Electronic Supplementary Information

Mitigation of Jahn-Teller Distortion and Na⁺/Vacancy Ordering in P'2-Na_{0.67}MnO₂ Cathode Material by Li Substitution

Yanchen Liu, Chenchen Wang, Shuo Zhao, Lin Zhang, Kai Zhang, Fujun Li,* and Jun Chen

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P.R.China

E-mail: fujunli@nankai.edu.cn

Experimental Section

Materials synthesis: P'2-Na_{0.67}Li_xMn_{1-x}O₂ (x = 0, 0.03, 0.05 and 0.08) were prepared by a facile solid-state method. Stoichiometric Na₂CO₃ (5 mol% excess), Li₂CO₃ (5 mol% excess) and Mn₂O₃ were ball milled with acetone at 400 rpm for 12 h. The mixtures were dried and pressed into pellets. The precursors were heated in air atmosphere at 1000 °C for 15 h, then quenched to room temperature, and transferred to an argon-filled glove box until use.

Materials characterization: The crystal structure of the materials was characterized with a X-ray diffractometer (Rigaku SmartLab) using Cu Ka radiation. Rietveld refinement was carried out using general structure analysis system (GSAS-II). ICP-OES (SpectroBlue) was conducted to analyze the compositions of materials. Solid-state ⁷Li NMR spectra were obtained on a JNM-ECZ600R widebore spectrometer. XPS measurements were performed on a Perkin Elmer PHI 1600 ESCA system. SEM (JEOL JSM-7500F) and TEM (FEI, Talos F200X G2, AEMC) were employed to record the morphologies and crystal structure. SIMS was examined on a Cameca IMS-5FE7 system using Cs⁺ primary ions with a beam current of 3 nA. The analysis area of samples is 33 µm in diameter and the raster is 16 µm.

Electrochemical measurements: The electrochemical tests were carried out in coin cells (CR2032), which were assembled in an argon-filled glove box ($O_2 \le 0.1$ ppm, $H_2 O \le 0.1$ ppm). The electrode was prepared by mixing active material, Super P carbon and poly(vinyl difluride) (PVDF) in a weight ratio of 8:1:1 onto aluminum foil, followed by drying at 80 °C in vacuum for 12h. The loading mass of active material was about 1.5~2.0 mg cm⁻². Sodium foil was used as negative electrode, and glass fiber was used as separator. The electrolyte was NaPF₆ in the propylene carbonate (PC) with 2 wt% fluoroethylene carbonate (FEC). CV was carried out at a scan rate of 0.1 mV s⁻¹ on a Solartron 1470 electrochemical work station. The charge and discharge tests and GITT were performed on a Land CT2001A battery-testing instrument. In GITT measurements, the cells were charged at 10 mA g⁻¹ for 1.5 h, followed by a rest time of 30 min. The diffusion coefficients of Na⁺ could be calculated according to the equation:

$$D = \frac{4}{\Pi \tau} \left(\frac{m_{\rm B} V_{\rm M}}{M_{\rm B} S}\right)^2 \left(\frac{\Delta E_{\rm s}}{\Delta E_{\rm \tau}}\right)^2 \tag{1}$$

where $m_{\rm B}$ and $M_{\rm B}$ are the mass of active material and molecular weight, respectively. $V_{\rm m}$ is the molar volume of active material, and S is the area of electrode. $\Delta E_{\rm s}$ and ΔE_{τ} represent the change in the steady-state voltage after subtracting the IR drop and transient change in voltage. The capacitive contributions were quantified via CV measurements at varied scan rates from 0.1 to 1.0 mV s⁻¹ between 1.5 and 4.4 V. The relationship between peak current (i) and scan rate (v) can be described as follows:

$$i = av^{b} \tag{1}$$

$$\log(i) = \operatorname{blog}(v) + \log(a) \tag{2}$$

where b determines the sodiation and desodiation behaviors. If *b* equals to 1, the electrochemical system is dominated by capacitance; if *b* is 0.5, the process is controlled by Na⁺ diffusion.^{1,2} The contributions of capacitance can be quantitatively calculated by eq 3:

$$i = k_1 v + k_2 v^{0.5} \tag{3}$$

where $k_1 v$ and $k_2 v^{0.5}$ represent the capacitance and Na⁺ diffusion.

Computational methods: The density functional theory calculations were performed with Vienna ab initio Simulation Package (VASP)^{3,4} with projector augmented wave potentials and Perdew-Becke-Ernzerhof (PBE) exchange-correlation.⁵ The cutoff energy was set to 520 eV, and all the structures are fully relaxed until the remaining forces fell below 0.01 eV Å⁻¹. Gamma-centered k-meshes with a density of 8000 k-points were sampled for the Brillouin zone. The DFT + U method⁶ was used to address the localization of the d-orbital of Mn with U-J value of 3.9 according to previous studies.⁷ COHP calculations were performed using the Local-

Orbital Basis Suite Towards Electronic-Structure Reconstruction (LOBSTER) code.^{8,9} The Na⁺ cation activation barriers were calculated using the climbing image nudged elastic band (CINEB) method¹⁰ for both P'2-Na_{0.67}Li_{0.05}Mn_{0.95}O₂ and P'2-Na_{0.67}MnO₂ with one vacancy generated for Na⁺ diffusion. Four intermediates were considered between the first and the final images of one Na⁺ diffusion. All the atoms were allowed to relax with lattice parameters fixed during CINEB calculation.

Fig. S1 Rietveld refinement of powder XRD data for (a) P'2-Na_{0.67}Li_{0.03}Mn_{0.97}O₂ and (b) P'2-Na_{0.67}Li_{0.08}Mn_{0.92}O₂.

Fig. S2 Evolution of the lattice parameters, δ and Na interlayer space of P'2-Na_{0.67}Li_xMn_{1-x}O₂.

Fig. S3 Schematic illustration of P'2-Na_{0.67} $Li_xMn_{1-x}O_2$.

Fig. S4 Sputter depth profiles of P'2-Na $_{0.67}$ Li $_{0.05}$ Mn $_{0.95}$ O₂.

Fig. S5 SEM images of (a) $P'2\text{-}Na_{0.67}MnO_2$ and (b) $P'2\text{-}Na_{0.67}Mn_{0.95}Li_{0.05}O_{2.}$

Fig. S6 HRTEM images of P'2-Na_{0.67}MnO₂.

Fig. S7 Schematic illustration of (a) P"2-, (b) P'2- and (c) OP4-type phase.

Fig. S8 Rietveld refinement of powder XRD data for (a) P'2-Na_{0.67}MnO₂ and (b) P'2-Na_{0.67}Li_{0.05}Mn_{0.95}O₂ electrode cycled at 4.3 V during second charge.

Fig. S9 Rietveld refinement of powder XRD data for (a) $P'2-Na_{0.67}MnO_2$ and (b) $P'2-Na_{0.67}Li_{0.05}Mn_{0.95}O_2$ electrode cycled at 1.8 V during first discharge.

Fig. S10 HRTEM and FFT images of P'2-Na_{0.67}Li_{0.05}Mn_{0.95}O₂ electrodes: (a) fully discharged to 1.8 V and (b) fully charged to 4.3 V.

Fig. S11 Electronic density of states projected on Mn ion.

Fig. S12 Cyclic voltammograms of (a) $Na_{0.67}MnO_2$, (b) $Na_{0.67}Li_{0.03}Mn_{0.97}O_2$, (c) $Na_{0.67}Li_{0.05}Mn_{0.95}O_2$ and (d) $Na_{0.67}Li_{0.08}Mn_{0.92}O_2$ electrodes measured at a scan rate of 0.1 mV s⁻¹ within 1.5-4.4 V.

Fig. S13 dQ/dE curves of first discharge (bottom side) and second charge (upper side) of (a) $Na_{0.67}MnO_2$, (b) $Na_{0.67}Li_{0.03}Mn_{0.97}O_2$, (c) $Na_{0.67}Li_{0.05}Mn_{0.95}O_2$ and (d) $Na_{0.67}Li_{0.08}Mn_{0.92}O_2$ electrodes measured within 1.5-4.4 V.

Fig. S14. CV profiles at different scan rates for (a) $Na_{0.67}MnO_2$, (d) $Na_{0.67}Li_{0.05}Mn_{0.95}O_2$ and (g) $Na_{0.67}Li_{0.08}Mn_{0.92}O_2$. Linear relationship of log(i) and log(v) of peak 1, 2 for (b) $Na_{0.67}MnO_2$, (e) $Na_{0.67}Li_{0.05}Mn_{0.95}O_2$ and (h) $Na_{0.67}Li_{0.08}Mn_{0.92}O_2$. Plots of $iv^{-0.5}$ against $v^{0.5}$ of peaks 1, 2 for (c) $Na_{0.67}MnO_2$, (f) $Na_{0.67}Li_{0.05}Mn_{0.95}O_2$ and (i) $Na_{0.67}Li_{0.08}Mn_{0.92}O_2$. The constants k_1 and k_2 can be used to evaluate the capacitive and Na^+ ion diffusion contribution, respectively.

Fig. S15. Ratio of the capacitive and diffusion-controlled capacities at different scan rate for (a) peak 1 and (b) peak 2 of $Na_{0.67}MnO_2$; (c) peak 1 and (d) peak 2 of $Na_{0.67}Li_{0.05}Mn_{0.95}O_2$; (e) peak 1 and (f) peak 2 of $Na_{0.67}Li_{0.08}Mn_{0.92}O_2$.

Sample	Atom	Site	X	у	Z	g	B _{iso}
	Na _f	4c	0	-0.072	0.250	0.184	1.14
No Mro	Na _e	4c	0	0.312	0.250	0.475	2.40
$Na_{0.67}NIIO_2$	Mn	4a	0	0	0	1	0.53
	Ο	8f	0	0.652	0.097	1	4.52

Table S1. Rietveld refinement results for P'2-Na_{0.67}MnO₂.

Space group: *Cmcm*, a = 2.831 Å, b = 5.280 Å, c = 11.171 Å, $\alpha = \beta = \gamma =$ 90°, Vol = 166.993 Å³, (Z = 4), *Rp* = 2.66%, *R_{wp}* = 4.07%, $\chi^2 = 6.554$. g: occupancy. x, y, z: atomic coordinate.

Table S2. Rietveld refinement results for P'2-Na_{0.67}Li_{0.03}Mn_{0.97}O₂.

Sample	Atom	Site	X	у	Z	g	B _{iso}
	Na _f	4c	0	-0.069	0.250	0.212	1.16
	Na _e	4c	0	0.321	0.250	0.448	0.32
Na _{0.67} Li _{0.03} Mn _{0.97} O ₂	Mn	4a	0	0	0	0.971	0.34
	Li	4a	0	0	0	0.029	0.34
	0	8f	0	0.662	0.093	1	5.00

Space group: *Cmcm*, a = 2.837 Å, b = 5.248 Å, c = 11.217 Å, $\alpha = \beta = \gamma =$ 90°, Vol = 166.995 Å³, (Z = 4), *Rp* = 2.05%, *R_{wp}* = 2.97%, $\chi^2 = 3.168$. g: occupancy. x, y, z: atomic coordinate.

Table S3. Rietveld refinement results for P'2-Na_{0.67}Li_{0.05}Mn_{0.95}O₂.

Sample	Atom	Site	Х	у	Z	g	B _{iso}
	Na _f	4c	0	-0.089	0.250	0.230	0.78
	Na _e	4c	0	0.318	0.250	0.425	0.50
Na _{0.67} Li _{0.05} Mn _{0.95} O ₂	Mn	4a	0	0	0	0.945	0.42
	Li	4a	0	0	0	0.055	0.42
	0	8f	0	0.668	0.0838	1	3.67

Space group: *Cmcm*, a = 2.841 Å, b = 5.252 Å, c = 11.195 Å, $\alpha = \beta = \gamma =$ 90°, Vol = 167.047 Å³, (Z = 4), *Rp* = 2.23%, *R_{wp}* = 3.13%, $\chi^2 = 3.725$. g: occupancy. x, y, z: atomic coordinate.

Table S4. Rietveld refinement results for P'2-Na_{0.67}Li_{0.08}Mn_{0.92}O₂.

Sample	Atom	Site	X	у	Z	g	B _{iso}
	Na _f	4c	0	-0.092	0.250	0.252	0.60
	Na _e	4c	0	0.325	0.250	0.438	0.65
Na _{0.67} Li _{0.08} Mn _{0.92} O ₂	Mn	4a	0	0	0	0.920	0.46
	Li	4a	0	0	0	0.080	0.46
	0	8f	0	0.667	0.0837	1	3.83

Space group: *Cmcm*, a = 2.856 Å, b = 5.128 Å, c = 11.216 Å, $\alpha = \beta = \gamma =$ 90°, Vol = 164.270 Å³, (Z = 4), *Rp* = 2.30%, *R_{wp}* = 3.37%, $\chi^2 = 4.040$. g: occupancy. x, y, z: atomic coordinate.

Table S5. Lengths of Mn-O, MnO_2 layers thickness, Na interlayer spacing and interslab distance for P'2-Na_{0.67}MnO₂ and P'2-Na_{0.67}Li_{0.05}Mn_{0.95}O₂.

Sample	Mn-O (Å)	Mn-O' (Å)	MnO ₂ (Å)	O-Na-O (Å)	Interslab distance (Å)
Na _{0.67} MnO ₂	2.133	1.955	2.187	3.418	5.586
Na _{0.67} Li _{0.05} Mn _{0.95} O ₂	1.980	1.917	1.877	3.721	5.598

Table S6. ICP-OES results for $P'2-Na_{0.67}MnO_2$ and $P'2-Na_{0.67}Li_{0.05}Mn_{0.95}O_2$.

Sample	Na	Li	Mn
Na _{0.67} MnO ₂	0.659	0	1
$Na_{0.67}Li_{0.05}Mn_{0.95}O_2$	0.655	0.0557	0.944

Table S7. Structural parameters of OP4-type phase electrode cycled at 4.3V during 2nd charge based on Rietveld refinement.

Sample	а	b	с	d _(Mn-O)
Na _x MnO ₂	2.866	2.866	21.058	1.944
$Na_{x}Li_{0.05}Mn_{0.95}O_{2}$	2.840	2.840	20.820	1.928

Na_xMnO₂. Space group: *P63/ m m c*, $\alpha = \beta = 90$, $\gamma = 120^{\circ}$, Vol = 149.82 Å³, *Rp* = 2.40%, *R_{wp}* = 7.10%; Na_xLi_{0.05}Mn_{0.95}O₂. Space group: *P63/ m m c*, $\alpha = \beta = 90$, $\gamma = 120^{\circ}$, Vol = 145.38 Å³, *Rp* = 3.61%, *R_{wp}* = 8.49%.

Table S8. Structural parameters of P''2-type phase electrode cycled at 1.8V during 1st discharge based on Rietveld refinement.

Sample	а	b	c	V	δ	d _(Mn-O)	d' _(Mn-O)
Na _x MnO	2.863	5.622	10.802	173.849	13.37%	2.305	1.890
Na _x Li _{0.05} Mn _{0.95} O ₂	2.865	5.424	10.887	169.179	9.30%	2.230	1.854

Na_xMnO₂. Space group: *Cmcm*, $\alpha = \beta = \gamma = 90^{\circ}$, Vol = 173.849 Å³, *Rp* = 2.51%, *R_{wp}* = 5.08%; Na_xLi_{0.05}Mn_{0.95}O₂. Space group: *Cmcm*, $\alpha = \beta = \gamma = 90^{\circ}$, Vol = 169.179 Å³, *Rp* = 2.88%, *R_{wp}* = 6.57%.

Table S9. Summary of COHP analysis of Mn sites in P'2-Na $_{0.67}$ MnO2 andP'2-Na $_{0.67}$ Li $_{0.05}$ Mn $_{0.95}$ O2.

-COHP(avg)	Mn- O21	Mn- O22	Mn- O25	Mn- O26	Mn- O29	Mn- O35	Sum.
Na _{0.67} MnO	1.328	1.320	0.520	0.484	1.177	1.103	5.934
$Na_{0.67}Li_{0.05}Mn_{0.95}O_2$	1.408	1.460	1.266	1.190	1.131	1.217	7.673

References

1. L. Wang, C. Wang, N. Zhang, F. Li, F. Cheng and J. Chen, ACS Energy Lett. 2017, 2, 256.

- 2. Y. Xiao, Y.-F. Zhu, H.-R. Yao, P.-F. Wang, X.-D. Zhang, H. Li, X.
- Yang, L. Gu, Y.-C. Li, T. Wang, Y.-X. Yin, X.-D. Guo, B.-H. Zhang, Y.-
- G. Guo, Adv. Energy Mater. 2019, 19, 1803978.
- 3. G. Kresse, Phys. Rev. B. 1993, 47, 558.
- 4. G. Kresse and J. Furthmüller, *Phys. Rev. B.* 1996, **54**, 11169.
- 5. J. P. Perdew and Y. Wang, Phys. Rev. B. 1992, 45, 13244.
- 6. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A.
- P. Sutton, Phys. Rev. B. 1998, 57, 1505.

7. Y. J. Park, J. U. Choi, J. H. Jo, C.-H. Jo, J. Kim and S.-T. Myung, *Adv. Funct. Mater.* 2019, **29**, 1901912.

8. R. Dronskowski and P. E. Bloechl, J. Phys. Chem. 1993, 97, 8617.

9. S. Maintz, V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, J. Comput. Chem. 2016, **37**, 1030.

10. G. Henkelman, B. P. Uberuaga and H. Jónsson, *J. Chem. Phys.* 2000, **113**, 9901.