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S1. Preliminary results on the IICR
Interpreting the IICR as a change in population size could be misleading in the presence

of demographic structure. In figure S1, we present an example from Mazet et al. (2016)
where a spurious bottleneck effect due to population structure is so strong that it hides the
increase in size of all demes in the recent past. This example also stresses how structure can
profoundly impact genomic patterns of diversity.

102 103 104 105
0

0.2

0.4

0.6

0.8

1
·104

Time in generations

Po
pu

la
tio

n
siz

e
/

IIC
R

PSMC estimation
Estimated IICR
Real population size

Figure S1: A reading of this IICR curve as a size change function would indicate that the population has
decreased in size in the recent past, where in fact the opposite is true and the population has experienced
a doubling of size in the recent past.

S1.1. Computing the IICR
Considering the c components which constitute the model, we note that during component i ,

taking 0 6 i 6 γ = c − 1, the underlying coalescent process Xt is being governed by an
n-island model which has transition rate (see Rodríguez et al. (2018) for details and a more
general approach):

Qi =

 −Mi − 1
si

Mi
1
si

Mi

n−1
− Mi

n−1
0

0 0 0

 ,
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where the three states in the matrix Qi are sorted, both by row and column, as:
1. the two sampled lineages are in the same deme (configuration ‘same’);
2. the two sampled lineages are in different demes (configuration ‘diff.’);
3. the sampled lineages have coalesced (absorption).

Additionally, the rates in this matrix are active during the time interval [ti ; ti+1), where we
understand t0 and tγ+1 to be 0 and +∞ respectively.
We know from that the probability distribution of T2 is given by the cumulative effects

of the exponential functions etQi (see Hobolth et al. (2019) for an extensive review). More
formally, given any t > 0, let i be the largest index such that ti 6 t, for which case we have:

P (t) =

( i∏
k=1

e(tk−tk−1)Qk−1

)
e(t−ti )Qi ,

D(t) =
dP (t)

dt
=

( i∏
k=1

e(tk−tk−1)Qk−1

)
Qi e(t−ti )Qi . (1)

Since component (p, q) in matrix P (t) gives the probability P(Xt = q | X0 = p), then the
random variable T2,same of the time until coalescence of two lineages sampled in the same
deme (initial state 1) has distribution Fsame(t) = P (t)(1,3) and density fsame(t) = D(t)(1,3),
and for the case where we sample in two different demes (initial state 2), then T2,diff. would
have its distribution given by Fdiff.(t) = P (t)(2,3) and its density by fdiff.(t) = D(t)(2,3).

The factor matrices in (1) can be computed in several ways in the general case (see Herbots
(1994) or Hobolth et al. (2019)), but considering this particular instance of size 3× 3, they
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Figure S2: Connectivity and population size graphs. Visual representation of the ti , Mi and si of a
demographic model with c = 3 components. We refer to the upper part of the figure as a connectivity
graph. The lower part represents population size changes of the general model. In the present study
the si are identical and equal to 1 and will not be represented with connectivity graphs. The number
of islands is inferred but constant, and it is not shown in this figure (although it is usually shown in a
separate figure or panel).
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may also be computed directly given an arbitrary ∆t and rate matrix Q:

e∆t Q =

 F11 F12 1− F11 − F12

F21 F22 1− F21 − F22

0 0 1

 , (2)

where:

F11 =
(δ + α− 2Ms)exp2 + (δ − α+ 2Ms)exp1

2δ
,

F12 = (n − 1)F21,

F21 =
Ms(exp1 − exp2)

δ
,

F22 =
(δ + α− 2Ms)exp1 + (δ − α+ 2Ms)exp2

2δ
,

exp1 = exp
(∆t(δ − α)

2s(n − 1)

)
,

exp2 = exp
(∆t(−δ − α)

2s(n − 1)

)
,

δ =
√
α2 − 4Ms(n − 1),

α = Mns + n − 1.

(3)

With this we can efficiently compute either IICR functions:

IICRsame(t) =
1− Fsame(t)

fsame(t)
, IICRdiff.(t) =

1− Fdiff.(t)

fdiff.(t)
. (4)

S1.2. Scaling the IICR
In contrast with the parameter space for the unscaled IICR (Φγ,B) in which there is a

one-to-one correspondence between a parameter tuple and the corresponding IICR curve,
there are only 3γ + 3 independent degrees of freedom in Φ̂γ,B, even though there are 3γ + 4

parameters. This notion is formalized by the following lemma.
Lemma 1. Given any ϕ̂ = (N, n, t1 . . . tγ,M0 . . .Mγ, s0 . . . sγ) ∈ Φ̂γ,B, then the parameter
tuple:

ϕ̂0 =
(N
C
, n, Ct1 . . . Ctγ,

M0

C
· · ·Mγ

C
,Cs0 . . . Csγ

)
is such that:

sIICRϕ̂(g) = sIICRϕ̂0
(g) ∀g > 0,

where C is any rescaling factor for which the coordinates of ϕ̂0 are within the bounds B.
The implication of Lemma 1 is that when trying to infer all the parameters of ϕ̂ simul-

taneously, the only parameter for which we may get an absolute estimate is n, as the rest
of them can only be distinguished up to an unknown re-scaling factor C. Note that this
un-identifiability issue is different from the one identified in Mazet et al. (2016) regarding the
inability to discriminate between panmictic and non-panmictic demographies with a single
IICR. However, we stress here that in practice this is not necessarily an issue because it
suffices to fix one of the model parameters (for instance, s0 = 1) to be able to uniquely map
any sIICR curve to its parameters. In the case of constant size this is even less of an issue,
since all deme sizes are fixed to si = 1 and thus no further considerations are necessary.

4



S1.3. Proof of Lemma 1
Lemma 2. Given any ϕ̂ = (N, n, t1 . . . tγ,M0 . . .Mγ, s0 . . . sγ) ∈ Φ̂γ,B, then the parameter
tuple:

ϕ̂0 =
(N
C
, n, Ct1 . . . Ctγ,

M0

C
· · ·Mγ

C
,Cs0 . . . Csγ

)
is such that:

sIICRϕ̂(g) = sIICRϕ̂0
(g) ∀g > 0,

where C is any rescaling factor for which the coordinates of ϕ̂0 are within the bounds B.

Proof. Let us denote by πn,M,s(t) the factors etQ that appear in the definition of P (t)

(equations 1 and 2). It is easy to verify that for any C > 0, we have:

πn,M,s(t) = πn,M
C
,Cs(Ct). (5)

Indeed, from the expressions in (3) we can see that the parameter M always appears in the
factor Ms , and the parameter t always appears in the factor t/s , which are invariant under
the transformation (M, s, t) 7→ (M

C
, Cs, Ct).

Next, given any:

ϕ = (n, t1 . . . tγ,M0 . . .Mγ, s0 . . . sγ),

ϕ0 = (n, Ct1 . . . Ctγ,
M0

C
· · ·Mγ

C
,Cs0 . . . Csγ),

and any t > 0, we can write P (t) from (1) as:

Pϕ(t) =

( i∏
k=1

πn,Mk−1,sk−1
(tk − tk−1)

)
πn,Mi ,si (t − ti)

=

( i∏
k=1

π
n,
Mk−1
C

,Csk−1
(Ctk − Ctk−1)

)
π
n,
Mi
C
,Csi

(Ct − Cti)

= Pϕ0
(Ct). (6)

where i is the largest index such that ti 6 t and subsequently Cti 6 Ct. We denote
now by Fϕ(t) any of Fsame(t) = Pϕ(t)(1,3) or Fdiff.(t) = Pϕ(t)(1,2). From (6) we have
Fϕ(t) = Fϕ0

(Ct). In order to introduce scaling, we consider an arbitrary effective size N and
perform the corresponding change of variable t = g/2N. Thus, by having ϕ̂ = (N,ϕ) and
ϕ̂0 = (N/C,ϕ0), we get:

Fϕ

( g
2N

)
= Fϕ0

(Cg
2N

)
⇒ 1

2N
fϕ

( g
2N

)
=

C

2N
fϕ0

(Cg
2N

)
⇒ N

1− Fϕ(g/2N)

fϕ(g/2N)
=
N

C

1− Fϕ0
(Cg/2N)

fϕ0
(Cg/2N)

⇒ sIICRϕ̂(g) = sIICRϕ̂0
(g) �
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S2. Additional notes on the optimization framework
S2.1. Parameter bounds

During the continuous-sampling validation phase (section Sampling the parameter space of
the main), we generated 400 scenarios by randomly sampling their parameter values. The
continuous distribution for each parameter was bounded by the values under the simulation
columns in Table S1. When inferring the parameters with SNIF, we supplied wider ranges for
all the parameters (inference columns).

simulation inference
min max min max

n 2 40 2 50

ti 0.1 50 0.01 100

Mi 0.1 50 0.05 60

si 1 1 1 1

N 103 103 102 104

Table S1: Parameter bounds used during the generation of demographic scenarios for validation.

S2.2. Types of target IICRs
In this paper we used three different methods when generating simulated IICR curves

for validation (see section The three types of target IICRs in the main text). Figure S3
summarizes the differences between them.
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Figure S3: The three ways of obtaining a target IICR. The panels represent different types of discretised
target IICRs for the same two-components demographic history with N = 103, n = 4, t1 = 7,
(Mi) = (0.5, 1.0) and (si) = (1.0, 1.0). (a) Exact IICR, computed as per section S1.1 and discretized
to 32 intervals. In gray we show a smoother discretization and keep it in the other panels for reference.
This is obtained using the approach of Rodríguez et al. (2018). (b) T-sim IICR, obtained by simulating
2 × 104 T2 samples using the ms command ms 2 20000 -T -L -I 4 2 0 0 0 0.5 -eM 3.5 1 -eN
3.5 1 and later scaling the IICR using the value of N. This is the approach used in Chikhi et al. (2018)
(c) Seq-sim IICR, obtained by running PSMC on a genome simulated using the ms command ms 2 100
-t 100 -r 20 2000000 -p 8 -I 4 2 0 0 0 0.5 -eM 3.5 1 -eN 3.5 1 and later scaling with mutation
rate µ = 1.25× 10−8. This is obtained by running the PSMC method of Li and Durbin (2011)

S2.3. Comparison of optimization parameters
Here we explore the effect of various parameters of the optimization algorithm on the speed

of convergence of the inference process.
The most important parameters that affect the search process and convergence criteria are:

strategy: it can be one of 12 possible values (see Table 1) and controls how each new
generation of solutions are computed from the previous one. Default is ‘best1bin’.

maxiter: maximum number of iterations the algorithm will perform before forcing
convergence. Default is 5000.

popsize: number of simultaneous solutions during any given generation. Default is 15.

tol: relative tolerance for search convergence. The convergence criteria is met when
the standard deviation of the solutions within a generation is smaller than tol times
the average energy (in our case, distance) within that generation. Default is 10−2.

mutation: per-generation mutation rate of the solutions. The default behaviour is to
draw a random value from a uniform distribution in [0.5, 1] each generation.

recombination: per-generation recombination rate of the solutions. Default is 0.7.
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We selected 10 random simulated scenarios with unscaled IICR and c = 4 components
from the set of exact IICR validations that had not converged before 500 rounds (these would
correspond to scenarios off the diagonals in Figure S9). For each one of them, and for each
of the 12 possible values for the strategy parameter, we attempted another 100 rounds.
Table 1 shows the number of rounds it took for each of the 10 scenarios to converge in each
case (a value of 100 means that convergence was not reached).

Strategy #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
best2exp 17 1 100 2 100 22 3 100 57 22

best2bin 6 35 100 2 11 93 100 4 33 100

currenttobest1exp 2 80 100 5 100 69 12 100 8 26

best1exp 3 76 100 21 4 100 10 100 62 100

rand1exp 4 100 100 10 100 14 100 100 100 38

randtobest1exp 32 100 100 9 100 78 100 30 100 100

currenttobest1bin 21 100 100 27 100 100 100 94 63 88

best1bin 27 100 100 28 54 100 100 100 100 100

rand2exp 40 100 100 100 100 24 100 100 100 100

rand1bin 100 100 100 3 100 100 100 100 100 100

rand2bin 96 100 100 23 100 100 100 100 100 100

randtobest1bin 92 100 100 100 100 100 100 100 100 100

Total
424

484

502

576

666

749

793

809

864

903

919

992

Table S2: Results of varying the strategy parameter of the differential evolution algorithm on the
speed of convergence of 10 difficult demographic scenarios with c = 4 components.

As can be seen, strategy ‘best2exp’ was best with a combined number of 424 rounds for
the 10 scenarios.
Next, using this optimal strategy parameter, we tried one alternative value for the rest

of the optimization parameters at a time, again allowing a maximum of 100 rounds. The
alternative values were as follows:

maxiter was changed from 5000 to 10000.
popsize was changed from 15 to 50.
mutation was changed from random sample in [0.5, 1] to random sample in [0.5, 1.7].
recombination was changed from 0.7 to 0.9.

The results, shown in Table 2, suggest that these parameters should be left at their default
values.

Parameter no. 1 no. 2 no. 3 no. 4 no. 5 no. 6 no. 7 no. 8 no. 9 no. 10
popsize 100 100 100 100 100 100 100 100 100 100

recombination 100 100 100 100 100 100 100 100 100 100

mutation 100 100 100 100 100 100 100 100 100 100

max-iter 100 100 100 100 100 100 100 100 100 100

Total
1,000

1,000

1,000

1,000

Table S3: Results of varying the popsize, recombination, mutation and max-iter parameters of the
differential evolution algorithm on the speed of convergence of 10 difficult demographic scenarios with
c = 4 components.
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S3. Results of validation using exact simulated IICRs
S3.1. On the number of inference rounds

In figures S4 and S5 we explore the question of how many rounds of inference are needed
in order to achieve optimal distance. These results are only of theoretical interest since in real
applications, the target IICR is not known exactly (just approximated) therefore the optimal
distance of 0 cannot be achieved in any meaningful way.
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Figure S4: Number of performed rounds during validations with exact IICRs. The top panel shows
the number of rounds (up to a maximum of 500) that the method required before converging to a
scenario with a distance value smaller than the tolerance ε = 10−10 for the unscaled case. The bottom
panel shows the same information for scaled scenarios and a tolerance of ε = 10−7. We represent in
different colors the curves corresponding to scenarios with different simulated (and inferred) number of
components, ranging from c = 2 up to c = 6; the same data-set represented in figures S6 to S11 (top
panel) and figures S13 to S18 (bottom panel). Higher number of rounds is not correlated with worse
fit when the maximum number of rounds is not reached; and when it is reached it is not necessarily
an indication of bad fit either, although all instances of bad fit stem from inferences that reached the
maximum allowed number of rounds.
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Figure S5: Convergence of the inferred IICR with the progression of the inference rounds. We measured
the best distance achieved (ω = 1) as a function of the completed rounds for up to 5000 rounds. The
two curves correspond to two c = 6 component scenarios that did not previously converge (ε = 10−10)
in 500 rounds (marked with a vertical dashed line). We note that there is a clear trend for the distance
between the IICR curves to decrease with more inference rounds, but there is also diminishing returns to
performing a very large number of rounds, since the issue of component misidentification may be an
insurmountable difficulty for some scenarios (see main text for a more detailed discussion).

S3.2. Unscaled IICR
In this section we show in figures S6 to S11 the validation results of simulating and then

inferring from 400 randomly generated demographic scenarios with unscaled IICRs and varying
number of components c . Each figure consists of as many sub-panels as there are free
parameters for that model, and in each one the simulated values are in the horizontal axis
and the inferred ones in the vertical axis.
In the lower-right corner of each sub-panel we display the normalized root-mean-square

deviation (nRMSD) of the simulated versus inferred vectors. Additionally, we indicate in grey
the region of 10% relative error (50% for the ti parameters). The percentage of tests that
fall within this and other margins of error is summarised in Figure S12.
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Figure S6: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 1 component.
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Figure S7: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 2 components.
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Figure S8: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 3 components.
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Figure S9: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 4 components.
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Figure S10: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 5 components.
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Figure S11: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 6 components.
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Figure S12: Percent of tests within a given relative error in unscaled scenarios. For each parameter
of the demographic scenarios, we counted the instances where the inferred value was within a certain
percent of the simulated one. We say that an inferred parameter p̄ is within x% of the simulated value
p if −xp̂ < 100(p̂− p) < xp. Note that not all parameters are present in all scenarios (for instance, the
parameter M4 only appears in scenarios with c > 5 components).
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S3.3. Scaled IICR
In this section we show in figures S13 to S18 the validation results of simulating and

then inferring from 400 randomly generated demographic scenarios with scaled IICRs and
varying number of components c . Each figure consists of as many sub-panels as there are
free parameters for that model, and in each one the simulated values are in the horizontal
axis and the inferred ones in the vertical axis. The deme size panel (N) is different because
the simulated values for N was always N = 1000, therefore the horizontal axis indicates the
test number (1 to 400) and the vertical axis the inferred value.
In the lower-right corner of each sub-panel we display the normalized root-mean-square

deviation (nRMSD) of the simulated versus inferred vectors. Additionally, we indicate in grey
the region of 10% relative error (50% for the ti parameters). The percentage of tests that
fall within this and other margins of error is summarised in Figure S19.
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Figure S13: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 1 component.
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Figure S14: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 2 components.
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Figure S15: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 3 components.
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Figure S16: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 4 components.
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Figure S17: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 5 components.
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Figure S18: Scatter plots of all the simulated (horizontal axis) versus inferred (vertical axis) parameter
values for scenarios of c = 6 components.
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Figure S19: Percent of tests within a given relative error in scaled scenarios. For each parameter of the
demographic scenarios, we counted the instances where the inferred value was within a certain percent
of the simulated one. We say that an inferred parameter p̄ is within x% of the simulated value p if
−xp̂ < 100(p̂ − p) < xp. Note that not all parameters are present in all scenarios (for instance, the
parameter M4 only appears in scenarios with c > 5 components).
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S3.4. Quantifying the inference error
In order to quantify the inference error incurred during the continuous-sampling validation

phase, we measured the normalised root-mean-square deviation (nRMSD) between the
simulated and inferred parameter values for each parameter of the demographic models
(c = 1 to c = 6 components). These values can be seen in the lower-right corner of every
sub-panel in figures S6 to S11 and S13 to S18. They are also summarised in Figure S20.
We note that the number of islands n and the effective size N (in scaled scenarios) is very
well inferred regardless of the number of components c . On the other hand, the inference
accuracy of the connectivity rates Mi does get gradually worse when increasing the number
of parameters (see section Validation using exact target IICRs in the main text).
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Figure S20: Normalised root-mean-square deviation of the inferred parameters during validation. The
top part of each sub-panel corresponds to the parameters of unscaled scenarios, and the bottom part to
scaled scenarios. The number of components c of the scenarios is in the horizontal axis in every case.

In an effort to quantify the component miss-identification phenomenon, we computed
the correlation between 100 randomly sampled pairwise values of simulated and estimated
parameters (in this case, the simulated M2 parameter in unscaled scenarios of c = 5

components with the inferred Mj parameters of the same scenarios). The key insight
underlying this test is that when a parameter is badly estimated, it may be due to the fact
that the method estimated the value from the component that is either just before or just
after it. Conversely, the value of M from other components should be non-correlated, since
values are taken at random within the range of allowed values. Now, we do not know if the
method used the component just before or just after, as this may change from simulation
to simulation. To solve this problem we computed the correlation (r 2) by using either both
values or just the value that was closest. We did exactly the same for the values taken from
other components that are not expected to be correlated. We find indeed that when no
correlation is expected there is no correlation, but when we take the best value the correlation
increases, and it increases much more when it is a neighbouring value. Additionally, we found
that this effect is significantly amplified (r 2 increased from 0.37 to 0.82) when we exclude
from our sample the tests were the inferred rates were within 10% of the simulated values,
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further indicating that this effect is present mostly when there is a large mismatch between
the simulated and inferred M values. These results are displayed in Figure S21.

random global random far best far best near

0
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0.5

0.75

1

r2

Non-filtered
Filtered at 10%

Figure S21: Parameter miss-identification. We measure the r2 correlation between M2 and M̂j in a
sample of 100 scenarios with c = 5 components. In ‘random global’ we draw Mj from components
0, 1, 3, and 4. In ‘random far’ we draw Mj from components 0 and 4. In ‘best far’ we draw Mj from
components 0 and 4 again, but always keep the best fitting value of the two. Finally, in ‘best near’ we
draw Mj from components 1 and 3 and always keep the best fitting value. ’Filtered at 10%’ indicates
that the scenarios where the inferred value was within 10% of the simulated value were excluded.

S4. Results of validation using T-sim IICRs
In this section we show the validation results of simulating and then inferring from

100 randomly generated demographic scenarios with scaled IICRs and varying number of
components c . In all cases, the scenario parameters were drawn from the following finite sets:

n ∈ {2, 5, 10, 15, 20},
ti ∈ {0.1, 0.5, 1, 2, 5, 10, 20, 50} ∀i ,
Mi ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50} ∀i , (7)
si = 1 ∀i ,
N = 1000.

Unlike in the previous sections, the simulated IICRs are T-sim IICRs, meaning that the
values are not exact due to the stochastic nature of the underlying ms simulation. For each
value of c from c = 1 to c = 5 we show the aggregate connectivity graph for all the
simulations as well as the IICR and parameters of two individual scenarios from the set.

S4.1. Scenarios with 1 component
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Figure S22: Connectivity graph of 100 inferred demographic histories using simulated T-sim IICRs of
c = 1 components with simulated parameters randomly drawn from (7) and represented here by the
dashed gray lines in the connectivity graph and the bold black circles in the islands and reference size
plots.
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Figure S23: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 1 component and 10 independent inferences. The inferred scenario corresponds to
n = 5, M = 20 and N = 1000.
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Figure S24: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 1 component and 10 independent inferences. The inferred scenario corresponds to
n = 10, M = 1 and N = 1000.
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S4.2. Scenarios with 2 components
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Figure S25: Connectivity graph of 100 inferred demographic histories using simulated T-sim IICRs of
c = 2 components with simulated parameters randomly drawn from (7) and represented here by the
dashed gray lines in the connectivity graph and the bold black circles in the islands and reference size
plots.
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Figure S26: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 2 components and 10 independent inferences. The inferred scenario corresponds to
n = 15, t = 1, M = (50, 5) and N = 1000.
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Figure S27: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 2 components and 10 independent inferences. The inferred scenario corresponds to
n = 15, t = 0.1, M = (50, 0.1) and N = 1000.

29



S4.3. Scenarios with 3 components
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Figure S28: Connectivity graph of 100 inferred demographic histories using simulated T-sim IICRs of
c = 3 components with simulated parameters randomly drawn from (7) and represented here by the
dashed gray lines in the connectivity graph and the bold black circles in the islands and reference size
plots.
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Figure S29: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 3 components and 10 independent inferences. The inferred scenario corresponds to
n = 20, t = (0.1, 5), M = (50, 10, 2) and N = 1000.
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Figure S30: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 3 components and 10 independent inferences. The inferred scenario corresponds to
n = 5, t = (0.1, 1), M = (10, 0.2, 20) and N = 1000.
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S4.4. Scenarios with 4 components
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Figure S31: Connectivity graph of 100 inferred demographic histories using simulated T-sim IICRs of
c = 4 components with simulated parameters randomly drawn from (7) and represented here by the
dashed gray lines in the connectivity graph and the bold black circles in the islands and reference size
plots.
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Figure S32: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 4 components and 10 independent inferences. The inferred scenario corresponds to
n = 5, t = (1, 10, 50), M = (5, 50, 10, 0.2) and N = 1000.
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Figure S33: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 4 components and 10 independent inferences. The inferred scenario corresponds to
n = 20, t = (0.1, 5, 20), M = (20, 5, 50, 2) and N = 1000.
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S4.5. Scenarios with 5 components
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Figure S34: Connectivity graph of 100 inferred demographic histories using simulated T-sim IICRs of
c = 5 components with simulated parameters randomly drawn from (7) and represented here by the
dashed gray lines in the connectivity graph and the bold black circles in the islands and reference size
plots.
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Figure S35: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 5 components and 10 independent inferences. The inferred scenario corresponds to
n = 15, t = (0.5, 2, 10, 50), M = (0.2, 20, 5, 1, 5) and N = 1000.
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Figure S36: IICRs, connectivity graph, number of islands and reference size for one of the 100 simulated
scenarios with c = 5 components and 10 independent inferences. The inferred scenario corresponds to
n = 5, t = (0.1, 1, 5, 20), M = (5, 0.5, 2, 50, 0.1) and N = 1000.
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S5. Results of application to human data
Figure S37 shows the IICR curves of the five human samples, scaled using a mutation rate

of µ = 1.25× 10−8 and a generation time of 25 years (see section Application to humans in
the main text).
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Figure S37: Five human PSMC plots. All five PSMC curves were obtained from the study of Prado-
Martinez et al. (2013). The scaling was done as recommended by Li and Durbin (2011) using a value of
µ = 1.25× 10−8 and a generation time of 25 years. No further processing was necessary since .psmc
files contain the final result of the effective size or IICR estimate.

S5.1. Seq-Sim validations
Figure S39 shows the results of the validations using seq-sim IICRs. For the three chosen

representative human populations (French, Karitiana and Yoruba), we selected the SNIF
inferences obtained with the parameter values c = 5 components and ω = 0.2. The selection
of these values as the preferred ones was supported by the fact that the dvisual distance
(see Figure S46) was best for them. For each of these inferred models we generated two
independent genomic sequences of length 3× 109 base pairs and applied the PSMC method
to obtain two independently estimated target IICRs. These seq-sim IICRs are shown in blue
on the left panels of Figure S39. The connectivity graphs associated with these inferred
models are represented in the middle panels by the red curves. The corresponding inferred
values of n and N are marked as the black reference circles in the right panels of the figure.

After obtaining the seq-sim IICRs, we applied again our inference method. The goal is
to validate whether it would be able to consistently infer the same parameter values of
the demographic history regardless of the origin of the source IICR curve. To this end we
performed 10 independent inferences from each of the two target IICRs. The inferred IICRs
are superimposed on the left panels of Figure S39 (transparent red curves, 20 per population).
The inferred connectivity graphs are shown in the middle panels (transparent green curves)
and the inferred values of n and N are presented in the right panels. We observe an agreement
with the previously inferred histories, which suggests that if the real history of human evolution
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Figure S38: Application of our inference method to a tree-like human demographic scenario with three
modern populations. (a) IICR plots showing the resulting IICR curve of the European population under
this model and the inferred IICR curve obtained with our method (where the recent period of human
expansion was ignored) for c = 5 components and a weight parameter of ω = 0.25. For reference
purposes, we also show the real PSMC curve of the French individual. The grey vertical lines indicate
the inferred event times in the C3PO model, and the colored vertical lines the inferred event times by
SNIF (b) Connectivity graph of the inferred scenario. For reference, we show the inferred event times in
the C3PO model as grey vertical lines.

were close to piecewise n-island models like those used in this work, our method would be
able to infer the parameters properly, and they would be similar to those shown in Figures 5
and 6 of the main text.
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Figure S39: Results of the validation using Seq-sim IICRs. The left panels show two independently
simulated seq-sim IICRs (obtained using the demographic scenario inferred with c = 5 and ω = 0.2 for
each of the indicated human population) alongside 10 independent inferred IICRs. The rest of the panels
show the connectivity graphs, number of islands, and local deme size of these seq-sim IICRs and their
corresponding inferences.
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Figure S40: IICRs of the inferred human scenarios.
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Figure S41: IICRs of the inferred human scenarios with restricted inference range.
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Figure S42: Connectivity graphs of the inferred human scenarios.
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Figure S43: Connectivity graphs of the inferred human scenarios with restricted inference range.
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Figure S44: Inferred number of islands for the human populations.
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Figure S45: Inferred reference sizes for the human populations.
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Figure S46: Visual distance (dvisual) of the best fitting scenario as a function of ω for various number of
components.
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S5.2. AFS comparisons
In this section we aim to make a basic comparison of the Allele Frequency Spectrum (AFS)

corresponding to the demographic scenarios inferred by SNIF from human PSMC plots to the
folded AFS of a sample of 108 humans from the Yoruba “population” (Lapierre et al. 2017),
and to the AFS produced by the GADMA method (Noskova et al. 2019) for similar samples
from the three populations of the C3PO model. This comparison is intentionally limited in
scope because a full AFS study requires a separate study.
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Figure S47: Comparison of (a) the folded AFSs and (b) the IICRs of various real, inferred and simulated
human populations. The AFSs In panel (a) are transformed according to Lapierre et al. (2017) in order
facilitate the visual comparison. The transformation consists in multiplying the ith frequency by i before
folding (the details can be found in Lapierre et al. (2017) pages 440–441).

We simulated the AFS under two extreme models and an in-between one: one with constant
size (i.e., the model inferred by SNIF from the Yoruba PSMC), another one with a recent
exponential growth in the last 50,000 years (fast expansion), and another where the population
growth was half as fast (slow expansion). The expansion parameters were chosen such that in
the case of the fast expansion, the IICR matches in the recent past the human PSMCs that
clearly exhibit a signal compatible with recent population expansion (French, for instance).
The slow expansion is half as fast in the sense that in the present, the effective size is half as
big. In Figure S47 panel (b) we plotted the corresponding three PSMCs to show how they
look like and in panel (a) predicted the three corresponding AFSs which we compared with
the AFSs from Lapierre et al. (2017) and Noskova et al. (2019). We find that this simple
change in the recent history is enough to make a significant change of the predicted AFS. We
do not try to fit any of the AFSs (Yoruba, European and Chinese). This is just a “proof of
concept” simulation which suggests that existing AFSs could be easily fitted with a structured
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model similar to those inferred by SNIF, but in which we would allow for a recent population
size change which would incorporate geography.

S6. A note on implementation and use cases
Our method is implemented in a program named SNIF (Structured Non-stationary Inference

Framework) which can be found at github.com/arredondos/snif. The method produces
parameter estimates and connectivity graphs in order to determine whether there is consistency
across individuals or species. We focused on models in which the population size was
maintained constant. The method can in principle infer changes in population size but this
should be part of an extension of the present work. At this stage we stress that more work is
needed before changes in connectivity and population size can be estimated together with
confidence.
The intended use case for our method consists of several inference cycles, each preceded

by adjustments to the many available parameters which include: the bounds B for the
estimated variables, the number of components c , the weight distance parameter ω, the time
interval where the distance is to be computed, the number of inference rounds along with the
tolerance ε, some parameters of the search algorithm, and other minor options. This cycle
emerges naturally from the fact that the inference process itself runs fairly quickly (a few
seconds per round), so it is feasible to prepare a script that generates inferences under several
combinations of these parameters and later do a general assessment of what are the most
plausible scenarios for the data depending on the visual fit, the consistency of the inferred
demographic histories, the distribution of the distances, etc. The SNIF software already
includes a number of auxiliary scripts that may be used in this later analysis stage, including
for instance the automatic generation of figures similar to the sub-panels of figures 5 and 6 in
the main text, where the target and inferred IICRs can be compared, and the nature of the
best fitting scenarios can be understood using the connectivity graphs or the n and N plots.

As for the number of components c , specifying a higher value will generally (but not always)
result in a better fit and a lower distance, however it also incurs in longer analysis times
and diminishing returns on the new information present in the resulting inferred histories.
These aspects can be balanced by increasing the value of c up to the point where the
inferred demographic histories start converging (for instance, as more components are added,
the connectivity graphs stop revealing new major events and any additional new degrees of
freedom are only used to refine already existing details).

As part of the user inference cycles mentioned above, the bounds system can be configured
to infer parameters for more strict or specialized symmetrical island models. For instance, it
is possible to fix the number of inferred islands to be exactly 3 by setting nmin = nmax = 3 in
the inference bounds B. Likewise, given an independent estimate of the reference size N for
the data, this information may be used to process the corresponding scaled target IICR as an
unscaled one using matching inference bounds for the parameter N.
An important point concerning scaling is that the supplied value of the mutation rate µ

must be accurately specified when inferring demographic parameters from a PSMC curve.
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This value is not used during the inference, but it is used in order to properly scale the PSMC
curve and convert it into a target IICR, therefore it is important to provide the same value
of µ that was used during the PSMC analysis. Otherwise, the only parameter that can be
correctly inferred is n, since the rest of the parameters would only be accurate up to a scaling
factor. This follows from a similar logic to that of Lemma 1.

We also suggest to use the hand-fitting Python script developed in Chikhi et al. (2018) as
a complement to the automated inference process proposed in this work. You may want to
compare the results obtained this way with the output of SNIF. Doing this will help make
sense of the data, or help set the bounds for the many SNIF parameters.
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