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Supporting Information Text14

Supplementary Note 1: DA statistics calculation15

For each region detected by DA-seq, we compute a DA-score along with a p-value to indicate its statistical significance. The16

DA-score for a region is computed via,17

DA-score =
x(R)
nx
− y(R)

ny

x(R)
nx

+ y(R)
ny

. [1]18

where x(R), y(R) denote the number of cells in the DA region R from sample X and Y respectively; nx, ny denote the total19

number of cells in sample X and Y respectively.20

Here we present a method to evaluate the differential abundance of DA regions that is applicable for cases where biological21

replicates for each state or condition are available. We compute the p-value based on the nonparametric Wilcoxon rank sum22

test to estimate statistical significance. This calculation is only applicable for datasets with two biological states (X,Y ) and23

replicated samples in each biological state: X1, . . . , XmX , Y1, . . . , YmY , with mX ,mY denoting number of replicates for X,Y .24

For each sample S, a ratio r of a given DA region R is calculated by,25

r(S) = NS∩R

NS
26

where NS denotes total number of cells in sample S, and NS∩R denotes number of cells within region R and from sample S.27

Then, we compute the Wilcoxon rank sum test for the vectors r(X) = {r(X1), . . . , r(XmX )} and r(Y ) = {r(Y1), . . . , r(YmY )} to28

assess whether the difference between them is significant. In cases where mX and mY are small, like in (1) (mX = 2,mY = 2),29

we use a standard two sample t-test instead of Wilcoxon.30

Supplementary Note 2: Comparing brain transcriptomic profiles of young and old mice31

Ximerakis et al. (2) characterized differences between brain cells of young and old mice (Fig. S5a). As shown in Fig. S5b, they32

detected 25 distinct cell populations, of which oligodendrocyte precursor cells (1-OPC), neuronal restricted precursors (7-NRP)33

and immature neurons (8-ImmN) exhibited statistically significant decreases on abundance in old mice.34

We applied DA-seq on the merged data and identified several DA subpopulations after retaining cells with significant DA35

measure, as shown in Fig. S5c,d. DA clusters reported in (2) were identified by DA-seq, specifically, DA10 corresponds to36

1-OPC, DA13 to 7-NRP and 8-ImmN.37

DA-seq also identified other DA cell subpopulations. Subpopulations DA2 and DA9 are two adjacent DA subpopulations38

and they both overlap with the microglia (21-MG) cluster (Fig. S5d subpanel). However, DA2 is enriched with cells from old39

mouse brains, but in contrast, DA9 is enriched with cells from young mouse brains. It is instructive to study the difference40

between DA cell subpopulations located within the same cluster but have opposite signs of DA measure. We examined the41

differential expression between cell subpopulations DA2 and DA9. Characteristic markers for DA2 (DA9) overlap with shared42

and microglia specific aging-upregulated (aging-downregulated) genes reported in (2).43

To demonstrate the specificity of DA-seq, we compared cell distributions between samples extracted from different young44

mice (S5e). We verify that DA-seq did not detect any sizable DA subpopulations, as expected. In S5f, we display the sorted45

DA measure of all cells, both for the actual sample labels (mouse ID) and permuted labels. A negligible fraction of cells (0.6%)46

were retained as significant DA cells (S5g), and none of them formed sizable DA subpopulations.47

Supplementary Note 3: Simulated datasets48

In order to test our algorithm with "ground truth" DA subpopulations, we generated two simulated datasets. The first dataset49

is based on the scRNA-seq data from (3), and the second on a Gaussian mixture model.50

In the first simulation dataset, we used the gene expression profiles from the real data, but assigned labels to cells manually51

to create artificial DA subpopulations. We selected at random four DA subpopulations based on the kNN graph of the data,52

as shown in Fig S6a. For cells within the DA subpopulations, imbalanced cells labels were assigned at random, with 90%53

condition 0, 10% condition 1, or vice versa; labels for cells outside the DA subpopulations were randomly assigned with 50%54

condition 0 and 50% condition 1 (Fig. S6b). Next, We applied DA-seq to the simulated dataset. The DA measure and final55

DA subpopulations from our algorithm are shown in Fig. S6c and d, respectively. As can be seen, we successfully recovered all56

four artificial DA subpopulations and did not introduce false positive subpopulations.57

Comparison with Cydar. For comparison, we applied Cydar (4) to the simulated dataset. Briefly, Cydar allocates cells into58

hyperspheres by randomly selecting a proportion of cells as centers and using a fixed radius. Next, Cydar tests for differential59

abundance in each hypersphere with a negative binomial model. Since it is hard to evaluate Cydar’s performance with just the60

hyperspheres, we merged all significant hyperspheres (selected based on spatial FDR from Cydar) to obtain DA cells identified61

by Cydar. In Fig. S6e, receiver operating characteristic (ROC) curves are shown to provide a quantitative comparison. False62

Positive Rate (FPR) and True Positive Rate (TPR) are calculated by comparing DA cells detected from DA-seq or Cydar to63

the real DA cells that reside in the artificial DA subpopulations. Cydar was tested with different values of the tol parameter,64

which defines the radius of hyperspheres. Results of Cydar showed limitation of the method on scRNA-seq data due to: 1)65
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centers of hyperspheres are randomly selected, and sometimes can not cover the whole data, especially when the parameter tol66

is small; 2) radius of the hypersphere is fixed which typically does not match with the actual size of the DA region. In contrast,67

our multi-scale approach detects the size of neighborhoods with significant differential abundance.68

Gaussian mixture simulation. We generated the second simulation dataset according to a Gaussian mixture model. Let µ1, µ2
be 10 dimensional vectors, such that each contains two non zero elements (for instance, elements 1-2 for µ1 and 3-4 for µ2).
The ’cells’ were generated according to two distribution functions, f(x|y = A) and f(x|y = B) were A and B correspond to
two biological states (Fig. S7a)

f(x|y = A) =


N (0, I) w.p. 0.9
N (µ1, I) w.p. 0.09
N (µ2, I) w.p. 0.01

f(x|y = B) =


N (0, I) w.p. 0.9
N (µ1, I) w.p. 0.01
N (µ2, I) w.p. 0.09

where N (0, I) denotes a 10 dimensional standard Gaussian distribution. Thus, the first two features are differentially expressed,69

and form a DA subpopulation with high abundance of cells from condition A. Similarly, the other two differentially expressed70

features form a second DA subpopulation with high abundance of cells from condition B. These two artificial DA subpopulations71

are highlighted in Fig. S7b. Fig. S7c shows the DA measure, and Fig. S7d shows detected DA subpopulations after clustering72

significant DA cells. Applying feature selection through STG, we were able to recover all the differentiating features for this73

dataset (Fig. S7e).74
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DA-score for data from Gupta et al

c

Subpopulation E14/E13 E14.2/E13 E14/E13.2 E14.2/E13.2 
DA1 1.00 1.00 0.968 0.984 
DA2 0.943 0.952 1 1 
DA3 -0.729 -0.968 -0.826 -0.981 
DA4 -0.939 -0.984 -0.658 -0.9 
DA5 -0.929 -0.979 -0.929 -0.979 

 

b

DA statistics for data from Sade et al
Subpopulation DA-score 𝒑 value 
DA1  0.973 9.40e-07 
DA2  0.965 1.18e-04 
DA3 -0.933 2.88e-04 
DA4 -0.976 3.17e-02 
DA5 -0.904 8.59e-04 

 

a

DA statistics for data from Chua et al
Subpopulation DA-score 𝒑 value 
DA1  0.994 2.35e-02 
DA2  1.000 1.35e-02 
DA3 -0.826 1.54e-03 
DA4 -0.948 9.85e-02 
DA5 -0.988 3.01e-01 

 

Fig. S1. Statistics of DA subpopulations detected from real scRNA-seq datasets. a Data from Sade-Feldman et al. (3). A DA-score > 0 (< 0) indicates the DA
subpopulation is more abundant in samples from non-responders (responders). b Data from Gupta et al. (1). A DA-score > 0 (< 0) indicates the DA subpopulation is more
abundant in samples from E14.5 (E13.5). c Data from Chua et al. (5). A DA-score > 0 (< 0) indicates the DA subpopulation is more abundant in samples from severe
(moderate) patients.
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Fig. S2. Characterizing DA subpopulations in data from Sade-Feldman et al. (3). a Identified DA subpopulations after relaxing the threshold to τh = 0.7. Subpopulation
DA3 corresponds to the dendritic cell cluster G4. b-d Marker gene expression and STG prediction score overlay on t-SNE embedding for DA subpopulations. b DA1. c DA4.
d DA5.
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Fig. S3. Cross-validation on data from Sade-Feldman et al. (3). Data was split randomly into two sets, each containing half non-responder samples and half responder
samples. a-d Show results from split dataset 1 on t-SNE embedding of 7,679 cells. e-h Show results from split dataset 2 on t-SNE embedding of 8,612 cells. a,e Status
of response to immune therapy for each cell. b,f Cells colored by cluster labels from (3). c,g Cells colored by DA measure. Large/red (small/blue) values indicate a high
abundance of cells from the pool of non-responder (responder) samples. d,h Distinct DA subpopulations obtained by clustering cells with thresholds τh = 0.8, τl = −0.8 on
DA measure. i,j Dot plots showing marker genes of DA subpopulations. k Matched DA subpopulations in the full dataset, split dataset 1 and split dataset 2.
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Fig. S4. Characterizing DA subpopulations in data from Chua et al. (5). Marker gene expression overlay on t-SNE embedding for DA subpopulations. a DA1. b DA5. c
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Fig. S5. Comparing brain transcriptomics of young and old mice. a-d t-SNE embedding of 37,069 cells. a Cells measured in samples from young mice or old mice. b
Cluster labels from (2) for each cell. c Cells colored by DA measure. Large (small) values indicate a high abundance of cells from old (young) mice. Right panel: DA measure
for every cell, ordered monotonically, on real labels (black line) and permuted labels (gray line). d Distinct DA subpopulations obtained by clustering cells whose DA measure is
above the maximum or below the minimum of permuted DA measure (gray line in c right panel). e t-SNE embedding of 16,028 cells from eight young mice, cells colored by
individual young mice. f DA measure for every cell, ordered monotonically, on real labels (black line) and permuted labels (gray line). g Highlighted DA cells whose DA measure
is above the maximum or below the minimum of permuted DA measure (gray line in f).

8 of 13Jun Zhao,Ariel Jaffe,Henry Li,Ofir Lindenbaum,Esen Sefik,Ruaidhrí Jackson,Xiuyuan Cheng,Richard Flavell, and Yuval
Kluger



e

DA−seq
Cydar tol=1.5
Cydar tol=2
Cydar tol=2.5
Cydar tol=3
Cydar tol=3.5

FPR

TP
R

●
●
●
●

DA1
DA2
DA3
DA4

d

tSNE1

tS
N

E2

−0.4

0.0

0.4

cb
●
●

1
0

a

tSNE1

tS
N

E2

Fig. S6. DA results on simulated dataset. a-d t-SNE embedding of 16,291 cells. a Colored cells are four artificial DA subpopulations: two colored with blue hues have more
cells from condition 0, while two colored with red hues have more cells from condition 1. b Artificial labels for each cell, either condition 0 or condition 1. c Cells colored by DA
measure. Large (small) values indicate a high abundance of cells from condition 1 (condition 0). d Distinct DA subpopulations obtained by clustering cells whose DA measure is
above the maximum or below the minimum of permuted DA measure. e Receiver operating characteristic (ROC) curves for DA-seq and Cydar results.
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DA measure is above the maximum or below the minimum of permuted DA measure. e Cells colored by features selected by STG that differentiate the DA subpopulations.
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Dataset # cells in 
dataset 

𝒌𝒌-vector 
(𝒌𝒌𝟏𝟏,𝒌𝒌𝒍𝒍, 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) 

threshold 
(𝝉𝝉𝒍𝒍, 𝝉𝝉𝒉𝒉) 

resolution 
(𝒓𝒓) 

min # cells 
(𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎) 

Sade et al. 16,291 (50,500,50) (-0.8,0.8) 0.01 50 
Sade et al. split 1 7,679 (50,250,50) (-0.8,0.8) 0.01 50 
Sade et al. split 2 8,612 (50,250,50) (-0.8,0.8) 0.01 50 
Gupta et al. 15,325 (50,500,50) (-0.8,0.8) 0.05 50 
Chua et al. 80,109 (200,3200,200) (-0.8,0.8) 0.01 200 
Ximerakis et al. 37,069 (50,1000,106) Permutation 0.05 50 
Ximerakis et al. young 16,028 (50,500,50) Permutation 0.05 50 
Simulation 16,291 (50,500,50) Permutation 0.05 50 
Gaussian mixture 10,000 (50,500,50) Permutation 0.05 50 

 

  
Table S1. Parameters used in different datasets.
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