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Supplementary Information Text 
 
As an additional check to ensure that our results are not an artifact of multiple testing, we used 
the false discovery rate-controlling procedure of Benjamini and Hochberg (1995).1-3 In our 
context, the false discovery rate (FDR) is the expected fraction of states incorrectly detected as 
having a significant temperature-mobility correlation when such a correlation does not in fact 
exist. The procedure4 requires as input the p-values of the family of tests to be analyzed, which 
we compute from the state-specific null distributions as described in the Methods section. We 
chose to analyze the temperature-park visitation and temperature-potential encounters 
correlations as separate families of 51 tests each (50 states plus D.C.) and to control the false 
discovery rate at 0.05 in each family.  
 
After applying this procedure using the (2020) p-values and our chosen false discovery rate, we 
identified 11 states as having significant temperature-park visitation correlations and zero states 
with significant temperature-potential encounters correlations. This is compared to 17 states and 
one state, respectively, identified as having significant correlations before applying this multiple 
testing correction. Although fewer states are identified as having significant temperature-park 
visitation correlations than in our primary analysis, our main focus is not on the significance of 
correlations in individual states but on whether a temperature effect on human behavior is 
apparent in the dataset as a whole (i.e. nationwide). Thus, at the national scale we again observe 
statistically significant correlations between temperature and park visitation and a lack of such 
correlations between temperature and potential encounter rates, further supporting our 
conclusions. The results of the main analysis and the FDR analysis are shown in Table S1. 
 
We also investigated an alternative method for evaluating the significance of the individual 
state-level temperature and mobility correlations, by estimating whether the correlations are 
significantly different from zero via a bootstrapping technique. By resampling days at random 
with replacement from our March 23 to May 1, 2020 time series only (i.e., without using previous 
years of weather data), we generate 4000 additional synthetic datasets of temperature and 
mobility per state and then use these synthetic datasets to recompute 4000 synthetic correlation 
values per state. These distributions of synthetic correlation values form the basis of the 
correlation significance information presented in Fig. S5. Note that the observed correlations 
shown in this figure are necessarily independent of this resampling technique and are therefore 
reproduced exactly from Figure 3. 
 
It is important to note that these results are comparable to those obtained from our primary 
analysis using the state-specific null distributions of correlation values. In comparing Fig. 3 with 
Fig. S5, we observe similar relationships between the patterns of significant temperature-park 
visitations correlations and significant temperature-encounters correlations. While this 
bootstrapping technique identifies correlations in a few more states as significant, states identified 
as having significant correlations in our primary analysis are also found to have significant 
correlations in this tertiary analysis. We have not applied any form of multiple testing 
correction to our bootstrapping-based results. 
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Fig. S1. Relationship between change in average distance traveled and change in rate of encounters in 
California (left), Florida (middle), and New York County (Manhattan), New York (right), colored by date 
(dark blue is February 24, light yellow is June 6). Data are expressed relative to pre-pandemic baselines. 
Exponential model fits are plotted in red. 
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Fig. S2. Adjusted R2 values of exponential fits on the state (left) and county (right) levels. Alaska is not 
shown on the county map as Anchorage Municipality is the only region available (R2=0.68). Regions with 
missing data are colored in gray. 
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Fig. S3. Map of log10 of leading coefficient a (a) and map of growth rate coefficient b (b) on the county 
level. In (a), the value for New York County (Manhattan), New York (log10 a =3.60) is not shown. In (a) 
and (b), Alaska is not shown as Anchorage Municipality is the only region available (log10 a=-0.213, 
b=2.28). Regions with missing data are colored in gray. Scatter plots of coefficients at the state level are 
shown against the log10 of population density for log10 a in (c) and for b in (d).  
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Fig. S4. (a) Observed county-level correlation coefficient of temperature and potential encounter rate. (b) 
Relationship between county-level correlation coefficient of temperature and potential encounter rate and 
log10 of population density.  
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Fig. S5. State-level correlation coefficient of temperature and park visitation (a) or correlation coefficient 
of temperature and encounter rate (b), both reproduced from Fig. 3. Significance of the correlations was 
estimated using a bootstrapping technique (see Supplementary Information Text for details). Single 
hatching marks areas where zero is within 1.96 standard deviations of the observed correlation (i.e., 
significant at ~95% or less), while cross hatching shows where zero is within 1.64 standard deviations of 
the observed correlation (significant at ~90% or less). A lack of hatching indicates where zero is at least 
1.96 standard deviations from the observed correlation (significant at ~95% or more). Rainy days have 
been excluded from this analysis and all time series were high-pass filtered prior to computing the 
correlations (see Methods for details). 
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Table S1. State-level temperature-mobility correlation results. Before applying the FDR procedure, 17 
states exhibit significant temperature-park visitation correlations (bolded), and one state exhibits a 
significant temperature-potential encounters correlation (bolded). After applying the FDR procedure, 11 
states exhibit significant temperature-park visitation correlations, and zero states exhibit significant 
temperature-potential encounters correlations as shown in the “FDR Significance” columns. 
 

  Temperature-park visitations Temperature-potential encounters 

State Correlation 
Coefficient (2020) p-value FDR 

Significance 
Correlation 

Coefficient (2020) p-value FDR 
Significance 

AL -0.3697 0.1467 N -0.2041 0.5529 N 
AK 0.1384 0.6961 N -0.0080 0.9531 N 
AZ 0.2753 0.1441 N -0.2382 0.2523 N 
AR 0.3099 0.3165 N 0.2333 0.2309 N 
CA 0.0350 0.9412 N 0.1711 0.3305 N 
CO 0.6566 0.0018 Y 0.0143 0.8723 N 
CT 0.3602 0.0250 N 0.0247 0.8042 N 
DE 0.0361 0.7895 N -0.2572 0.3868 N 

D.C. 0.4150 0.0008 Y -0.1480 0.5412 N 
FL -0.2275 0.2240 N -0.4658 0.0245 N 
GA 0.1836 0.7998 N -0.0874 0.8996 N 
HI -0.0846 0.6826 N 0.0935 0.7617 N 
ID 0.0086 0.7714 N -0.0245 0.8937 N 
IL 0.2936 0.1084 N -0.1944 0.5761 N 
IN 0.3226 0.1282 N -0.1092 0.9557 N 
IA 0.2564 0.1040 N -0.1758 0.5143 N 
KS 0.3781 0.0250 N -0.1247 0.5608 N 
KY 0.3983 0.0823 N 0.2476 0.1824 N 
LA -0.2614 0.2690 N 0.0207 0.6278 N 
ME 0.5565 0.0001 Y -0.0056 0.8258 N 
MD 0.3479 0.0035 Y -0.0437 0.9147 N 
MA 0.3753 0.0068 Y -0.0112 0.7955 N 
MI 0.4656 0.0086 Y -0.3627 0.1405 N 
MN 0.3110 0.0588 N -0.0743 0.6386 N 
MS -0.1197 0.5993 N 0.0284 0.7167 N 
MO 0.1851 0.4224 N -0.1634 0.6676 N 
MT 0.2379 0.3380 N -0.0149 0.9648 N 
NE 0.5483 0.0008 Y -0.1312 0.5367 N 
NV -0.0226 0.8801 N -0.2293 0.4560 N 
NH 0.4758 0.0007 Y 0.0528 0.6252 N 
NJ 0.2168 0.3225 N -0.0569 0.7510 N 

NM 0.1904 0.4584 N -0.1154 0.6378 N 
NY 0.3718 0.0665 N -0.1245 0.6180 N 
NC 0.3226 0.1095 N 0.0741 0.5831 N 
ND 0.2566 0.2452 N 0.0343 0.9551 N 
OH 0.4970 0.0446 N -0.1913 0.9180 N 
OK 0.4512 0.0736 N 0.1674 0.3496 N 
OR -0.0488 0.8803 N 0.3382 0.0539 N 
PA 0.4957 0.0107 Y -0.2853 0.3118 N 
RI 0.4587 0.0029 Y 0.0948 0.6825 N 
SC 0.3095 0.1091 N -0.0495 0.9818 N 
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SD 0.3993 0.0197 N 0.0069 0.9309 N 
TN 0.3463 0.0579 N 0.2405 0.2049 N 
TX 0.3803 0.1613 N 0.1748 0.1069 N 
UT 0.0574 0.9163 N -0.3123 0.1269 N 
VT 0.5007 0.0022 Y -0.1210 0.3614 N 
VA 0.2930 0.0217 N -0.0892 0.8975 N 
WA 0.0421 0.8459 N 0.3485 0.2398 N 
WV 0.4344 0.0350 N -0.2317 0.5929 N 
WI 0.2321 0.1646 N -0.1793 0.5066 N 
WY 0.3178 0.1596 N -0.0076 0.8520 N 
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