positive or negative x-axis, respectively. The dashed lines show corresponding maximum-
likelihood inverse Gaussian distribution functions (Methods). g) Example trajectory color-coded 
by speed (top) and run direction (bottom, red: backward, blue: forward), with near-surface 
segments shown at higher saturation than bulk segments. Arrow marks trajectory start. h,i) 
Surface segments (within approximately 4 µm of the top and bottom surface) of the example 
trajectories shown in a and b, with no turns (h) or a near-average turning frequency (i).  
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Supplementary Figure 3 

 
Supplementary Figure 3: Reproducibility of C. crescentus chemotaxis experiments. a,b) Average 
run durations of runs leading up or down the gradient (defined as in Figure 2) in 5 biological 
replicates in the presence of a 1 mM mm-1 xylose gradient as well as one control experiment 
without a gradient, a) for all runs, b) for runs of identified orientation (backwards/forwards). c) 
Average durations of forward versus backward runs in each of the experiments in panels a and 
b, for runs leading up (yellow) or down (cyan) the gradient.  Error bars represent standard errors 
of the means.  
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Supplementary Figure 4 

 
Supplementary Figure 4:  Xylose-driven bacterial density imbalance. a) Average swimming speeds 
observed over time in the left and right reservoirs of the chemotaxis chamber, containing 
xylose/M2G and M2G, respectively. The grey box marks the time period during which trajectories 
are recorded in the gradient in the middle of the chamber during chemotaxis experiments. b) 
Bacterial densities observed in the reservoirs over time. In panels a and b, small points indicate 
individual 50-s recordings, and circles with error bars show the mean and standard deviation of 
three such recordings obtained in close temporal proximity. c) Bacterial density of solutions 
retrieved from the two reservoirs after 53 min. d) Individual optical density at 620 nm from 
microplate reader measurements in 96-well plate, after blank subtraction, for 20 wells with M2G 
or 20 wells with xylose/M2G. e) Doubling times, determined by a linear fit to the logarithm of the 
optical density data in panel d between OD 0.08 and OD 0.18 against time, indicate that the 
growth rate is approximately 11% higher in the presence of xylose. Error bars reflect 95% 
confidence intervals of average doubling times across 20 wells for each condition.   
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Supplementary Figure 5 

 
Supplementary Figure 5: 3D versus 2D tracking of C. crescentus. a) Probability distribution 
function of trajectory durations for full 3D motile bulk data (black, subset 2 in Supplementary 
Table 2) and the same cropped to an 8-µm thick central slice, corresponding to a typical depth of 
field used in 2D tracking (red, see Supplementary Discussion for details). Trajectories shorter than 
5 frames were not retained for analysis. The grey dashed line indicates the minimum trajectory 
duration threshold used for turn detection in our study. b) Cumulative duration of trajectories 
whose duration exceeds a given threshold for both data sets. The exponential decay time scales 
of the distributions’ tails are 2.0 s and 0.88 s for the 3D and the 2D case, respectively.  c) 
Frequency of detected turning events for both data sets, normalized either across the full 
trajectory data set (left bars, corresponding to subset 2 for the 3D case) or that of trajectories 
that meet the minimum duration threshold of 0.8 s (right bars, faded, corresponding to subset 3 
for the 3D case). We include only turns that allow a turning angle to be measured. Numbers in 
panels c and d indicate absolute numbers of events detected. d) Frequency of detected run types 
for the same normalizations and data sets as in panel c. 2D microscopy identifies the direction 
for far fewer run events than 3D microscopy because it undersamples flick events which typically 
result in the trajectory leaving the focus.   
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Supplementary Discussion 
 
 
1. Consistency of measured E. coli drift speed with literature values 
 
Very few methods allow direct measurements of the drift velocity. Colin et al.1 used a highly 
sensitive population-scale approach to determine a drift velocity, vd, normalized by the product 
of the motile fraction, α, and average speed, vm, for AW405 of vd/(αvm) ∼ 0.08-0.09 for a 10 µM 
mm-1 MeAsp gradient, which translates in our case (α = 1, vm = 29.9 µm/s) to an expected drift of 
2.4 - 2.7 µm s-1, in excellent agreement with our result of 2.7 ± 0.3 µm s-1. Recently, Schauer et 
al.2 presented drift velocities directly computed from 2D trajectory data for the much slower 
swimming strain MG1655 (mean speed 16 µm s-1). In addition to the strain difference, these 
results cannot be compared quantitatively to ours because the 2D approach introduces biases 
that are hard to correct2. For example, mandating a minimum trajectory duration in 2D limits the 
analyzed set of bacteria to those that move within the focal plane, which results in an over-
estimate of the drift velocity as it discriminates against bacteria that move perpendicular to the 
gradient.  
Other publications refer to the chemotactic sensitivity. Ahmed et al.3 infer the drift velocity from 
the population-averaged swimming speed and the measured asymmetry in the time spent 
swimming up versus down the gradient for various gradient conditions, and then use the 
following relation to determine the chemotactic sensitivity: 
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	𝑣+#  is the average bacterial swimming speed, Kd is the receptor/ligand 

dissociation constant, Vdrift is the chemotactic drift, C is the MeAsp concentration and x the 
position in the gradient. Using this relation with dC/dx = 1 × 10-5 mM µm-1,    C(x) = 5 µM,  and Kd 
= 0.125 mM4, we obtain 𝜒! = 11 ± 1 × 10-4 cm2 s-1 from our drift velocity value of 2.7 ± 0.3 µm s-

1, which aligns well with previously reported values for the same strain (2.4 × 10-4 cm2s-1 5, 5  × 
10-4 cm2 s-1 6,  12.4 × 10-4 cm2 s-1 3). 
 
 
2. C. crescentus chemotaxis 
 
2.1 Nature of the smooth-swimming subpopulation.  
While, even for a uniform population of turning bacteria, it is expected that a subset of 
trajectories exhibits no turning events by random chance, several observations support the 
notion that the trajectories without turns contain a phenotypically distinct subpopulation: Firstly, 
they show a vastly different drift velocity from the turning population (Supplementary Table 2, p 
≈ 10-5 under a one-sided two-sample t-test on drift velocity averages obtained for sets of 150 
trajectories each). Secondly, the observed fraction of trajectories with no turns exceeds the 
fraction expected from the average turning frequency by 9%, assuming Poisson statistics and a 
uniform turning frequency across the population. An average turning frequency of 0.34 Hz is 
obtained by dividing the number of turns observed across the entire turn detection dataset by 
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the set’s total trajectory time. Thirdly, if we determine the turning frequency as the value that 
best predicts the observed relative frequency of trajectories with 1, 2, and 3 turns under the 
assumption of Poisson statistics, ignoring the frequency of trajectories with no turns, we obtain 
a higher rate of 0.36 Hz. Based on this value, the number of trajectories with zero turns is 24% 
higher than expected.  
Although turning events are not truly Poissonian, as indicated by the peaked, non-exponential 
distribution of run durations, we do not anticipate that this changes the conclusion that smooth 
trajectories are overrepresented because the minimum trajectory duration of 0.8 s we impose is 
located on the exponential tail of the run duration probability distribution function. In fact, the 
Inverse Gaussian distributions we extract predict a larger number of runs shorter than 0.8 s than 
an exponential distribution with the same mean, so we are likely underestimating the 
overrepresentation of smooth trajectories. 
It is possible that our population contains a continuous spectrum of turning rates rather than two 
discrete, turning and non-turning, subpopulations. The run duration distribution of the turning 
population, however, is well-captured by a single distribution (Fig. 2b).  
Multiple possible causes could potentially underlie the smooth-swimming subpopulation we 
observe. One possibility is that these cells are experiencing the receptor degradation that 
accompanies the swarmer-to-sessile cell transition7. In E. coli, the tumble signal [CheY-P] is 
produced by the receptor-bound kinase CheA, so that a deletion of chemoreceptors, like a 
deletion in cheA or cheY, produces a smooth-swimming phenotype8,9. In C. crescentus, however, 
a deletion in cheAI from the major chemotaxis operon has been reported to result in an increased 
turning frequency10, thus it is unclear whether a receptor deletion or degradation would yield a 
smooth-swimming phenotype in this species. 
A second possible explanation might lie in the c-di-GMP-activated Cle proteins which were 
recently shown to induce smooth-swimming, likely by competing with CheYII, thought to be the 
main chemotaxis response regulator, for binding sites at the motor11.  
 
2.2 Motor bias of the smooth-swimming subpopulation.  
In principle, it is possible for smooth swimmers to exhibit the same motor bias as turning cells. 
The bias would manifest itself in the fraction of smooth swimmers that swim in pushing vs pulling 
mode.  
Trajectory curvature at the surface can, in principle, enable a determination of swimmer 
orientation. High curvature segments typical of the pulling mode are readily apparent in surface 
segments of example trajectories from the turning population, but not from the smooth-
swimming population (Supplementary Fig. 2h,i). Forward swimming thus seems more likely for 
the smooth-swimming population, but we cannot exclude backward swimming because not all 
trajectories contain surface segments and interactions with stalked bacteria at the surface may 
disrupt surface trajectory curvature. 
Assuming that there are two discrete underlying phenotypes (smooth-swimming and turning), 
the set of trajectories that do not contain turning events would be expected to contain both true 
smooth swimmers as well as individuals from the turning population which only happen to not 
turn during the recorded trajectory segment. Thus, if high curvature surface segments were 
observed in trajectories without turns, it would not rule the possibility that smooth swimmers 
only swim forward.  
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Finally, it is, however, also plausible that the biological factors that distinguish the smooth-
swimming and turning phenotypes also alter the motor bias. We cannot distinguish these 
possibilities on the basis of our data. 
 
2.3 Diffusive drift due to imbalance in bacterial densities 
A bacterial concentration gradient drives a diffusive bacterial drift of 

𝑣$&'' =
𝐽
𝑏 = 	−	D

d𝑏
d𝑥
𝑏(𝑥) = 	−D	𝑟(𝑥)	, 

where b(x) is the position-dependent bacterial density, D is an effective diffusion coefficient, and 
J(x) is the resulting diffusive flux, and r(x) is the relative bacterial density gradient. In our device, 
we expect a linear gradient across a d = 1 mm long channel between reservoirs with 
concentrations b0 = c b1 and b1, where c < 1. The relative gradient in the center of the device is 
then  

𝑟(𝑑/2) = 	
2(1 − 𝑐)
𝑑(1 + 𝑐) 

and the resulting diffusive drift at this position is  

𝑣$&''(𝑑/2) = 	−
2𝐷(1 − 𝑐)
𝑑(1 + 𝑐) . 

The effective 3D diffusion coefficient for run-reverse-flick motility with constant speed v and two 
different run durations was derived by Taktikos et al.12, see (Eq. 24): 

𝐷 =
𝑣"

3 	
𝜏,-" − 𝜏,-𝜏'-(1 − 2𝐷%𝜏,-) + 𝜏./" (1 + 2𝐷%𝜏,-)
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The effective rotational diffusion coefficient Dr is likely very small for C. crescentus. Assuming τfw 
= 0.75 s and τbw = 0.64s, v = 56 µm/s, and Dr = 0, we obtain D = 370 µm2 s-1.  If Dr = 0.1 s-1, which 
is likely an overestimate, we obtain D = 363 µm2 s-1.  
For the apparently non-turning population, which shows negative drift, we do not know with 
certainty whether the bacteria do not turn at all or still perform run-reverse-flick motility with 
much longer run durations. Assuming τfw =  τbw  = 2 s, v = 59 µm/s and Dr = 0.1 s-1, we obtain D = 
1067 µm2 s-1. 
We note that these diffusion coefficient estimates are coarse as they rely on simplifying 
assumptions. For example, we use population-averaged values for input parameters and do not 
take into account variability between individuals, which may lead to inaccuracies in the diffusion 
coefficient due to its nonlinear dependence on input parameters. The run durations used may be 
underestimates as long runs tend to be under-sampled13, thus the diffusion coefficients are likely 
underestimates. The diffusion coefficient estimates also do not take into account the complex 
geometry of the assay. For processes with short run length, the behavior may be well 
approximated as 3D, but swimmers with longer run lengths will frequently interact with the walls. 
Such interactions could both increase the effective diffusion coefficient via dimensional reduction 
and decrease it via surface interactions such as circling.  
Bacterial density measurements for the two reservoirs in the chemotaxis device indicate that the 
xylose-containing reservoir has an approximately 1.8-fold higher density than the one that only 
contains buffer, corresponding to c = 1/1.8 = 0.56. Based on our diffusion coefficient estimates 
above, we thus expect a diffusive drift of approximately -0.2 µm s-1 for the turning population 
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and -0.6 µm s-1 for the smooth-swimming population. The latter value is in good agreement with 
the experimentally determined values of –(0.8 ± 0.2) µm s-1 for smooth swimmers, indicating that 
the experimentally observed drift of smooth swimmers may be entirely due to effective diffusion, 
with no chemotactic component. The value of -0.2 µm s-1 estimated for the turning population 
agrees well with the difference, –(0.17 ± 0.33) µm s-1, between their measured drift velocity of 
(0.26 ± 0.12) µm s-1 and their chemotactic drift expected on the basis of their run duration 
modulation, (0.43 ± 0.21) µm s-1. We thus conclude that the drift velocity observed for the turning 
population likely slightly underestimates the chemotactic drift velocity due to a diffusive counter 
flux.  
 
2.4 Density imbalances driven by a chemoattractant-conferred growth benefit 
Many chemoattractants are nutrients and confer a growth benefit. Let the growth rates in the 
presence and absence of chemoattractant be µ1 and µ2, respectively, with µ1 > µ2. If bacterial 
suspensions with and without chemoattractant, but with identical initial density N0 are filled into 
the reservoirs at t = 0, their densities Ni will evolve as 𝑁1(𝑡) = 	𝑁!	𝑒2!3, and the ratio of their 
densities as 𝑅4(𝑡) = 𝑁5 𝑁"⁄ = 𝑒(2"72#)3. Under the conditions of the experiment, that is, room 
temperature and a minimal medium that does not support growth well, the growth rate is 
typically very low and the duration to the experiment substantially shorter than the duplication 
time, td = ln(2)/µ, t < td, so that Rs(t) ≈ 1 + (µ1 - µ2)t. Small growth rate differences thus result in 
only small density differences between reservoirs over the course of a typical suspension-based 
experiment. 
In our C. crescentus assay, however, the observed bacteria are initially generated only by growth 
from a reservoir of stalked bacteria at the surface with density Nr, at a constant rate. At longer 
times, exponential growth from the generated swarmer cells is expected to drive the dynamics: 
9:!
93
= µ1𝑁0 +	µ1 	𝑁1(𝑡), thus 𝑁1(𝑡) = 	𝑁0(𝑒2!3 − 1). For simplicity, we assume the same growth 

rate µi for growth from the surface reservoir and growth from new swarmer cells. We also ignore 
any possible delays due to cell cycle timing in the transition of swarmer cells back to stalked cells 

that is required to enable cell division. The density ratio then evolves as 𝑅%(𝑡) =
;$"%75
;$#%75

. Hence 
even the initial ratio already reflects the growth rate difference, Rr(t) ≈ µ1/µ2  for t ≪	td, while in 
the suspension assay, Rs(0) = 1. At long times, exponential growth from the generated swarmer 
cells is expected to drive the dynamics. This will occur when their population becomes sufficiently 
large that their contribution to growth becomes comparable to or larger than that provided by 
the initial stalked cell carpet. Eventually, the ratio density will grow with the same scaling as for 
growth from a suspended population, 𝑅%(𝑡) ∝ 	 𝑒(2"72#)3. The transition from the linear to the 
exponential regime is expected to occur around the doubling time, td. Most importantly, the 
density ratio is larger for the reservoir-driven assay than for the suspension assay, Rr(t) > Rs(t), at 
all times.  
Our experimentally observed density ratio of Rr ≈ 1.8 is substantially larger than the growth rate 
ratio, µ1/µ2 ≈ 1.1, inferred from plate reader experiments. Thus, either the growth dynamics in 
our chambers have already left the linear growth regime, or the growth conditions in the plate 
reader do not reflect the growth in the chemotaxis chambers well. Both possibilities are plausible, 
and the latter very likely, as the plate reader experiments were performed at a higher 
temperature.  
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Thus, we conclude that, in typical assays where a suspension of bacteria is injected into the 
chemotaxis device, any density imbalances incurred by a growth benefit conferred by the 
chemoattractant will be typically be much smaller than in the C. crescentus assay presented here.  
 
2.5 Motor switching model.  
The ratio of probabilities, p, of being in the CW vs the CCW state is determined by their energy 
difference ΔEb (Figure 2d, e for definitions of terms) between them: p(CW)/p(CCW) = exp(-
ΔEb/kBT), where kB is the Boltzmann factor and T is the absolute temperature. The motor’s CW 
bias is given by p(CW). The rates of switching between states depend on the energy barrier 
separating the states: kCCW ∝ exp(-ΔECW/kBT), kCW ∝ exp(-ΔECCW/kBT).  
In the E. coli model, CheY-P binding is thought to destabilize the CCW state while stabilizing the 
CW state so that ΔEb decreases (thus increasing the motor’s CW bias), ΔECCW decreases 
(increasing kCW), and ΔECW increases (decreasing kCCW)14.  
For an alternative model that enables chemotaxis at constant motor bias, ΔEb must remain 
constant. CheY-P binding can then modify switching rates by either destabilizing both motor 
rotation states by the same amount15 or by lowering the energy barrier between them.  
While our data are consistent with the notion that the motor bias remains constant during 
chemotaxis, we cannot exclude that experimental scenarios that evoke a stronger chemotactic 
response might exhibit a deviation from a constant bias. We emphasize, however, that such a 
deviation would only entail minor modifications to the model proposed here and would not 
compromise the key point of our findings, namely that chemotaxis is achieved by extending 
either motor rotation interval if favorable, as opposed to modifying their relative durations.  
 
 
3. Data requirements for resolving chemotactic drift from individual trajectories 
 
Regardless of the method used, the amount of data available sets a limit on the precision with 
which we can determine averages as per the central limit theorem. Suppose one acquired a large 
number, N, of independent samples of velocity vectors from a population of bacteria swimming 
in random directions in 3D with fixed absolute speed, v0. In the presence of chemotaxis, the 
expected drift velocity in the gradient direction is vd. The measured drift velocity is vm = < vx > 
where vx is the component of the swimming velocity along the gradient direction. In the absence 
of chemotaxis, vx has a flat distribution on the interval [-v0, v0] with a standard deviation of 
𝑣!/√3. According to the central limit theorem, the standard error of vm is then  𝑆𝐸(𝑣<) =
𝑣!/(√3𝑁). If the drift velocity is small compared to the swimming speed, vd <<  v0, we can 
approximate the effect of chemotaxis as a shift of the entire distribution in vx by vd. In this 
approximation, the distribution’s mean shifts from 0 to vd, but the standard deviation remains 
unchanged. The confidence in a given measured drift, vm, is determined by the ratio 𝑓 =
𝑆𝐸(𝑣<) |𝑣<|⁄ = 	 =&

√+:	|='|
.	E.g., a 98% confidence that the measured drift vm represents a true 

underlying vd larger than zero requires f < 0.5. Conversely, the number of independent data 

points required to achieve a ratio f follows 𝑁<&A =
5
+.#

T =&
|='|

U
"
.  
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Experimentally, each trajectory can be considered an independent measurement. In principle, 
trajectories longer than the autocorrelation time of the velocity orientation vector can yield 
multiple independent velocity measurements. For C. crescentus, velocity orientations are highly 
correlated over the course of a forward run and the next backward run which retraces it, but the 
subsequent flick effectively randomizes the orientation. The autocorrelation time scale, τc, can 
thus be estimated as the sum of the average durations of forward and backward runs, τc ≈ <τfw> 
+ <τbw> ≈ 0.79 s + 0.66 s = 1.45 s, where we have used the average run durations obtained for 
runs leading up the gradient. This value is very similar to the average trajectory duration of 1.55 
s for the dataset; thus, we ignore this subtlety and base our estimates on the number of 
trajectories.  
For E. coli, a typical experiment comprises N ≈ 3 × 103 trajectories. With vm = 2.7 µm s-1 and v0 = 
30 µm s-1, we estimate f = 0.12, consistent with the approximately 10% variation in results 
between experiments. With our values for C. crescentus, v0 = 56 µm s-1, vm = 0.26 µm s-1, and N ≈ 
7.9 × 104, we expect f = 0.43 based on solely statistical errors, close to the f = 0.46 estimated 
experimentally.  
The data requirements for detecting the drift velocity of C. crescentus and E. coli in our essay are 
thus accounted for by statistical considerations.  
 
 
4. Comparison of 3D and 2D tracking  
 
To compare the performance of 3D tracking to a common 2D tracking approach, we construct a 
2D comparison dataset from our C. crescentus 3D data based on an estimate of the constraints 
of 2D tracking. 2D tracking studies often observe bacteria in a slice whose vertical thicknesses is 
determined by the depth of field of the objective lens used. This value can range from about 2 
µm for a 40x, NA 0.60, lens like the one used here to about 8 µm for a 10x, NA 0.3, lens, assuming 
a camera pixel size of 6 µm. To construct a realistic 2D data set, we crop our 3D Caulobacter 
crescentus bulk trajectories, which span approximately 44 µm in z, to those segments contained 
in a slice of a vertical height of 8 µm, positioned at the center of our chamber in z, and discard 
the z information for the resulting data set. 
Not only does the 2D dataset comprise less data by overall trajectory duration because it covers 
a smaller volume, but it also consists of much shorter trajectories (Supplementary Fig. 5a) 
because trajectories end when bacteria leave the slice. Many behavioral parameters only become 
detectable in trajectories with a certain minimum trajectory duration. For example, unambiguous 
identification of bacterial orientation during a run requires that both turning events before and 
after the run can be identified as reversals or flicks. The amount of trajectory data that meets a 
given duration threshold decreases exponentially with the threshold value. For the 2D data set, 
the rate of decrease is more than twice as fast as for the 3D data set (Supplementary Fig. 5b). We 
select a minimum duration threshold of 0.8 s, slightly longer than the average run duration, to 
limit analysis to trajectories that are likely to capture runs of detectable orientation. At this 
threshold value, the amount of data in the 2D data set is reduced by more than an order of 
magnitude compared to the 3D data set.  
Next, we compare the frequencies of the different types of turning events detected in 2D and 3D 
tracking. To detect turning events in the 2D data, we follow the same procedure as in 3D, except 



 15 

speeds and rates of angular change were only computed from the x and y components of the 
position data and the detection threshold factor was adjusted to a value of 14 to minimize the 
difference in the number of detected events compared to a full 3D treatment of the same data. 
2D tracking underestimates the number of flicks because flicks often result in the bacterium 
leaving the observation volume. By contrast, reversals result in the bacterium backtracking along 
its previous path, so a forward run in the observation volume is typically followed by a backward 
run that is also in the observation volume. As a result, we detect nearly twice as many reversals 
as flicks in the 2D data set, compared to a nearly balanced ratio of 1.2 in the 3D data set 
(Supplementary Fig. 5c).  
The undersampling of flicks in 2D tracking limits the ability to assign bacterial orientations to runs, 
as we require a flick to be detected at one end and a reversal to be detected at the other end of 
a run to unambiguously distinguish forward and backward swimming. As a result, a bacterial 
orientation can only be assigned to less than half of the runs observed in 2D tracking, compared 
to nearly 70% for 3D tracking (Supplementary Fig. 5d).  
Because forward runs are, on average, longer than backward runs, examining forward and 
backward runs separately is crucial to being able to detect whether run durations depend on 
orientation relative to the gradient. The 2D dataset detects only 210 runs of known bacterial 
orientation, of which fewer than 80 are aligned up or down the gradient. As a result of the low 
rate of detection of runs with known bacterial orientation, the 2D data set is unable to distinguish 
run durations up and down the gradient. To detect a similar number of runs with known bacterial 
orientation as in 3D tracking, approximately 30-40 times as much data would need to be 
recorded, corresponding to 1.5-2 full days of recording, compared to the 75 min on which the 3D 
dataset is based.  
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Supplementary Table 1 
 

Dataset Figures # of motile 
trajectories 

total  
motile 

trajectory 
duration (s) 

motility 
threshold 
(µm s-1) 

average 
motile 
speed 

(µm s-1) 

vd 
(µm s-

1) 

Speed in 
reservoirs 
over time 

(min) 

3  

S. Fig. 1d 

118 810 10 21.0 N/A 
7 118 908 10 20.2 N/A 

10 150 1,155 10 20.6 N/A 
50 164 1,243 10 19.8 N/A 

Geometry 
tests 

MeAsp  
 

-1 mM mm-1 

S. Fig. 1e 

3,589 13,825 10 20.4 5.0 
1 mM mm-1 6,497 19,926 10 20.7 5.2 

no gradient 1,996 7,470 10 20.8 0.3 

10 μM 
mm-1 

MeAsp  
 

same day 
triplicates 

(all) 

Fig. 1d, 
S. Fig. 

1g 

Fig.1b, 
S. Fig. 1f  5,061 36,979 15 30.4 1.2 

 2,498 20,879 15 30.4 1.5 
 2,344 21,704 15 29.6 1.0 

same day 
triplicates 

(bulk) 

Fig. 1e 
 

4,488 12,284 15 30.3 2.5 
2,541 7,153 15 30.5 3.1 
2,265 6,892 15 29.4 2.6 

additional 
replicates 

(bulk) 
 

11,490 29,947 15 32.4 2.5 

10,277 29,003 15 30.1 2.7 

Supplementary Table 1: Statistical descriptors of E. coli datasets and their corresponding figures. 
Bulk data, meaning containing only trajectory segments that are at least 10 µm from surfaces, 
are presented, unless otherwise specified.  
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Supplementary Table 2 
 

set 
# set sub-

set of 

additional 
conditions re 

parent set 

# of 
trajec-
tories 

total 
trajectory 

time (s) 

mean 
trajectory 
duration 

(s) 

mean 
speed 

(µm s-1) 

drift velocity 
in x (µm s-1) 

drift velocity 
in y (µm s-1) 

1 all 1 - 125,20
8 249,729 2.0 50.4 -0.20 ±0.07 -0.09 ±0.07  

2 motile bulk 1 
>13 µm from 

surface, 
vm > 20 µm s-1 

130,24
3 154,952 1.2 58.2 -0.22 ±0.09 -0.09 ±0.11 

3 
turn 

detection 
set 

2 T > 0.8 s 79,244 123,001 1.6 57.7 -0.31±0.11 -0.09 ±0.11 

4 smooth 
swimmers 3 0 turns 49,753 66,949 1.3 59.2 -0.80 ±0.17 -0.14 ±0.18 

5 turning 3 1+ turns 29,491 56,054 1.9 55.8 0.26 ±0.12 -0.03 ±0.12 

6 run 
analysis 5 1+ runa  8,409 21,848 2.6 52.5 0.26 ±0.18 0.16 ±0.18 

7 
forward/ 
backward 
analysis 

6 1+ defined 
runb 6,230 16,368 2.6 53.6 0.22 ±0.19 0.21 ±0.22 

8 

forward/ 
backward 

speed 
analysis 

7 
1+ fw run 

AND 1+ bw 
run 

1,418 4,896 3.5 50.8 0.01 ±0.35 0.19 ±0.29 

 
Supplementary Table 2: Definitions and properties of subsets of C. crescentus trajectories used 
for analysis. The number of trajectories in subset 2 increases relative to subset 1 because the 
condition of a minimum distance to the surface segments trajectories into potentially multiple 
rejected or retained parts. vm: mean swimming speed, T:  trajectory duration.  a A run is included 
here if its beginning and end are detected. b Defined runs are those whose bacterial orientation 
can be determined based on the magnitude of the preceding and subsequent turns. Error 
estimates are standard errors.  
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