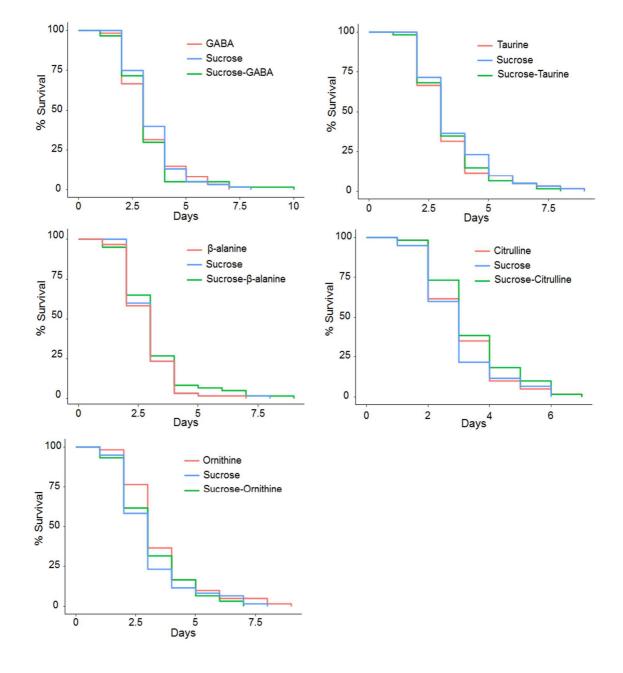
## SUPPLEMENTARY INFORMATION

# Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees


Daniele Carlesso<sup>1</sup>, Stefania Smargiassi<sup>2</sup>, Elisa Pasquini<sup>3</sup>, Giacomo Bertelli<sup>3</sup>, David Baracchi<sup>3</sup>

<sup>1</sup> Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia

<sup>2</sup> Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, Turin 10123, Italy

<sup>3</sup> Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy

#### Results



Exp 3 – Influence of NPAAs on feeding and mortality

Figure S1: NPAAs did not affect caged honey bee survival. Cumulative survival of bees kept in caged conditions under three different feeding regimes for a period of 10 days: Sucrose only (S-S); NPAA-laced solution only (NPAA-NPAA); Sucrose and NPAA-laced solution (S-NPAA). None of the NPAAs was a significant predictor of mortality in any feeding regime (Log-rank Mantel Cox test, GABA: p=0.68;  $\beta$ -ALA: p=0.52; TAU: p=0.68; CIT: p=0.20; ORN: p=0.25).

### Exp 4 – Contextual absolute olfactory learning

For all *unpaired* groups, we observed no significant increase in responses during conditioning apart from  $\beta$ -alanine (GLMM, *trial*: GABA,  $\chi^2$ =0.15, df=1, p=0.70;  $\beta$ -ALA,  $\chi^2$ =4.32, df=1, p=0.04; TAU,  $\chi^2$ =1.26, df=1, p=0.26; CIT,  $\chi^2$ =0.19, df=1, p=0.66; ORN,  $\chi^2$ =0.59, df=1, p=0.44, Fig. 4), nor an effect of the treatment (GLMM, *treat*: GABA,  $\chi^2$ =0.04, df=1, p=0.84;  $\beta$ -ALA,  $\chi^2$ =0.13, df=1, p=0.71; TAU,  $\chi^2$ =0.01, df=1, p=0.93; CIT,  $\chi^2$ =0.0, df=1, p=0.99; ORN,  $\chi^2$ =0.001, df=1, p=0.98, Fig. 4 in the main document). Accordingly, bees in the *unpaired* groups did not differ in acquisition scores for any of the NPAAs (Mann-Whitney U test, *ACQS:* GABA, W=771, p=0.92;  $\beta$ -ALA, W=818, p=0.39; TAU, W=740, p=0.15; CIT, W=861, p=0.34; ORN, W=722, p=0.1). These results thus confirmed the occurrence of a true associative learning phenomenon in the *paired* groups.

In all the *unpaired* groups NPAAs did not alter bees' responses to the conditioned odorant ( $\chi^2$  test, *CS*: GABA,  $\chi^2$ =0.14, p=0.71;  $\beta$ -ALA,  $\chi^2$ =0.37, p=0.54; TAU,  $\chi^2$ =0.38, p=0.55; CIT,  $\chi^2$ =2.67, p=0.10; ORN,  $\chi^2$ =0.24, p=0.62, Fig. 4) nor to the novel odorant ( $\chi^2$  test, *NOd*: GABA,  $\chi^2$ =0.90, p=0.34;  $\beta$ -ALA,  $\chi^2$ =0.99, p=0.32; TAU,  $\chi^2$ =0.0003, p=0.99; CIT,  $\chi^2$ =1.95, p=0.16; ORN,  $\chi^2$ =2.00, p=0.16, Fig. 4). Accordingly, we found no difference in the proportion of experimental and control bees showing CS-specific memory for any of the NPAAs ( $\chi^2$  test, *specific memory*: GABA,  $\chi^2$ =0.14, p=0.71;  $\beta$ -ALA,  $\chi^2$ =0.37, p=0.54; TAU,  $\chi^2$ =1.04, p=0.31; CIT,  $\chi^2$ =1.77, p=0.18; ORN,  $\chi^2$ =0.001, p=0.98, Fig. 4 in the main document).

## Exp 5 – Post-feeding absolute olfactory learning

Bees belonging to the *unpaired* groups did not increase their responses over training except with  $\beta$ alanine (GLMM, *trial:* GABA,  $\chi^2$ =3.56, df=1, p=0.06;  $\beta$ -ALA,  $\chi^2$ =4.87, df=1, p=0.03; TAU,  $\chi^2$ =0.38, df=1, p=0.54; CIT,  $\chi^2$ =1.26, df=1, p=0.26; ORN,  $\chi^2$ =2.87, df=1, p=0.1, Fig. 5 in the main document). However, in all the *unpaired groups*, including  $\beta$ -alanine, pre-feeding did not alter the responses to the CS (GLMM, *treat:* GABA:  $\chi^2$ =0.04, df=1, p=0.84;  $\beta$ -ALA:  $\chi^2$ =1.88, df=1, p=0.17; TAU:  $\chi^2$ =0.0004, df=1, p=0.98; CIT:  $\chi^2$ =0.06, df=1, p=0.81; ORN:  $\chi^2$ =0.053, df=1, p=0.82, Fig. 5 in the main document). Accordingly, experimental and control pre-fed bees did not differ in their ACQS (Mann-Whitney U test, *ACQS:* GABA: W=529, p=0.69;  $\beta$ -ALA: W=559, p=0.15; TAU: W=666, p=1; CIT: W=841, p=0.98; ORN: W=665, p=0.68). Overall, the results confirmed that true associative learning occurred in the *paired* groups. In the *unpaired* groups, no NPAA altered the responses to the CS ( $\chi^2$  test, GABA:  $\chi^2$ =0.94, p=0.16;  $\beta$ -ALA:  $\chi^2$ =0.53, p=0.47; TAU:  $\chi^2$ =0.001, p=0.97; CIT:  $\chi^2$ =1.61, p=0.20; ORN:  $\chi^2$ =0.56, p=0.45) or to the NOd ( $\chi^2$  test, GABA:  $\chi^2$ =0.72, p=0.40;  $\beta$ -ALA:  $\chi^2$ =1.33, p=0.25; TAU:  $\chi^2$ =0.001, p=0.98; CIT:  $\chi^2$ =1.77, p=0.18; ORN:  $\chi^2$ =0.11, p=0.74, Fig. 5). Accordingly, *unpaired* experimental and control bees did not differ in CS-specific memory for any of the NPAAs ( $\chi^2$  test, GABA:  $\chi^2$ =0.24, p=0.63;  $\beta$ -ALA:  $\chi^2$ =0.049, p=0.83; TAU:  $\chi^2$ =0.38, p=0.54; CIT:  $\chi^2$ =0.45, p=0.50; ORN:  $\chi^2$ =0.21, p=0.64, Fig. 5 in the main document).