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Supplementary Figure 1. Using a recombinase system for targeted gene insertion. (a) A recombinase (oval) catalyzes the 
exchange between two recombination sites (arrows) placed in proximity. The positioning of the recombination sites dictates the 
outcome of the recombination. This process is reversible. (b-c) Targeted insertion of DNA at a designated genomic target may 
occur via the genetic recombination between recombination sites. The two panels illustrate two examples of insertion strategies. In 
(b), a single recombination results in the integration of the entire donor DNA at the genomic target. In (c), two subsequent 
recombination reactions result in the targeted insertion of a defined section of the donor DNA.
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Supplementary Figure 2. Applying various DNA repair pathways in targeted DNA insertion. Various DNA repair 
mechanism have been employed to insert donor DNA at designated genomic targets. In these methods, a site-directed 
nuclease creates a double-stranded break at the designated insertion target. The repair of the break in the presence of a 
properly designed donor DNA can lead to the insertion of a specific DNA sequence. In NHEJ, the broken ends of the DNA are 
re-joined directly. Repair through NHEJ is error-prone, often accompanied by the insertion or deletion of bases at the junction. 
In MMEJ, the Watson-Crick base pairing of microhomology sequences present on both DNA ends before end joining results in 
the deletion of the nucleotide sequence between the two microhomologies. During HR-mediated repair, a homologous repair 
template is employed to guide the repair of the double-stranded break. The diagram for the HR pathway illustrates 
synthesis-dependent strand annealing, the prevailing mechanism of HR-mediated repair in somatic plant cells. DSB, 
double-stranded break; NHEJ, non-homologous end joining; MMEJ, microhomology-mediated end joining; HR, homologous 
recombination.
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Supplementary Table 1. Examples of targeted DNA insertion in plants 
Molecular 

Tool 
Species Delivery Outcome Reported efficiency* of targeted insertion 

Whole plant 
obtained? 

Reference 

Homologous 
Recombination 

Tobacco 
Direct gene 

transfer 
Marker restored 

0.5 - 4.2 x 10-4 
(targeted insertion / random insertion) 

Y [1] 

Tobacco Agrobacterium Marker restored 
3 x 10-5 

(targeted insertion / random insertion) 
Y [2] 

Arabidopsis Agrobacterium Marker restored 
10-4 

(targeted insertion / random insertion) 
Y [3] 

Tobacco 
Direct gene 

transfer 
Marker restored 

up to 10-4 
(targeted insertion / random insertion) 

Y [4] 

Arabidopsis Agrobacterium 
Gene disrupted by 
marker insertion 

7.7 x 10-4 
(targeted insertion / random insertion) 

N [5] 

Tobacco Agrobacterium Marker restored 
3.2 x 10-6 

(targeted insertion / random insertion) 
Y [6] 

Lotus japonicus Agrobacterium 
Gene disrupted by 
marker insertion 

Below 5.3 x 10-5 
(targeted insertion / random insertion) 

N [7] 

Arabidopsis Agrobacterium 
Gene disrupted by 
marker insertion 

1.3 x 10-3 

(targeted insertion / random insertion) 
Y [8] 

Tobacco Agrobacterium 
Gene disrupted by 
marker insertion 

5.7 x 10-3 

(targeted insertion / dual-selected events) 
Y [9] 

Physcomytrella 
patens  

Direct gene 
transfer 

Marker inserted 93% of the transformation events Y [10] 

Rice Agrobacterium 
Gene disrupted by 
marker insertion 

1% of the dual-selected events Y [11] 

Arabidopsis Agrobacterium 
Reporter gene 

inserted in frame 
3% to 17% 

(targeted insertion / random insertion) 
Y [12] 

Rice Agrobacterium 
Gene disrupted by 
marker insertion 

2% of the dual-selected events Y [13] 

Arabidopsis Agrobacterium 
Reporter gene 

inserted in frame 
4.17 x 10-5 

(targeted insertion / random insertion) 
Y [14] 

Recombinase 

Tobacco 
Direct gene 

transfer 
Marker restored 

Up to 10-4 (targeted insertion / total treated) 
Comparable to random insertion frequency 

Y [15] 

Arabidopsis Agrobacterium Marker restored 
About 2 x 10-2  

(targeted events / explants used) 
Y [16] 

Arabidopsis Agrobacterium Marker restored 
About 10-3  

(targeted events / explants used) 
Y [17] 

Rice Bombardment Marker restored Not specified Y [18] 

Tobacco Bombardment BAC inserted Not specified Y [19] 

Tobacco 
Direct gene 

transfer 
Marker restored Not specified Y [20] 

Tobacco Agrobacterium Marker inserted 1% - 3%  Y [21] 



(targeted events / explants used) 

Arabidopsis Agrobacterium Marker restored 
Up to 3.5 x 10-3  

(targeted events / explants used) 
Y [22] 

Soybean Bombardment Marker restored Not specified Y [23] 

Rice Bombardment Marker restored 
0.2 - 0.3 targeted events per plate 

bombarded 
Y [24] 

Maize Agrobacterium Marker restored 
6.7% - 6.9% 

(targeted events / explants used) 
Y [25] 

Maize 
Agrobacterium/ 
Bombardment 

Trait genes 
inserted 

4% for bombardment 
5.9% - 9.3% for Agrobacterium 

(targeted events / explants used) 
Y [26] 

Meganuclease 

Tobacco Agrobacterium Marker restored 
Up to 1.88 x 10-3  

(targeted insertion / random insertion) 
Y [27] 

Tobacco Agrobacterium Marker restored 2.58% of the herbicide-tolerant events Y [28] 

Tobacco Agrobacterium Marker restored 
1% - 2%  

(targeted insertion / explants used) 
Y [29] 

Maize 
Agrobacterium/ 
Bombardment 

Marker restored 
Up to 0.3 

(targeted insertion / random insertion) 
Y [30] 

Maize 
Agrobacterium + 

Cross 
Marker restored 

0.085% 
(targeted insertion / embryos screened) 

Y [31] 

Cotton Bombardment Marker inserted 1.8% of the herbicide-tolerant events Y [32] 

Barley Agrobacterium Marker restored 
About 1%   

(targeted insertion / explants used) 
Y [33] 

ZFN 

Tobacco 
Direct gene 

transfer 
Marker restored 

About 0.17 
(targeted insertion / random insertion) 

Y [34] 

Maize 
Silicon carbide 

whiskers 
Gene disrupted by 
marker insertion 

18.7% - 40% of the herbicide-tolerant events Y [35] 

Tobacco Agrobacterium 
Gene disrupted by 
marker insertion 

Up to 10% of the herbicide-tolerant events Y [36] 

Arabidopsis Agrobacterium Marker inserted 0.1% of the herbicide-tolerant events Y [37] 

Maize Bombardment Marker inserted Up to 5% of the herbicide-tolerant events Y [38] 

Arabidopsis 
Tobacco 

Agrobacterium Marker inserted 
4.8% of herbicide-tolerant Arabidopsis 

events 
6.7% of herbicide-tolerant tobacco events 

Y [39] 

Arabidopsis 
Direct gene 

transfer 
DNA fragment 

inserted 
Up to 5.32% of all cells used 

based on the sequencing reads 
N [40] 

Tobacco 
Agrobacterium 

+ Replicon 
Marker restored Not specified Y [41] 

Maize Bombardment Marker inserted Up to 30% of the herbicide-tolerant events Y [42] 

Potato 
Agrobacterium 

+ Replicon 
Marker restored Not specified N [43] 



Soybean Bombardment 
DNA fragment 

inserted 

2.8% of the herbicide-tolerant events (7.1kb)  
0.23% of the herbicide-tolerant events 

(16.2kb) 
Y [44] 

TALEN 

Tobacco 
Direct gene 

transfer 
Reporter gene 

inserted in frame 
Up to 14% of all cells used N [45] 

Tomato 
Agrobacterium 

+ Replicon 
Gene activated and 

marker inserted 
7.28% of the herbicide-tolerant events Y [46] 

Potato 
Agrobacterium 

+ Replicon 
Gene modified and 

marker inserted 
Up to 41.7% of the herbicide-tolerant events Y [43] 

Potato Agrobacterium Marker restored Up to 96% of the herbicide-tolerant events Y [47] 

CRISPR-Cas 

Rice 
Direct gene 

transfer 
DNA fragment 

inserted 
Not specified N [48] 

Arabidopsis Agrobacterium Marker inserted 0.14% of the seeds screened Y [49] 

Tomato 
Agrobacterium 

+ Replicon 
Gene activated and 

marker inserted 
2.75% - 8.8%  

(targeted events / explants used) 
Y [46] 

Maize Bombardment Marker inserted 2.5% - 4.1% of the herbicide-tolerant events Y [50] 

Soybean Bombardment Marker inserted 3.8% - 4.6% of the herbicide-tolerant events Y [51] 

Rice Bombardment 
DNA fragment 

inserted 
2.2% of the CRISPR-Cas-expressing events Y [52] 

Arabidopsis Agrobacterium 
Reporter gene 

inserted 
0.2% of the CRISPR-Cas-expressing events Y [53] 

Potato 
Agrobacterium 

+ Replicon 
Gene modified and 

marker inserted 
Up to 12.5% of the herbicide-tolerant events Y [43] 

Tobacco 
Agrobacterium 

+ Replicon 
Marker restored Not specified 

N [54] 
Wheat 

Bombardment 
+ Replicon 

Reporter gene 
inserted in frame 

Not specified 

Wheat 
Bombardment 

+ Replicon 
Reporter gene 

inserted 
5.74% of the transformed cells N [55] 

Rice 
Ribonucleoprotein 

transfection 
Epitope tag 

inserted in frame 
2.13% - 4.69% of the target DNA N [56] 

Rice 
Agrobacterium + 

Replicon 
Reporter gene 

inserted in frame 
4.7% - 8.5% of the herbicide-tolerant events Y [57] 

Maize Bombardment 
DNA fragment 

inserted 
1% of the CRISPR-Cas-expressing events Y [58] 

Physcomytrella 
patens  

Direct gene 
transfer 

Gene disrupted by 
marker insertion 

Up to 100% of the herbicide-tolerant events Y [59] 

Rice Bombardment 
Gene disrupted by 
marker insertion 

8% of the herbicide-tolerant events Y [60] 

Tomato 
Agrobacterium + 

Replicon 
Gene repaired 25 % of the CRISPR-Cas-expressing events Y [61] 

Arabidopsis Agrobacterium  Gene repaired 0.12% of the examined plants Y [62] 



Arabidopsis Agrobacterium  
Reporter gene 

inserted in frame 
6.3% - 9.1% of the examined plants Y [63] 

Tomato Agrobacterium 
Gene repaired and 

marker inserted 
1.29% of the herbicide-tolerant events Y [64] 

Rice Agrobacterium Marker inserted 3.8% - 5.3% of the herbicide-tolerant events Y [65] 

Rice Bombardment 
Epitope tag 

inserted in frame 
Not specified N [66] 

Tomato 
Agrobacterium + 

Replicon 
Gene activated and 

marker inserted 
Up to 12.8% of the herbicide-tolerant events Y [67] 

Rice Bombardment 
DNA fragment 

inserted 
6.25% of the CRISPR-Cas-expressing events Y [68] 

Maize Bombardment 
Landing pad with 
marker inserted 

Up to 18% of the herbicide-tolerant events Y [26] 

Rice Bombardment 
DNA fragment 

inserted 
An average of 25% of  

the CRISPR-Cas-expressing events 
Y [69] 

Maize Agrobacterium 
DNA fragment 

inserted 
Up to 4.7% of the herbicide-tolerant events Y [70] 

*Not all efficiencies are comparable due to the difference among calculation methods.  
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