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1. ML-SIM DESKTOP PROGRAM

An easy to install and use desktop app for Windows 10, macOS and Linux has been developed
for ML-SIM and is available at GitHub, https://github.com/charlesnchr/ML-SIM, and figshare
[1]. The program allows one to batch process a set of directories including subdirectories that
contain TIFF stacks, in addition to customising and selecting the model used for reconstruction.
The program is based on NodeJS and Python, using Pytorch as the deep learning framework
underneath. Required dependencies are downloaded automatically. GPU acceleration is available
with CUDA-compatible Nvidia GPUs. The program includes a plugin for µManager that can be
activated to enable a real-time live-view of ML-SIM reconstructed output with a frame rate over 5
FPS on a medium-tier PC with a recent GPU. See Figure S1 for a screenshot.

Fig. S1. Interface of ML-SIM desktop program with two open folders. Batch processing is
possible by selecting multiple or all images in the view, and the specific ML-SIM model used
can be changed from a dropdown menu.



2. PERFORMANCE ASSESSMENT ON TEST IMAGE SET

Test on two different image sets, DIV2K and Kodak 24. The sets consist of 10 and 24 images,
respectively, all of which are distinct from the original images used for the training data.

DIV2K Test Set Kodak 24 Set

PSNR [dB] SSIM PSNR [dB] SSIM

Wide-field 25.31 0.84 24.05 0.85

CC-SIM 25.37 0.89 24.61 0.86

FairSIM 25.34 0.86 25.32 0.86

OpenSIM 28.46 0.91 27.36 0.92

ML-SIM 30.30 0.95 30.22 0.96

Table S1. Test scores on simulated raw SIM data generated from image sets DIV2K and Kodak
24 for commonly used reconstruction methods and for ML-SIM.

3. RESIDUAL NEURAL NETWORK ARCHITECTURE OF ML-SIM

The model used in ML-SIM is a deep residual neural network that is largely based on the
ResNet architecture and the extensions to single image super-resolution with EDSR and RCAN.
A diagram is shown on Figure S2.
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Fig. S2. The architecture of ML-SIM is inspired by state-of-the-art single image super-
resolution architectures. Here the architecture of EDSR is shown, but the same structure ap-
plies to RCAN only with a more complex block called a channel attention block. ML-SIM has a
RCAN architecture without an upsampling module and with a larger input layer that handles
9 frames.
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4. STRUCTURED ILLUMINATION MICROSCOPY METHODOLOGY

Fig. S3. SIM methodology visualised in frequency space. (A) Raw image captured during
SIM. Scale bar is 5 µm. (B) 2D Fourier transform of A. The resolution limit can be visualised
as a cutoff frequency kd beyond which no spatial frequency information from the sample is
collected. The frequency components of the striped illumination pattern are visible as bright
peaks close to the cutoff frequency. (C) The frequency components of the excitation pattern, k0,
are chosen to be as close to the diffraction limit as possible, to maximise resolution increase.
The interference of the patterned illumination with the sample pattern means the observed
region of frequency space now contains frequency components from outside the supported
region, shifted by ±k0. (D) By shifting the phase of the pattern, the regions of frequency space
can be isolated and moved to the correct location in frequency space. The maximum spatial
frequency recovered is now kd + k0.
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5. POISSON NOISE FOR DATA GENERATION

By default the ML-SIM model uses Gaussian noise source for data generation. The underlying
Gaussian distribution is randomised from image to image to make the model more generalised. In
microscopy, however, Poisson noise is often the predominant noise source [2]. We tested whether
the performance of ML-SIM is significantly affected by the noise model used to generate the test
data and performed reconstructions of images corrupted by Poisson noise. The results are shown
in Figure S4 below. We have not found a strong sensitivity on the type of noise source used for
data generation and other factors, such as blur caused by the PSF, out-of-focus light and errors
in the SIM illumination pattern, (i.e. errors in phase shifts or stripe orientations) were found to
have a more significant effect. On the other hand, high levels of synthetic noise used for data
generation may be detrimental to the final performance of a model.

Fig. S4. Model output obtained when using either Gaussian noise and Poisson noise in train-
ing data. (Top) Examples of the noise models applied to a clean RGB image. (Center) Training
data sample when the same noise distributions are used in the data generation pipeline that
simulates SIM image formation. (Bottom) Resulting reconstruction output when models are
trained on simulated SIM data using the respective noise distributions.
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6. INFLUENCE OF SIM STACK SIZE

Almost all the reconstruction outputs presented in the main paper are based on a ML-SIM models
trained to work on a SIM configuration with illumination patterns consisting of three orientations
and three phase shifts, a 3x3 configuration. However, the ML-SIM pipeline fully supports any
configuration of SIM, and the usual benefits of using larger SIM stacks also apply here. One
benefit is noise robustness and consequently an improved reconstruction quality, but at the risk
of photo-damage to the sample and lower imaging speed. The improvement in reconstruction
quality when used on simulated test images is shown in Figure S5, where models for 3x3 (default),
3x5 and 5x5 SIM configurations are compared. The mean value of the respective structural
similarity index measures are obtained by averaging over a total of 1000 test images that have
been reconstructed with each method. Each test image exists in three versions according to the
different SIM configurations, but the underlying point spread function as well as the noise and
error characteristics are similar.
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Fig. S5. Average SSIM score for three different ML-SIM models with respective SIM configura-
tions of number of illumination stripe orientation, Nθ , and number of phase shifts, Nφ, when
tested on 1000 test images with similar noise levels. The error bars indicate the standard error
of the mean.
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7. MODULATION DEPTH, FREQUENCY, PHASE ERRORS AND ORIENTATION ANGLES

As described in Section 2.2, the illumination stripe patterns are calculated from their spatial
frequency k0 and a phase φ,

Iθ,φ(x, y) = I0

[
1− m

2
cos

(
2π(kx · x + ky · y) + φ

)]
, (S1)

where [kx, ky] = [k0 cos θ, k0 sin θ] for a pattern orientation θ and m is the modulation depth.
The training data for training ML-SIM is generated with randomised values for k0 and m by
sampling uniformly from the intervals k0 ∈ [0.22, 0.28] cycles/px and m ∈ [0.65, 0.95], respectively.
In a standard SIM implementation a number of illumination phase shifts, φ, are used at each
orientation according to an evenly spaced interval. For a typical configuration of three orientations
and three phase shifts (3x3), the phase shift values might therefore be 0, 1

3 × 2π and 2
3 × 2π.

Depending on the nature of the SIM instrumentation that produces the illumination patterns,
these phase shifts will be offset by some error, and furthermore they may not be highly consistent
from image stack to image stack. Thus, it is of high importance to include an approximation of
phase errors in the training data generation for ML-SIM to obtain a model that is robust to such
errors. In the most extreme case, the phase shifts could be completely random with no constraint
as to whether the values are too similar or not sufficiently spaced across the 2π period. This is
how the default ML-SIM model presented in the main paper has been trained with the aim of
improving the generality of the model. This is referred to as a model with high (phase) error
tolerance. A corresponding model with everything kept the same but with consistent phase steps,
i.e. each phase only deviating from its ideal value by a few percent, is referred to as a model with
low error tolerance.

Another parameter that will vary across distinctive, real SIM systems is the order of the
illumination stripe orientations. The 9 frames in a 3x3 SIM stack might be ordered according to
orientation angles of 0◦, 0◦, 0◦, 120◦, 120◦, 120◦, 240◦, 240◦, 240◦ from the first axis, e.g. the x-axis
of the image frame. However, there is no standard across different systems, so the order of the
frames could equally correspond to orientation angles of 240◦, 240◦, 240◦, 0◦, 0◦, 0◦, 120◦, 120◦,
120◦. In addition to this there are also offsets and errors in the actual angles. To make ML-SIM
able to work well despite uncertainty about the particular ordering, and in the presence of errors
and other offsets to the orientations, the simulated SIM images in the training data consist of
all the permutations by using randomisation. A model that is not trained with these different
permutations is referred to as an orientation dependent model – i.e. the ordering of orientations
is fixed in all of the training data samples.

The above-mentioned ML-SIM models have been tested on actual SIM images acquired exper-
imentally and a simulated test dataset of 100 images with a high presence of phase errors and
random orientation ordering. An example of reconstruction outputs of a SIM image of beads
on Microscope 2, as defined in the main paper, in addition to the mean structural similarity
index measures across the simulated test image set are shown on Figure S6. The output from the
two models with low and high error tolerance appear similar on experimental data, and only
significantly differ when testing on the simulated images that are known to have a high level
of phase shift errors. The model that is orientation dependent appears to lose both resolution
and contrast when testing on experimentally acquired SIM images, as indicated by the example
on Figure S6, but performs at a similar quality as the model with low error tolerance on the test
images with high phase shift errors.
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Fig. S6. Performance of ML-SIM models trained with fixed orientation ordering (orientation
dependent), low level of phase shift errors (low error tolerance) and high level of phase shift
errors (high error tolerance – this is the default ML-SIM model). (Top) Example reconstruction
outputs of the respective models. (Bottom) Mean reconstruction qualities of respective models
when averaged over 100 test images that contain a high level of phase shift errors and random
orientation orderings. The error bars indicate the standard error of the computed means.
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8. INSPECTION OF FREQUENCY SUPPORT

The resolution improvement provided by ML-SIM can also be visualised in frequency space
as an extension of the spatial frequency pass band (i.e. high spatial frequencies in the Fourier
transform of the reconstructions). Figure S7 shows a comparison of reconstruction techniques in
frequency space. The raw data was acquired by imaging microtubules labelled with Alexa-647
on the spatial light modulator based SIM microscope with a 647 nm excitation laser and a 1.2
numerical aperture water immersion objective.

Fig. S7. Fourier Spectrum Analysis (FSA) of SIM reconstruction methods. A: raw striped-
pattern SIM frame from microscope. B: FairSIM reconstruction. C: ML-SIM reconstruction.
D, E, and F: log Fourier transforms of A, B, and C respectively. Stripe patterns appear on D as
peaks in frequency space. Graph depicts the normalised intensity of the log Fourier transform
as a function of spatial frequency. Orange line: widefield; grey line: FairSIM; blue line: ML-SIM.
Both ML-SIM and FairSIM have extended the range of frequencies supported, indicating high
resolution information is present in the reconstruction. FSA was performed for a reconstruction
of SIM data acquired on microscope 1 of microtubules labelled with Alexa-647. Note that the
cut-off frequency for the widefield is lower than that predicted from the Abbe limit as spherical
aberrations inevitably degrade frequency support.
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9. TRAINING ML-SIM WITH IDEAL SIM TARGETS

The standard ML-SIM model used throughout the paper is trained with clean and unmodified
images as targets in a supervised learning approach. However, the targets could instead have been
limited to the resolution corresponding to the theoretical optimum of standard SIM reconstruction,
i.e a resolution increase of a factor of 2 over a wide-field image. This is enabled by gaining the
frequency support of a modified optical transfer function (OTF) with twice the radius over the
wide-field equivalent OTF. A more conservative model could be obtained in this way at the
expense of resolution. This is illustrated on Figure S8, where a ML-SIM model trained in such
a way (ML-SIM 2x OTF) provides reconstruction output of lower resolution than the default
ML-SIM model (ML-SIM GT). While other studies on applying deep learning to microscopy have
reported on content-aware approaches [3, 4], ML-SIM is trained with its diverse training data to
avoid sample-specific models, thus in principle preventing resolutions in reconstructions that
exceed the theoretical SIM optimum. Yet, basic features such as simple curves, lines, edges and
corners are arguably similar between natural objects across different length scales. Imposing
this resolution constraint during training may thus cause the reconstruction quality to suffer as
indicated by the corresponding line profile in Figure S8. The full width at half maximum of the
peaks of the tubular profiles are found to be approximately 120 nm for ML-SIM GT and FairSIM,
180 nm for the constrained ML-SIM GT model and 230 nm for the wide-field projection.
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ER, Microscope 1

5 m
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Distance [ m]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

is
ed

 in
te

ns
ity

Wide-field
FairSIM
ML-SIM GT
ML-SIM 2x OTF

Wide-field

500 nm

FairSIM

500 nm

ML-SIM GT

500 nm

ML-SIM 2x OTF

500 nm

Fig. S8. Two ML-SIM models are compared with FairSIM: one trained with ground truth (GT)
images as targets, and another trained with simulated ideal SIM reconstructions as targets.
(Top) Sample training image illustrating the two types of targets. (Center) Full field-of-view ER
image and line profiles comparing the intensity along the displayed red line for the different
reconstruction outputs. (Bottom) Cropped regions of the reconstruction outputs corresponding
to the area enclosed by the yellow rectangle.
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10. APPLYING ML-SIM TO TIRF-SIM DATA

ML-SIM is also tested on a third SIM system which is distinct from Microscopes 1 and 2 described
in the main paper in that it uses total internal reflection fluorescence structured illumination
microscopy (TIRF-SIM) and produces raw SIM images at a resolution of 256x256 pixels per frame,
while ML-SIM is trained for images with 512x512 pixels per frame. Rather than training a separate
model specifically for this system, the TIRF-SIM data is reconstructed with the same ML-SIM
model used throughput the main paper to further demonstrate its generality. The TIRF-SIM image
used here is a test image of tubulin from the open source FairSIM repository1 [5]. Reconstruction
output and line profiles from the respective methods across the tubulin structures are shown on
Figure S9.

TIRF Tubulin - FairSIM repository
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Fig. S9. Resolution improvement when reconstructing a TIRF-SIM image of tubulin from the
official FairSIM repository. ML-SIM reconstruction output is compared with a wide-field pro-
jected image and FairSIM. (Top) Full field-of-view reconstructed TIRF-SIM image and line
profiles comparing the intensity along the displayed red line for the different reconstruction
outputs. (Bottom) Cropped regions of the reconstruction outputs corresponding to the area
enclosed by the yellow rectangle.
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