Supplementary Information -S1

The ρ DCCA method¹⁶ is based on the ratio between the detrended covariance function F_{xy}^2 of the Detrended Cross-Correlation Analysis method²⁰ and the variance function without trend F_{zz} (with z = x or z = y) of the Detrended Fluctuation Analysis method (DFA)¹⁹. It is shown in five steps below:

• Step I: Starting from two different time series, x_i and y_i , with i = 1, 2, ..., N (time series length). From the original time series two new integrated time series are obtained (Eq.1):

$$X_{k} = \sum_{i=1}^{k} [x_{i} - \bar{x}] \text{ and } Y_{k} = \sum_{i=1}^{k} [x_{i} - \bar{y}]$$
(1)

where \bar{x} and \bar{y} represent the mean value of each time series, and k = 1, ..., N.

Step II: We divide these two integrated time series, X_k and Y_k , into (N - n) overlapping boxes of equal length n, where $4 \le n \le \frac{N}{4}$, as shown in Figures 1 and 2. The original data present a total N of dengue case observations equal to 3,404 days, with a minimum scale equal to 4 days and a maximum scale of N/4. As we have 3,404 observations, the maximum would be 851 boxes. The scale of growth of each time series follows the DFA algorithm¹⁹. On The Research Resource for Complex Physiologic Signals (PhysioNet) website the DFA scale method is available, (PhysioNet - software projects, <u>https://physionet.org/content/dfa</u>).

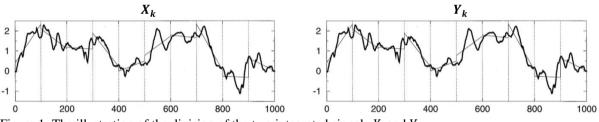


Figure 1: The illustration of the division of the two integrated signals X_k and Y_k .

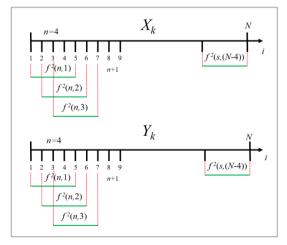


Figure 2: Division of the integrated signals X_k and Y_k into (N - n) boxes overlapping boxes n size n = 4, each containing n + 1 values.

• Step III: After this step, the polynomials (order one here) that best adjust the points (by least-squares fit) in each box of each series, $\tilde{R}_{K,i}$ and $\tilde{R}'_{K,i}$, are calculated and therefore the covariance of the residuals in each box (length *n*):

$$f^{2}DCCA(n,i) = \frac{1}{n+1} \sum_{i}^{i+n} (R_{k} - \tilde{R}_{K,i})(R'_{k} - \tilde{R}'_{K,i})$$
(2)

• Step IV: The mean over all (N - n) overlapping boxes is calculated to obtain the detrended covariance function:

$$F_{xy}^{2}(n) \equiv \frac{1}{N+n} \sum_{i=1}^{N-n} f_{DCCA}^{2}(n,i)$$
(3)

• Step V: Finally, *ρDCCA* can be calculated by:

$$\rho DCCA(n) = \frac{F_{xy}^2}{F_{xx}(n)F_{yy}(n)} \tag{4}$$

According to [1] the functions F_{xx} and F_{yy} are respectively the root mean square fluctuation of each time series x_i and $\{y_i \text{ separately. } \rho DCCA(n) \text{ ranges from: } -1 \le \rho DCCA(n) \le 1$. When $\rho DCCA(n) = 1$ this means a perfect cross-correlation, $\rho DCCA(n) = 0$ there is no cross-correlation, and $\rho DCCA(n) = -1$ means a perfect anti cross-correlation.