FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis.
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Design of microstructure, FtsZ-YFP-mts*[T108A] deformations, high density
encapsulated FtsZ-YFP-mts and FtsZ-YFP-mts supercoiling, a) 3D sketch of the PMDS
microstructure with inwards cone-like shapes. b) FtsZ-YFP-mts*[T108A] also self-assembled
into ring-like structures on GUVs (GUVs:N>20) (Scale bar = 10 pm). ¢) After deflation, FtsZ-
YFP-mts*[T108A] induced inwards conical deformations emerging from before mentioned
rings (GUVs:N>20) (Scale bar = 2 um). d) By encapsulating FtsZ-YFP-mts in GUVs, Mg*?
and GTP content-conditions were fine-tuned to obtain either ring structures (Fig. 5) or nematic

phases at a higher membrane protein density (GUVs:N>10) (Scale bar = 10 um). e) FtsZ-YFP-



mts torsion over lipid tubes can be found in (less frequent) experiments displaying

plectonic/supercoiled regions (N=2). (Scale bar = 2 um).
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Tube diameter distribution, ZipA control experiments and ring-unit-brightness
distribution. a) The diameter distribution (N=55) showed a Gaussian distribution with a mean

of 0.47 pm. This implied that membrane tensions equivalent to this mean (+ std) were highly



frequent despite of precise control on the vesicle membrane tension. b) Vesicles decorated with
ZipA and imaged under deflation conditions exhibited no deformations (GUVs:N=14). In
addition, we examined lipid tubes only coated with siZipA-Alexa 488. No deformations (N=10)
were observed in the range of 400-600 seconds. ¢) Similar initial lipid tube diameter (0.44 pm)
for experiments shown in Figure 3 a-b d) For experiments shown in Fig. 3 a-b, FtsZ-YFP-mts
entered rapidly to the lipid tube while the mutant without GTPase activity (slower). e).
Distribution of FtsZ brightness-per-ring (N=412 analyzed rings). The distribution’s mode value

was chosen as the value for FtsZ brightness-per-ring. (Scale bar =2 pm).
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Observed phenotypes of E. coli ftsZ-YFP-mts after lysozyme treatment in sucrose-buffer.
The first columns in a, b & b show a pearl necklace like appearance of the cells, while the
second column in b might show an earlier stage of this chaining type of vesiculation. Nile red
was used to prove that the observed vesicles and tubular connections are actually phospholipid-

membranes. As a control unstained cells b) and stained cells ¢) were also imaged separately in



the respective channel. Example micrographs from (N=3) biological replicates. (scale

2um).
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Drawing for the experiment chamber and optical trapping device a) Sketch of imaging

chamber for deflated vesicle preparation. b) Optical tweezers setup layout.



Supplementary Table 1: Cloning Vectors

Vector Protein Source/reference

pET-11b FtsZ-YFP-mts gifted by Harold Erickson, Ref. 1
pET-11b FtsZ-YFP-mts*[T108A] Ref. 3

pET-28a FtsZ-WT Ref. 31

pET-15Z1P SZipA Ref. 32

pEKEx2 FtsZ-YFP-mts This publication

Supplementary Table 2: Primers

Name Sequence 5> — 3’

T108A RV | GGTGGTGGTGCCGGTACAGGT

T108A FW | ACCTGTACCGGCACCACCACC

sZipAl CATATGGCTGCCGCGCG

sZipAll ACCAGCCGTAAAGAACG

Sall-ftsZ CATGTCGACATGTTTGAACCAATGGAACTTACC

Sacl-mts

CATGAGCTCTTATCCTCCGAACAAGCG




