SUPPORTING INFORMATION

Contents

1. Supporting Experimental data	S2
1.1 NMR spectra of synthesized compounds	S2
1.1.1 Spectra of [(^{Me}BDI)Mg $^{+}\cdot$ PhF][B(C ₆ F ₅) ₄ ⁻]	S2
1.1.2 Spectra of $[(^{tBu}BDI)Mg^+ (PhF)_2][B(C_6F_5)_4^-]$	S4
1.1.3 Spectra of [(^{tBu} BDI)Mg ⁺ ·(PhF) ₂][Al-F-Al [−]]	S6
1.1.4 Spectra of $[(^{tBu}BDI)Mg^+ PhBr][B(C_6F_5)_4^-]$	S9
1.1.5 Spectra of [(^{tBu}BDI)Mg $^+$ ·PhI][B(C ₆ F ₅) ₄ ⁻]	S11
1.2 Single crystal X-ray diffraction	S14
1.3 Literature known metal-halobenzene complexes	S20
1.4 Computational details	S21
1.4.1 Calculated structures (bond length, angles and energies)	S21
1.4.2 X-Y-Z files	S26

2. References

S60

1. Supporting Experimental data

1.1. NMR spectra of synthesized compounds

1.1.1. Spectra of [(^{Me}BDI)Mg $^{+}$ ·PhF][B(C₆F₅)₄⁻]

Figure S1: ¹H NMR spectrum of $[(^{Me}BDI)Mg^+ \cdot PhF][B(C_6F_5)_4^-]$ in C_6D_5Br .

Figure S2: ${}^{13}C{}^{1}H$ NMR spectrum of $[({}^{Me}BDI)Mg^+ PhF][B(C_6F_5)_4^-]$ in C_6D_5Br .

1.1.2. Spectra of [(^{tBu}BDI)Mg⁺·(PhF)₂][B(C₆F₅)₄⁻]

Figure S4: ¹⁹F NMR spectrum of $[(^{Me}BDI)Mg^+ PhF][B(C_6F_5)_4^-]$ in C_6D_5Br .

Figure S6: ${}^{13}C{}^{1}H$ NMR spectrum of [(${}^{tBu}BDI$)Mg $^{+}(PhF)_2$][B(C₆F₅)₄⁻] in C₆D₅Br.

1.1.3. Spectra of [(^{tBu}BDI)Mg⁺·(PhF)₂][AI-F-AI⁻]

Figure S8: ¹⁹F NMR spectrum of $[(^{tBu}BDI)Mg^+ (PhF)_2][B(C_6F_5)_4^-]$ in C_6D_5Br .

Figure S11: 2D HSQC NMR spectrum of $[(^{tBu}BDI)Mg^{+}(PhF)_2][AI-F-AI^{-}]$ in C₆D₅F.

Figure S12: 2D HMBC NMR spectrum of $[(^{tBu}BDI)Mg^+ (PhF)_2][AI-F-AI^-]$ in C₆D₅F.

Figure S13: ¹⁹F NMR spectrum of $[(^{tBu}BDI)Mg^{+}(PhF)_2][AI-F-AI^{-}]$ in C₆D₅F.

Figure S15: ¹H NMR spectrum of $[(^{tBu}BDI)Mg^+ \cdot PhBr][B(C_6F_5)_4^-]$ in C_6D_5Br .

1.1.4. Spectra of [(^{tBu}BDI)Mg $^+$ ·PhBr][B(C₆F₅)₄⁻]

Figure S14: ²⁷Al NMR spectrum of $[({}^{tBu}BDI)Mg^+ (PhF)_2][AI-F-AI^-]$ in C₆D₅F.

190 170 150 130 110 90 70 30 10 -10 -30 Chemical shift [ppm] -50 -190 50 -70 -90 -110 -130 -150 -170

1.1.4 Spectra of [(^{tBu}BDI)Mg⁺·PhI][B(C₆F₅)₄[−]]

Figure S18: ¹⁹F NMR spectrum of $[(^{tBu}BDI)Mg^+ \cdot PhBr][B(C_6F_5)_4^-]$ in C_6D_5Br .

Figure S20: ¹³C{¹H} NMR spectrum of $[({}^{^{fBu}BDI})Mg^+ \cdot PhI][B(C_6F_5)_4^-]$ in C_6D_5Br .

70 60 50 10 0 -10 chemical shift [ppm] 90 80 40 30 20 -20 -30 -40 -50 -60 -70 -80 -90 **Figure S21:** ¹¹B NMR spectrum of $[(^{tBu}BDI)Mg^+ \cdot PhI][B(C_6F_5)_4^-]$ in C_6D_5Br .

¹⁰ 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 chemical shift [ppm] **Figure S22:** ¹⁹F NMR spectrum of [(^{tBu}BDI)Mg⁺·PhI][B(C₆F₅)₄⁻] in C₆D₅Br.

1.2 Single Crystal X-Ray Diffraction

A crystal of the corresponding compound was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 100.0(2) K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuKα microfocus source. The measured data was processed with the CrysAlisPro (v40.67a) software package.^[S1] Using Olex2,^[S2] the structure was solved with the ShelXT^[S3A] structure solution program using Intrinsic Phasing and refined with the ShelXL^[S3B] refinement package using Least Squares Minimization. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters.

 $[(^{Me}BDI)Mg^{+}(PhF)_3][B(C_6F_5)_4^{-}]$: Disorder of a *i*Pr group was observed and modeled with the help of similarity restraints (SADI). The relative occupancies of the two alternative orientations were refined to 0.57(3) and 0.43(3). $[(^{tBu}BDI)Mg^{+}(PhF)_2][B(C_6F_5)_4^{-}]$: Disorder of a *t*Bu group was observed and modeled with the help of similarity restraints (SADI). The relative occupancies of the two alternative orientations were refined to 0.525(11) and 0.475(11). $[(^{tBu}BDI)Mg^{+}(PhF)_2][Al-F-Al^{-}]$: Disorder of three perfluorinated *t*BuO groups and of one fluorobenzene ligand was observed. The disorder was modeled with the help of similarity restraints (SIMU, SADI). The relative occupancies of the two alternative orientations were refined to 0.916(3)/0.084(3) (F_9-tBuO 1), 0.721(8)/0.279(8) (F_9-tBuO 2), 0.607(16)/0.393(16) (F_9-tBuO 3), and 0.69(2)/0.31(2) (PhF), respectively.

Table S1. Crystal data.

Commonwed	[(^{Me} BDI)Mg⁺·PhF]	[(^{Me} BDI)Mg⁺·(PhF)₃]	[(^{tBu} BDI)Mg⁺·(PhF)₂]	
Compound	[B(C ₆ F ₅) ₄ ⁻]	[B(C ₆ F ₅) ₄ ⁻]	[B(C ₆ F ₅)₄ [−]]	
Empirical formula	$C_{59}H_{46}BF_{21}MgN_2$	$C_{71}H_{56}BF_{23}MgN_2$	$C_{71}H_{63}BF_{22}MgN_2$	
Formula weight	1217.10	1409.29	1397.35	
Temperature/K	99.94(17)	100	100.0(1)	
Crystal system	triclinic	triclinic	monoclinic	
Space group	P-1	P-1	P21/c	
a/Å	11.5834(5)	12.2177(3)	18.37340(10)	
b/Å	12.7194(6)	15.9583(5)	18.09830(10)	
c/Å	19.1287(8)	17.8965(5)	19.72950(10)	
α/°	86.142(3)	102.494(3)	90	
β/°	77.884(4)	106.268(3)	98.0610(10)	
γ/°	80.927(4)	96.734(2)	90	
Volume/Å ³	2719.3(2)	3210.88(17)	6495.77(6)	
Z	2	2	4	
ρ _{calc} g/cm ³	1.486	1.458	1.429	
µ/mm⁻¹	0.147	1.238	1.193	
F(000)	1240.0	1440.0	2872.0	
Crystal size/mm ³	0.242 × 0.137 × 0.084	0.2647 × 0.1931 × 0.1823	0.273 × 0.193 × 0.155	
Crystal color	colorless	colorless	colorless	
Radiation	ΜοΚα (λ = 0.71073)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	
20 range for data	6 216 to 52 711	5 778 to 136 232	6 658 to 147 34	
collection/°	0.210 10 52.744	5.778 (0 150.252	0.058 (0 147.54	
Index ranges	-14 ≤ h ≤ 14, -15 ≤ k ≤	-14 ≤ h ≤ 10, -18 ≤ k ≤	-22 ≤ h ≤ 22, -22 ≤ k ≤	
	14, -23 ≤ ≤ 23	19, -21 ≤ l ≤ 19	22, -24 ≤ l ≤ 23	
Reflections collected	26778	19494	62369	
Independent	11109 [R _{int} = 0.0368,	11623 [R _{int} = 0.0354,	12980 [R _{int} = 0.0232,	
reflections	R _{sigma} = 0.0476]	R _{sigma} = 0.0436]	R _{sigma} = 0.0164]	
Data/restraints/para meters	11109/0/767	11623/0/893	12980/15/919	
Goodness-of-fit on F ²	1.044	1.046	1.022	
Final R indexes	R ₁ = 0.0508, wR ₂ =	R ₁ = 0.0417, wR ₂ =	R ₁ = 0.0311, wR ₂ =	
[I>=2σ (I)]	0.1171	0.1066	0.0787	
Final R indexes [all	R ₁ = 0.0717, wR ₂ =	$R_1 = 0.0474$, w $R_2 =$	$R_1 = 0.0356, wR_2 =$	
data]	0.1292	0.1117	0.0807	
Largest diff. peak/hole / e Å ⁻³	0.41/-0.36	0.35/-0.32	0.26/-0.22	

Commound	[(^{tBu} BDI)Mg⁺·(PhF)₂]	[(^{tBu} BDI)Mg⁺·PhBr]	[(^{tBu} BDI)Mg⁺·PhI]
Compound	[AI-F-AI [−]]	[B(C ₆ F ₅)₄ [−]]	[B(C ₆ F ₅) ₄ ⁻]
Empirical formula	$C_{71}H_{63}AI_2F_{57}MgN_2O_6$	$C_{65}H_{58}BBrF_{20}MgN_2$	$C_{65}H_{58}BF_{20}IMgN_2$
Formula weight	2201.50	1362.16	1409.15
Temperature/K	100.0(6)	100.0(3)	100.02(16)
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	P21/c	P21/c
a/Å	11.3521(3)	18.6127(3)	18.7237(5)
b/Å	15.9191(5)	17.9643(2)	18.0226(4)
c/Å	24.7380(7)	18.7424(3)	18.7649(5)
α/°	74.924(3)	90	90
β/°	85.545(2)	102.9937(14)	102.692(3)
γ/°	89.290(2)	90	90
Volume/Å ³	4303.5(2)	6106.31(15)	6177.5(3)
Z	2	4	4
ρ _{calc} g/cm ³	1.699	1.482	1.515
µ/mm⁻¹	2.000	1.942	0.632
F(000)	2204.0	2776.0	2848.0
Crystal size/mm ³	$0.295 \times 0.249 \times 0.1$	0.339 × 0.26 × 0.16	0.175 × 0.123 × 0.067
Crystal color	colorless	colorless	colorless
Radiation	Cu Kα (λ = 1.54184)	CuKα (λ = 1.54184)	Μο Κα (λ = 0.71073)
20 range for data collection/°	7.424 to 145.51	6.902 to 146.388	4.52 to 59.456
Index ranges	-13 ≤ h ≤ 10, -19 ≤ k ≤	-22 ≤ h ≤ 22, -20 ≤ k ≤	-25 ≤ h ≤ 25, -21 ≤ k ≤
index ranges	19, -30 ≤ l ≤ 29	21, -22 ≤ ≤ 22	24, -25 ≤ l ≤ 25
Reflections collected	29394	21736	42831
Independent	16538 [R _{int} = 0.0270,	11715 [R _{int} = 0.0179,	15163 [R _{int} = 0.0296,
reflections	R _{sigma} = 0.0350]	R _{sigma} = 0.0233]	R _{sigma} = 0.0393]
Data/restraints/para meters	16538/6852/1633	11715/0/825	15163/0/825
Goodness-of-fit on F ²	1.023	1.027	1.021
Final R indexes	R ₁ = 0.0400, wR ₂ =	R ₁ = 0.0304, wR ₂ =	R ₁ = 0.0388, wR ₂ =
[I>=2σ (I)]	0.1001	0.0750	0.0844
Final R indexes [all	$R_1 = 0.0452, wR_2 =$	$R_1 = 0.0326$, $wR_2 =$	$R_1 = 0.0569, wR_2 =$
data]	0.1046	0.0767	0.0927
Largest diff. peak/hole / e Å ⁻³	0.48/-0.37	0.48/-0.62	0.57/-0.89

Table S1. Crystal data (continued).

Figure S23: ORTEP representation of $[(^{Me}BDI)Mg^+ (PhF)][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms were emitted for clarity.

Figure S24: ORTEP representation of $[(^{Me}BDI)Mg^{+}(PhF)_{3}][B(C_{6}F_{5})_{4}^{-}]$ (probability level 50%). Hydrogen atoms were emitted for clarity.

Figure S25: ORTEP representation of $[(^{tBu}BDI)Mg^+ (PhF)_2][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms were emitted for clarity.

Figure S26: ORTEP representation of $[(^{tBu}BDI)Mg^+ (PhF)_2][AI-F-AI^-]$ (probability level 50%). Hydrogen atoms were emitted for clarity.

Figure S27: ORTEP representation of $[({}^{tBu}BDI)Mg^+ PhBr][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms were emitted for clarity.

Figure S28: ORTEP representation of $[(^{Me}BDI)Mg^+ PhI][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms were emitted for clarity.

1.3. Literature known metal-halobenzene complexes

PhF	GEQJET	HOGHIV	NEBDAA	SAXSEQ	SAXSIU	UHAVUU	TOQQEV	UPAQAF	YAWNAO
reference	[S4]	[\$5]	[\$6]	[\$7]	[\$7]	[\$8]	[S9]	[S10]	[S11]
	M = Mg	M = Al	M = Ti	M = Sc	M = Ti	M = Ti	M = Li	M = Ru	M = Li
M- F (Ph)	2.098(4) 2.085(4)	1.8637(18)	2.1125(19)	2.2725(18) 2.2884(16)	2.166(6)	2.1512(15)	1.866(7)	1.998(5)	1.892(7)
C- F	1.346(5) 1.338(6)	1.447(4)	1.418(3)	1.408(3) 1.414(3)	1.406(10)	1.402(3)	(?)	1.328(8)	1.387(5)
angle M- F -C	134.7(3) 166.8(3)	129.98(15)	177.46(14)	172.21(16) 165.27(14)	157.3(7)	168.17(16)	180 (?)	134.9(4)	151.7(3)

Table S2. Literature compilation of known metal halobenzene complexes.

PhCl	EZEVOU	EZEVUA	KUNLAI	MAMFOY	ROWNIC	XIXBIP(01)
reference	[S12]	[S12]	[S13]	[S14]	[S15]	[S16] ([S17])
	M = Re	M = Re	M = Zr	M = Zr	M = Rh	M = Al
M- Cl (Ph)	2.5613(12)	2.559(3)	2.7398(15)	2.6630(8)	2.5208(13)	2.540(3)
C- Cl	1.763(4)	1.690(12)	1.767(7)	1.775(3)	1.758(6)	1.774(7)
angle M- Cl -C	113.20(16)	114.2(4)	129.0(2)	120.66(10)	114.28(14)	102.7(2)

PhBr	RAPVUZ	RUNWUU
reference	[S18]	[S19]
	M = Pt	M = Pd
M- Br (Ph)	2.581(3)	2.5456(11)
C- Br	1.92(3)	1.922(2)
angle M- Br -C	116.4(6)	107.34(7)

PhI	HAMRIW	HAMRIV01	PUDDEX	RAPVOT
reference	[S20]	[S21]	[S21]	[S18]
	M = Ag	M = Ag	M = Ag	M = Pt
M-I(Ph)	2.929(3) 2.971(2)	2.927(2) 2.970(2)	2.853(1)	2.696(2)
C-I	(?)	2.093(26)	2.082(9)	2.123(8)
angle M-I-C	101.6(8) 93.9(7)	102.3(7) 94.4(7)	99.0(2)	114.8(3)

1.4. Computational details

All geometry optimizations were carried out using Gaussian 16 Rev. A.O.3.⁵²² All structures were fully optimized on B3LYP/def2TZVP level of theory.⁵²³ In all cases dispersion correction Grimme's third dispersion correction with Becke-Johnson damping (GD3BJ) was applied, unless indicated otherwise.⁵²⁴ In order to determine zero-point energies and to characterize the structures as minima, a frequency analysis has been calculated. Solvation effects were approximated using the PCM field of benzene.⁵²⁵ Molecules were drawn and evaluated using Molecules V2.311.⁵²⁶ Topological analyses were carried out using AIMAII V17 with the wavefunctions obtained from the B3LYP/def2TZVP calculations.^{527, 528}

1.4.1. Calculated structures (bond lengths, angles and energies)

Figure S29: Calculated structures of HMg⁺·PhX and (^{mini}BDI)Mg⁺·PhX, calculated without dispersion correction.

Figure S30: Calculated structures of $(^{mini}BDI)Mg^+ PhX$ and $(^{mini}BDI)Mg^+ (PhX)_2$ with dispersion correction.

Figure S31: Calculated structures of (^{*t*Bu}BDI)Mg⁺·PhX with dispersion correction.

Figure S32: Contour plots of the negative Laplacian, $-\nabla^2 \rho(r)$, for the cations (^{tBu}BDI)Mg⁺...XPh (X = F, Cl, Br, I) in the Mg···X-C plane (top row) and for the free halobenzenes PhX in the molecule plane (middle row). Light-blue dots are bond-critical-points (BCP) and **boxed numbers show the Wiberg bond indices** calculated by the NBO program. (^{tBu}BDI)Mg⁺...XPh coordination lead in all cases to weakening of the C-X bond. The percentage change (shown in red) is largest for C-F and gradually decreases down the group.

Figure S33: Energy needed for linearization of (^{tBu}BDI)Mg $^+$...XPh (X = F, Cl, Br, I) in kcal/mol, B3LYP/Def2TZVP GD3BJ; Δ G at 298 K.

Table	3:	Calculated	energies	for	complexation	of	(BDI)Mg⁺	with	ligands	(B3LYP/def2TZVP	with
disper	sior	n correction)								

		ΔE [kcal mol ⁻¹]	ΔH [kcal mol ⁻¹]	ΔG [kcal mol ⁻¹]
	C ₆ H ₆	-40.08	-39.07	-30.95
	C_6H_6 solvent correction PCM, benzene	-14.38	-13.37	-5.25
	PhF	-34.29	-33.84	-26.92
	PhF solvent correction PCM, benzene	-14.22	-13.78	-6.85
	2 PhF solvent correction PCM, benzene	-22.64	-21.31	-2.95
(^{mini} BDI)Mg⁺	PhCl	-35.44	-34.46	-26.54
	2 PhCl solvent correction PCM, benzene	-16.57	-15.15	4.30
	PhBr	-36.48	-35.90	-27.63
	2 PhBr solvent correction PCM, benzene	-16.02	-14.71	4.79
	PhI	-37.95	-37.33	-28.34
	2 PhI solvent correction PCM, benzene	-14.64	-13.37	6.99
	C ₆ H ₆	-28.59	-27.25	-15.90
	C_6H_6 solvent correction PCM, benzene	-9.90	-8.56	2.78
	PhF	-22.95	-21.64	-9.04
	PhCl	-28.37	-27.96	-18.14
	PhBr	-29.59	-29.31	-19.46
(**BDI)IVIg	PhI	-30.98	-30.64	-20.06
	PhF solvent correction PCM, benzene	-13.02	-12.75	-2.65
	PhCl solvent correction PCM, benzene	-12.73	-12.32	-2.51
	PhBr solvent correction PCM, benzene	-12.09	-11.80	-1.95
	PhI solvent correction PCM, benzene	-11.24	-10.90	-0.33

Table 4: Calculated linearization energies for (^{mini}BDI)Mg⁺·XPh and (^{tBu}BDI)Mg⁺·XPh, *i.e.* the energy needed to convert the bent minimum in a linear structure (B3LYP/def2TZVP without dispersion correction).

complex	ΔE [kcal mol ⁻¹]	ΔH [kcal mol ^{−1}]	∆G [kcal mol ⁻¹]
(^{mini} BDI)Mg⁺·FPh	0.19	0.07	4.53
(^{mini} BDI)Mg⁺·CIPh	9.88	9.33	11.62
(^{mini} BDI)Mg⁺·BrPh	12.49	11.94	14.68
(^{mini} BDI)Mg+·IPh	16.21	15.62	21.34
(^{tBu} BDI)Mg ⁺ ·FPh	2.62	2.00	2.75
(^{tBu} BDI)Mg⁺·ClPh	15.43	15.06	17.16
(^{tBu} BDI)Mg⁺·BrPh	19.03	18.78	21.09
(^{tBui} BDI)Mg ⁺ ·IPh	22.44	22.06	24.34

1.4.2. XYZ coordinates

XYZ-Files:

	14		
PhF—N	/lg+H, O.D.		
С	0.115933	-0.024191	0.000000
F	0.122698	1.448319	0.000000
С	0.120297	-0.628384	1.227651
С	0.120297	-0.628384	-1.227651
С	0.120297	-2.023150	1.208828
С	0.120297	-2.023150	-1.208828
С	0.119554	-2.710955	0.000000
Н	0.128668	-0.067861	2.151621
Н	0.128668	-0.067861	-2.151621
Н	0.123643	-2.561594	2.146678
Н	0.123643	-2.561594	-2.146678
Н	0.120945	-3.792343	0.000000
Mg	-0.427424	3.281642	0.000000
Н	-0.900810	4.865959	0.000000
	14		
PhCl—I	Mg+H. O.D.		
С	-0.137176	-0.424540	-0.294938
Cl	-1.887391	-0.757923	-0.493315
С	0.599351	-1.185317	0.607549
С	1.943759	-0.867541	0.778270
С	2.520765	0.183491	0.069763
С	0.415528	0.630248	-1.025954
С	1.763525	0.929587	-0.825793

	0 1 4 4 1 0 5	2 006002	1 1 4 4 0 7 6
н	0.144105	-2.006083	1.144976
Н	2.539219	-1.451310	1.467660
Н	3.567136	0.417071	0.213172
Н	-0.164889	1.155301	-1.775733
Н	2.215047	1.735441	-1.388929
Mg	-1.426407	1.245670	0.909398
Η	-1.732593	2.490668	1.959054
	14		
PhBr-	–Mg+H <i>,</i> O.D.		
С	0.227843	-0.360651	-0.000393
Br	-1.725772	-0.463376	-0.000503
С	0.895396	-0.312720	1.224314
С	2.284331	-0.199386	1.207429
С	2.972845	-0.141905	-0.000173
С	0.895332	-0.309355	-1.225007
С	2.284271	-0.196057	-1.207891
Н	0.356938	-0.393177	2.159391
Н	2.821762	-0.168171	2.145977
Н	4.051371	-0.058770	-0.000085
Н	0.356830	-0.387315	-2.160273
Н	2.821650	-0.162262	-2.146380
Mg	-0.580189	1.912281	0.002096
Н	-0.404394	3.560920	0.004124
	14		
PhI—	Mg+H, O.D.		
c	0 550277	0 227042	0.001.205

	-		
С	-0.559277	-0.327943	0.001285
I	1.590634	-0.265061	0.001147
С	-1.241897	-0.324623	1.223412
С	-1.242148	-0.338569	-1.220762
С	-2.635964	-0.331625	1.208093
С	-2.636064	-0.345454	-1.205050
С	-3.328318	-0.342346	0.001642
Н	-0.705673	-0.347593	2.163018
Н	-0.705913	-0.371731	-2.160022
Н	-3.173285	-0.337801	2.147388
Н	-3.173701	-0.362381	-2.144040
Н	-4.410041	-0.351038	0.001677
Mg	-0.141272	2.021597	-0.008619
Н	-0.577741	3.622959	-0.017089

	23		
PhF-	-miniNacNacM	g+, O.D., bent	
С	1.969149	-0.359099	-0.042484
F	0.593522	-0.798033	-0.097739
С	2.559009	-0.335213	1.194961
С	3.889084	0.080009	1.230781
С	4.546493	0.436299	0.058108
С	2.559480	-0.029364	-1.235197
С	3.889599	0.381728	-1.166538
Н	2.026891	-0.630446	2.088412

Н	4.404936	0.117114	2.180518
Н	5.579284	0.754332	0.098363
Н	2.027680	-0.093928	-2.174128
Н	4.405815	0.652907	-2.077289
Mg	-1.289796	-0.287845	-0.037109
Ν	-2.861747	-1.451254	-0.106126
Ν	-2.115072	1.481061	0.105551
С	-4.061921	-0.879107	-0.049880
С	-3.445363	1.545593	0.125216
С	-4.346392	0.483249	0.055466
Н	-5.393130	0.747298	0.086886
Н	-4.925582	-1.539466	-0.089814
Н	-3.889258	2.535645	0.204579
Н	-2.925220	-2.457787	-0.181098
Н	-1.692658	2.397555	0.169957

	= =		
PhCl—	miniNacNacM	g+, O.D., bent	
С	1.960374	-0.595296	0.000199
Cl	0.667480	-1.856266	0.000589
С	2.440591	-0.160041	1.221813
С	3.462637	0.784833	1.206621
С	3.969027	1.254457	-0.000357
С	2.440933	-0.161146	-1.221675
С	3.462974	0.783744	-1.207051
н	2.052072	-0.547739	2.153011
н	3.864250	1.143040	2.145056
н	4.767032	1.984684	-0.000575
н	2.052672	-0.549682	-2.152631
Н	3.864850	1.141102	-2.145698
Mg	-1.356452	-0.511588	-0.000147
Ν	-3.213612	-1.143514	-0.000243
Ν	-1.618311	1.430997	-0.000083
С	-4.185691	-0.235279	-0.000179
С	-2.865969	1.896329	-0.000047
С	-4.046336	1.153595	-0.000074
Н	-4.964583	1.722156	-0.000028
Н	-5.208450	-0.606444	-0.000214
Н	-2.989263	2.977369	0.000010
Н	-3.579063	-2.086626	-0.000332
Н	-0.937047	2.178149	-0.000063
	23		
PhBr—	-miniNacNacM	g+, O.D., bent	
C	1 055072	0 222020	0 000060

THD	minitacitacit	ig', 0.D., bene	
С	1.955973	-0.233929	-0.000060
Br	0.647115	-1.697603	-0.000257
С	2.406401	0.231476	1.221817
С	3.365166	1.241427	1.206587
С	3.839808	1.743839	0.000189
С	2.406034	0.232132	-1.221822
С	3.364803	1.242076	-1.206337
Н	2.045110	-0.176433	2.155027

Н	3.741951	1.624514	2.145652
Н	4.588506	2.524600	0.000286
Н	2.044462	-0.175274	-2.155143
Н	3.741306	1.625667	-2.145309
Mg	-1.521820	-0.296835	0.000319
Ν	-3.379720	-0.933582	0.000312
Ν	-1.798285	1.646011	0.000080
С	-4.356669	-0.030806	0.000105
С	-3.047419	2.106435	-0.000086
С	-4.224634	1.358672	-0.000088
Н	-5.145582	1.922859	-0.000245
Н	-5.377502	-0.407377	0.000083
Н	-3.175323	3.186999	-0.000235
Н	-3.740681	-1.878438	0.000431
Н	-1.120188	2.396087	0.000053

PhI-m	iniNacNacMg+,	O.D.,bent	
С	1.975122	0.110608	0.000044
I	0.662267	-1.591159	-0.000360
С	2.395445	0.614909	1.220302
С	3.279101	1.691318	1.206137
С	3.716989	2.227163	0.000547
С	2.394920	0.615920	-1.219975
С	3.278580	1.692320	-1.205299
Н	2.066024	0.189356	2.157444
Н	3.626209	2.100750	2.145718
Н	4.407449	3.059979	0.000739
Н	2.065112	0.191128	-2.157327
Н	3.625288	2.102531	-2.144689
Mg	-1.719321	-0.129105	0.000138
Ν	-3.576162	-0.777668	0.000983
Ν	-2.021240	1.812955	-0.000658
С	-4.562277	0.114898	0.000806
С	-3.273425	2.263346	-0.000561
С	-4.444258	1.505412	0.000093
Н	-5.370435	2.060965	0.000056
Н	-5.579323	-0.271951	0.001267
Н	-3.410498	3.342856	-0.001038
Н	-3.928341	-1.725845	0.001562
Н	-1.349157	2.568517	-0.001168
	23		
PhF—n	niniNacNacMg+,	O.D., linear	
С	0.000000	0.000000	-2.038537
F	0.000000	0.000000	-0.593762
~	~ ~ ~ ~ ~ ~ ~		

С	0.000000	1.224774	-2.653856
С	0.000000	-1.224774	-2.653856
С	0.000000	1.208126	-4.047664
С	0.000000	-1.208126	-4.047664
С	0.000000	0.000000	-4.736785
Н	0.000000	2.148134	-2.091964

Н	0.000000	-2.148134	-2.091964
Н	0.000000	2.145851	-4.586409
Н	0.000000	-2.145851	-4.586409
Н	0.000000	0.000000	-5.818220
Mg	0.000000	0.000000	1.347364
Ν	1.515493	0.000000	2.585561
Ν	-1.515493	0.000000	2.585561
С	1.253799	0.000000	3.890967
С	-1.253799	0.000000	3.890967
С	0.000000	0.000000	4.503156
Н	0.000000	0.000000	5.583199
Н	2.107849	0.000000	4.564934
Н	-2.107849	0.000000	4.564934
Н	2.509528	0.000000	2.399581
Н	-2.509528	0.000000	2.399581

	-		
PhCl-	-miniNacNacM	g+, O.D., linear	
С	0.000000	0.000000	2.444348
Cl	0.000000	0.000000	0.620200
С	0.000000	1.225471	3.074041
С	0.000000	-1.225471	3.074041
С	0.000000	1.206743	4.466918
С	0.000000	-1.206743	4.466918
С	0.000000	0.000000	5.157112
Н	0.000000	2.153787	2.522595
Н	0.000000	-2.153787	2.522595
Н	0.000000	2.146044	5.003612
Н	0.000000	-2.146044	5.003612
Н	0.000000	0.000000	6.238699
Mg	0.000000	0.000000	-1.805041
Ν	-1.515383	0.000000	-3.041353
Ν	1.515383	0.000000	-3.041353
С	-1.253742	0.000000	-4.346553
С	1.253742	0.000000	-4.346553
С	0.000000	0.000000	-4.958757
Н	0.000000	0.000000	-6.038768
Н	-2.108139	0.000000	-5.020118
Н	2.108139	0.000000	-5.020118
Н	-2.508818	0.000000	-2.852582
Н	2.508818	0.000000	-2.852582
	23		
PhBr-	-miniNacNacM	lg+, O.D., linear	
С	0.000000	0.000000	2.527066
Br	0.000000	0.000000	0.541332
С	0.000000	1.226726	3.152234
С	0.000000	-1.226726	3.152234

ы	0.000000	0.000000	0.541332
С	0.000000	1.226726	3.152234
С	0.000000	-1.226726	3.152234
С	0.000000	1.206490	4.546162
С	0.000000	-1.206490	4.546162
С	0.000000	0.000000	5.236215
Н	0.000000	2.156803	2.604338

Н	0.000000	-2.156803	2.604338
Н	0.000000	2.146592	5.081743
Н	0.000000	-2.146592	5.081743
Н	0.000000	0.000000	6.317820
Mg	0.000000	0.000000	-2.042777
Ν	-1.515283	0.000000	-3.279529
Ν	1.515283	0.000000	-3.279529
С	-1.253777	0.000000	-4.584678
С	1.253777	0.000000	-4.584678
С	0.000000	0.000000	-5.196931
Н	0.000000	0.000000	-6.276948
Н	-2.108364	0.000000	-5.258034
Н	2.108364	0.000000	-5.258034
Н	-2.508501	0.000000	-3.089782
Н	2.508501	0.000000	-3.089782

PhI—miniNacNacMg+, O.D., linear				
I	0.000000	0.000000	0.494692	
Mg	0.000000	0.000000	-2.314501	
Ν	0.000000	1.514976	-3.552441	
Ν	0.000000	-1.514976	-3.552441	
С	0.000000	0.000000	2.671214	
С	1.226403	0.000000	3.300501	
С	-1.226403	0.000000	3.300501	
С	1.205814	0.000000	4.695101	
С	-1.205814	0.000000	4.695101	
С	0.000000	0.000000	5.385403	
С	0.000000	1.253625	-4.857411	
С	0.000000	-1.253625	-4.857411	
С	0.000000	0.000000	-5.469852	
Н	2.159959	0.000000	2.758825	
Н	-2.159959	0.000000	2.758825	
Н	2.146583	0.000000	5.229936	
Н	-2.146583	0.000000	5.229936	
Н	0.000000	0.000000	6.467089	
Н	0.000000	0.000000	-6.549849	
Н	0.000000	2.108436	-5.530564	
Н	0.000000	-2.108436	-5.530564	
Н	0.000000	2.507984	-3.361503	
Н	0.000000	-2.507984	-3.361503	

PhF—n	PhF—miniNacNacMg+, Dispersion, bent				
С	1.881337	-0.543510	0.000031		
F	0.589998	-1.187430	0.000066		
С	2.435813	-0.273101	1.224332		
С	3.682577	0.349061	1.208122		
С	4.297895	0.657754	-0.000035		
С	2.435843	-0.273294	-1.224300		
С	3.682606	0.348870	-1.208158		
Н	1.939569	-0.540086	2.146666		

Н	4.168136	0.583279	2.145176
Н	5.266736	1.137370	-0.000061
Н	1.939621	-0.540425	-2.146603
Н	4.168187	0.582941	-2.145237
Mg	-1.228399	-0.478767	0.000023
Ν	-2.961858	-1.383082	0.000052
Ν	-1.769198	1.400457	-0.000057
С	-4.058756	-0.629478	0.000017
С	-3.072326	1.675073	-0.000074
С	-4.127696	0.763973	-0.000041
Н	-5.120311	1.188785	-0.000063
Н	-5.014111	-1.149273	0.000034
Н	-3.355205	2.725258	-0.000118
Н	-3.181377	-2.370089	0.000092
Н	-1.206814	2.240591	-0.000089

PhCl—I	PhCl—miniNacNacMg+, Dispersion, bent				
С	-1.741188	0.588300	-0.097091		
Cl	-1.082057	2.175934	-0.592358		
С	-1.758679	0.272376	1.259516		
С	-2.206738	-0.993712	1.627754		
С	-2.630586	-1.896887	0.660621		
С	-2.166446	-0.293347	-1.084280		
С	-2.614242	-1.547244	-0.686247		
Н	-1.460141	0.998791	2.003484		
Н	-2.232742	-1.260822	2.675250		
Н	-2.980938	-2.875905	0.957050		
Н	-2.155219	-0.004131	-2.125678		
Н	-2.956165	-2.248514	-1.435135		
Mg	0.746461	0.530232	-0.168573		
Ν	2.163405	0.811041	1.161822		
Ν	1.594576	-0.827634	-1.304644		
С	3.290657	0.114244	1.052348		
С	2.818515	-1.246872	-0.995644		
С	3.606282	-0.832238	0.077592		
Н	4.579069	-1.293383	0.159818		
Н	4.059790	0.296181	1.799825		
Н	3.264000	-1.996519	-1.646017		
н	2.187796	1.441772	1.951704		
н	1.240672	-1.282708	-2.135005		

	23		
PhBr	—miniNacNac№	lg+, Dispersion,	bent
С	1.601352	0.092692	0.055677
Br	1.390776	-1.829115	-0.192456
С	1.490679	0.616286	1.343333
С	1.582308	1.997599	1.497621
С	1.790667	2.815823	0.393984
С	1.819106	0.890541	-1.064075
С	1.911852	2.265176	-0.877962
Н	1.360173	-0.031432	2.199462

Н	1.500653	2.424266	2.487983
Н	1.864413	3.886554	0.525306
Н	1.920809	0.452191	-2.046710
Н	2.085944	2.903196	-1.733746
Mg	-0.830685	-0.366033	-0.059603
Ν	-2.207326	-0.650238	1.314714
Ν	-1.897129	0.556281	-1.428014
С	-3.444411	-0.221799	1.084009
С	-3.187126	0.780876	-1.195297
С	-3.910088	0.437740	-0.053499
Н	-4.955592	0.707286	-0.052960
Н	-4.184276	-0.401881	1.860986
Н	-3.750410	1.288001	-1.975720
Н	-2.130875	-1.108839	2.212589
Н	-1.614614	0.900177	-2.335652

PhI—miniNacNacMg+, Dispersion, bent				
I	-1.852232	-1.212406	-0.138539	
Mg	0.962262	-0.264999	0.021945	
Ν	2.234530	0.365842	-1.338619	
Ν	2.198749	-1.232062	1.209913	
С	-0.719713	2.967566	-0.794057	
Н	-0.725496	3.652763	-1.631202	
С	-0.729243	1.208878	1.373573	
Н	-0.776498	0.541997	2.224767	
С	4.115663	-0.687840	-0.198010	
Н	5.182682	-0.834098	-0.274202	
С	-0.235205	2.505175	1.521007	
Н	0.132609	2.823372	2.487056	
С	3.521514	0.055247	-1.217281	
С	-1.206613	1.677334	-0.970799	
Н	-1.581922	1.357672	-1.932547	
С	-0.230058	3.379036	0.441941	
Н	0.150717	4.383656	0.563719	
С	3.491001	-1.273878	0.903289	
С	-1.204921	0.805722	0.119283	
Н	4.194401	0.414974	-1.992863	
Н	2.056608	0.910942	-2.171079	
Н	1.997198	-1.748709	2.055420	
Н	4.143332	-1.824957	1.577439	

(PhF)2—miniNacNacMg+, Dispersion			
С	-0.522347	1.633201	-0.783372
F	0.193092	0.534426	-1.334826
С	0.196982	2.762044	-0.476052
С	-0.516921	3.826781	0.068033
С	-1.887755	3.719615	0.275881
С	-1.873431	1.470307	-0.603037
С	-2.562489	2.550499	-0.057925
Н	1.261390	2.816572	-0.654343

Н	0.004529	4.739181	0.322065
Н	-2.433295	4.553442	0.695462
Н	-2.368986	0.550480	-0.875395
Н	-3.629348	2.472264	0.099213
Mg	1.537680	-0.631921	-0.393655
Ν	3.297836	-1.063495	-1.173153
Ν	2.129844	0.191039	1.302608
С	4.398547	-0.789307	-0.484372
С	3.430008	0.257932	1.573266
С	4.480765	-0.188018	0.773448
Н	5.475139	-0.048706	1.170463
Н	5.349833	-1.056012	-0.940407
Н	3.718919	0.712239	2.518963
Н	3.511799	-1.498638	-2.060564
Н	1.575368	0.604009	2.040362
С	-1.172471	-2.020843	0.025853
F	0.194775	-2.137355	-0.319360
С	-1.467838	-1.620808	1.306615
С	-2.816423	-1.480652	1.624424
С	-3.792431	-1.744765	0.670164
С	-2.093141	-2.300826	-0.953860
С	-3.434963	-2.156222	-0.610062
Н	-0.686148	-1.439102	2.031228
Н	-3.096917	-1.172062	2.621866
Н	-4.837244	-1.639373	0.927479
Н	-1.781781	-2.620529	-1.938072
Н	-4.196524	-2.370777	-1.346997

(PhCl)2	-miniNacNacN	1g+, Dispersion	
С	0.113007	1.848878	-1.045882
Cl	0.226932	0.458512	-2.164177
С	1.176678	2.729618	-0.986361
С	1.091795	3.784661	-0.084794
С	-0.030463	3.930829	0.723055
С	-1.021585	1.964927	-0.264650
С	-1.082473	3.026347	0.631813
Н	2.044416	2.599639	-1.616596
Н	1.907746	4.491278	-0.018852
Н	-0.087428	4.755314	1.420503
Н	-1.832299	1.257825	-0.349803
Н	-1.960438	3.144291	1.252378
Mg	1.220247	-1.021994	-0.423118
Ν	3.031940	-1.785247	-0.643670
Ν	1.495662	-0.087645	1.299342
С	3.948843	-1.581098	0.294103
С	2.673599	-0.154467	1.906544
С	3.804748	-0.844709	1.471288
Н	4.673529	-0.791597	2.110203
Н	4.928514	-2.028352	0.137450
Н	2.784158	0.387721	2.843899
Н	3.395103	-2.346593	-1.402458

Н	0.845875	0.507775	1.794709
С	-1.897486	-1.698884	0.102940
Cl	-0.581879	-2.747457	-0.482815
С	-1.884612	-1.305258	1.430167
С	-2.922130	-0.493942	1.877734
С	-3.935299	-0.105490	1.008834
С	-2.888900	-1.329493	-0.789037
С	-3.919386	-0.522945	-0.317985
Н	-1.099127	-1.629652	2.097388
Н	-2.939785	-0.179575	2.912428
Н	-4.744239	0.516275	1.367345
Н	-2.865066	-1.664546	-1.815765
Н	-4.711072	-0.227393	-0.992870

(PhBr)2	2-miniNacNacN	/Ig+, Dispersion	
С	1.051140	1.847044	-0.822276
Br	0.570783	0.472639	-2.112737
С	2.385015	2.185732	-0.691094
С	2.718761	3.135012	0.269265
С	1.732796	3.710028	1.063147
С	0.041931	2.401961	-0.057454
С	0.400984	3.346597	0.898684
Н	3.144342	1.727159	-1.307348
Н	3.754516	3.421248	0.391687
Н	2.002757	4.447636	1.806523
Н	-0.989012	2.114597	-0.193984
Н	-0.369394	3.799447	1.508196
Mg	0.821560	-1.314790	-0.173094
Ν	2.189543	-2.743369	-0.273003
Ν	1.393320	-0.481524	1.531107
С	3.082404	-2.870509	0.700659
С	2.428003	-0.975658	2.197477
С	3.205780	-2.078153	1.843199
Н	4.004009	-2.339609	2.521636
Н	3.808820	-3.675564	0.607475
Н	2.715449	-0.472835	3.119212
Н	2.324552	-3.439657	-0.993908
Н	1.018034	0.347914	1.970856
С	-2.386784	-0.517558	0.369111
Br	-1.668342	-2.221348	-0.217447
С	-2.179472	-0.133165	1.683026
С	-2.716035	1.082037	2.097569
С	-3.439954	1.870317	1.210715
С	-3.098403	0.244552	-0.541121
С	-3.630497	1.453077	-0.102265
Н	-1.629006	-0.761296	2.368112
Н	-2.575489	1.400147	3.121824
Н	-3.864042	2.807615	1.544264
Н	-3.244740	-0.090269	-1.557538
Н	-4.198991	2.062140	-0.791999

	35		
(PhI)2-	-miniNacNacMg	s+, Dispersion	
С	-2.232113	-0.897706	-0.536523
I	-1.041153	-0.055510	-2.094930
С	-3.473744	-0.342465	-0.274224
С	-4.209766	-0.858716	0.787349
С	-3.700825	-1.898164	1.557439
С	-1.700283	-1.938366	0.207235
С	-2.452739	-2.436775	1.266070
н	-3.863225	0.471766	-0.867683
н	-5.183219	-0.441692	1.007768
н	-4.280861	-2.293171	2.380416
н	-0.730228	-2.353309	-0.018957
н	-2.056475	-3.251745	1.856961
Mg	0.000298	1.566523	0.029642
N	-0.306259	3.525076	0.067874
N	-0.883698	1 108447	1 745406
C	-0.936996	4 077098	1 096944
C C	-1 432230	2 058518	2 488483
C C	-1.452230	2.038318	2.400403
с ц	-1.454554	1 052562	2.210302
	1.077704	4.053502 5 156121	1 072/00
п	1 026775	1 751250	2 100 101
п u	-1.920775	1.751550	0.621120
	-0.043805	4.21/224	-0.021139
	-1.055257	1 102595	2.151220
L I	2.102892	-1.193585	0.502229
I C	2.738820	0.744223	-0.110/0/
C	1./1/008	-1.3/6/6/	1.822364
C	1.333024	-2.652082	2.225124
C	1.343335	-3.708268	1.321831
C	2.114840	-2.22/501	-0.422055
C	1./31526	-3.495962	0.0036/1
Н	1./25418	-0.55/130	2.526126
Н	1.039068	-2.815580	3.253399
Н	1.055722	-4.699338	1.645720
Н	2.421912	-2.062225	-1.444433
Н	1.745233	-4.316914	-0.700704
	11		
miniNa	cNacMg+_nackt	, Dispersion	
Mg	0.000000	0.000000	1.576089
Ν	0.000000	1.536791	0.399662
Ν	0.000000	-1.536791	0.399662
С	0.000000	1.257865	-0.905705
С	0.000000	-1.257865	-0.905705
С	0.000000	0.000000	-1.508670
Н	0.000000	0.000000	-2.588425
Н	0.000000	2.107663	-1.583815
Н	0.000000	-2.107663	-1.583815
Н	0.000000	2.530606	0.584103
Н	0.000000	-2.530606	0.584103

	23		
miniNa	cNacMg+Benze	ene, Dispersion	
С	-2.002663	1.233998	0.707455
Mg	0.176186	0.135064	-0.000016
Ν	1.302376	-1.479343	-0.000063
Ν	1.599262	1.497945	0.000002
С	2.627134	-1.362969	-0.000022
С	2.874987	1.123177	-0.000027
С	3.366457	-0.181446	-0.000010
Н	-1.916698	2.164241	1.253083
Н	4.440764	-0.288663	-0.000002
С	-2.128517	0.023875	1.399466
С	-2.256049	-1.174491	0.691339
С	-2.255341	-1.167056	-0.704221
С	-2.002058	1.241488	-0.694431
С	-2.127160	0.038826	-1.399441
Н	-2.132675	0.018493	2.481239
Н	-2.352931	-2.108808	1.227461
Н	-2.351674	-2.095596	-1.250390
Н	-1.915612	2.177481	-1.230059
Н	-2.130384	0.044989	-2.481217
Н	3.206237	-2.283950	-0.000046
Н	1.013463	-2.448341	-0.000161
Н	3.624725	1.911505	-0.000009
Н	1.508343	2.505245	0.000069

Benzene, Dispersion

Н	0.000000	0.000000	2.473025
С	0.000000	0.000000	1.390436
С	0.000000	1.204158	0.695218
С	0.000000	1.204158	-0.695218
С	0.000000	0.000000	-1.390436
С	0.000000	-1.204158	0.695218
С	0.000000	-1.204158	-0.695218
Н	0.000000	2.141706	1.236519
Н	0.000000	2.141706	-1.236518
Н	0.000000	0.000000	-2.473025
Н	0.000000	-2.141706	1.236519
Н	0.000000	-2.141706	-1.236518
	12		
PhF, Dispersion			

r.m.,	Dispersion		
F	0.000000	0.000000	2.276125
С	0.000000	0.000000	0.925138
С	0.000000	1.212373	0.258992
С	0.000000	1.203258	-1.131240
С	0.000000	0.000000	-1.828077
С	0.000000	-1.212373	0.258992
С	0.000000	-1.203258	-1.131240
Н	0.000000	2.134308	0.823871
Н	0.000000	2.142197	-1.669243

Н	0.000000	0.000000	-2.909774
Н	0.000000	-2.134308	0.823871
Н	0.000000	-2.142197	-1.669243
	12		
PhCl, D	ispersion		
Cl	0.000000	0.000000	2.250381
С	0.000000	0.000000	0.504683
С	0.000000	1.209727	-0.176324
С	0.000000	1.202052	-1.565790
С	0.000000	0.000000	-2.263509
С	0.000000	-1.209727	-0.176324
C	0.000000	-1.202052	-1.565790
Н	0.000000	2.139096	0.375356
н	0.000000	2.142278	-2.101751
Н	0.000000	0.000000	-3.345352
н	0.000000	-2.139096	0.375356
н	0.000000	-2 142278	-2 101751
	0.000000	2.172270	2.101/51
	12		
PhBr D)isnersion		
Rr	0 000000	0 00000	1 805198
C	0.000000	0.000000	-0 104504
C C	0.000000	1 210317	-0.104504
C C	0.000000	1.210317	-0.785520
C C	0.000000	0.00000	-2.175005
C C	0.000000	1 210217	-2.870918
C C	0.000000	-1.210517	-0.785320
с u	0.000000	-1.202140	-2.175005
п	0.000000	2.141900	-0.230033
п	0.000000	2.142402	-2.709477
	0.000000	0.000000	-3.952790
н	0.000000	-2.141960	-0.236035
н	0.000000	-2.142482	-2.709477
	10		
	12		
Phi, Dis	spersion	0.00000	0 000007
I C	1.549383	0.000000	-0.000007
C	-0.561437	0.000021	0.000019
C	-1.245595	-1.209496	0.000033
C	-2.635979	-1.201835	0.000000
C	-3.333662	-0.000015	-0.000043
C	-1.245620	1.209510	0.000033
C	-2.636011	1.201816	0.000000
Н	-0.704556	-2.145103	0.000090
Н	-3.171323	-2.142602	0.000004
Н	-4.415592	-0.000027	-0.000092
Н	-0.704608	2.145135	0.000090
Н	-3.171372	2.142573	0.000004
	100		
	102		

tBuBDIMg+Benzene, Dispersion				
Mg	0.003002	-0.672579	0.180759	

Ν	1.507980	0.582423	-0.111186
Ν	-1.487255	0.596849	-0.110556
С	-1.277454	1.852498	-0.508768
С	1.314592	1.860515	-0.435861
С	2.719440	-0.108288	0.198768
С	-2.717555	-0.115317	0.034579
С	0.021265	2.384818	-0.622624
н	0.026478	3.412102	-0.924453
С	3.173448	-0.112337	1.534314
С	3.307196	-0.938377	-0.772539
С	-3.174615	-0.883002	-1.055765
C	-3.329654	-0.211740	1.296438
C	2.454018	2.884880	-0.716345
C	2.900078	-0.872052	-2.236165
Н	2.102279	-0.133396	-2.323139
C	-2.401992	2.872514	-0.857746
C	2,586630	0.852020	2.556221
н	2.299946	1,755133	2.017308
C	4 323337	-1 806330	-0 374037
н	4 793237	-2 447281	-1 108777
C	-2 515210	-0 739359	-2 418783
н	-2 102492	0 267562	-2 474225
C	A 188259	-0 998537	1 882260
н	4.100200	-1 018063	2 897763
C	-3 83/8/7	2 323264	-0.912022
н	-3 961232	1 563507	-1 679493
н	-// /97330	3 151820	-1 165096
ц	-4.437330	1 012670	0.021//0
C C	4.170172	1.912079	0.031449
с u	4.732000 E E40091	2 524046	1 22/102
C C	2 202706	2.334040	0.200251
с u	3.002/30	2.455545	-0.380331
п	4.025115	2.240010	0.000/39
	4.559109	3.242069	-0.036322
	4.194005	1.550299	-0.920405
	2.418/8/	3.202900	-2.22/351
н	2.594477	2.303887	-2.819582
	3.204040	3.920970	-2.400035
н С	1.405721	3.627900	
	-4.399089	-1.094806	1.445452
H	-4.891155	-1.174680	2.405972
C	-4.239295	-1./55055	-0.856350
H	-4.612451	-2.344383	-1.682464
C	4.064931	-0.401988	-3.118933
н	4.460916	0.557821	-2.790215
H	3./35318	-0.294367	-4.153649
Н	4.884610	-1.121965	-3.103921
C	2.210009	4.177607	0.090832
н	1.298060	4.696898	-0.193906
H	3.041602	4.863470	-0.0/4749
Н	2.15/789	3.968599	1.160639
C	-4.847552	-1.868584	0.387081
Н	-5.679038	-2.546988	0.524275

С	-2.128837	3.481292	-2.250822
Н	-1.208128	4.057805	-2.295375
н	-2.947976	4.151573	-2.513753
н	-2.076032	2.703071	-3.014238
С	2.358879	-2.208090	-2.756337
Н	3.119531	-2.989111	-2.705344
Н	2.051391	-2.114158	-3.798986
н	1.498362	-2.551194	-2.183356
С	-2.872342	0.622846	2.480718
н	-2.026585	1.228022	2.152485
С	-0.069756	-2.621605	1.525545
н	-0.073634	-1.968902	2.391874
С	-1.346571	-1.713503	-2.594133
н	-0.576695	-1.603758	-1.817868
н	-0.834571	-1.551020	-3.542834
н	-1.681770	-2.749080	-2.551169
С	-2.372347	3.987018	0.209550
Н	-2.559691	3.581435	1.204252
н	-3.151820	4.719257	-0.006769
Н	-1.416974	4.507618	0.234335
С	-1.284330	-3.111543	1.019562
Н	-2.224517	-2.752170	1.414456
C	1.309082	0.312873	3.210486
н	0.490651	0.232693	2.490569
Н	0.957736	0.991376	3.988907
н	1.478121	-0.664335	3.666826
C	1.155166	-3.093639	1.024601
н	2.089345	-2.727619	1.429615
C	3.590155	1.270437	3.633278
H	3.823880	0.451262	4.315131
н	3.173526	2.081018	4.232186
н	4.524733	1.619546	3,193351
C	-1.265423	-4.072294	0.017208
н	-2,198343	-4.454592	-0.372957
C	-0.051951	-4.545050	-0.473642
н	-0 044408	-5 299793	-1 248981
C	1,152954	-4.053696	0.019327
н	2.091856	-4.422114	-0.368632
C	-3,492157	-0.892313	-3.587094
н	-3 864907	-1 913456	-3 678887
н	-2 995184	-0 642072	-4 525257
н	-4 350624	-0 230502	-3 471244
C	-3 973592	1 578841	2 959716
н	-4 321834	2 229402	2 158858
н	-3 601669	2 209395	3 768939
н	-4 835656	1 027063	3 337725
C	-2.400092	-0.251589	3,648949
н	-3 216190	-0 857947	4 044439
н	-2.022442	0.368489	4,463063
ц	-1 601891	-0.932566	2 252007

tBuBDIMg+	nackt,	Dispe	rsion
-----------	--------	-------	-------

Mg	-0.033119	-1.096179	0.522602
N	-1.525640	0.156018	0.369247
N	1.442893	0.026788	-0.138154
С	1.176159	1.228914	-0.658888
С	-1.323018	1.429688	0.008350
С	-2.738549	-0.583419	0.453961
С	2.706040	-0.630254	-0.027377
С	-0.072235	1.860679	-0.464341
Н	-0.077426	2.880854	-0.795919
С	-3.503602	-0.823020	-0.709950
С	-3.037322	-1.259000	1.655036
С	3.665700	-0.192291	0.901126
С	2.887496	-1.836744	-0.734348
С	-2.380519	2.563892	0.161937
С	-2.215365	-1.140662	2.933779
Н	-2.697099	-1.819367	3.639092
С	2.139566	2.024603	-1.589421
С	-3.096805	-0.223914	-2.046499
н	-2.688368	0.765590	-1.860951
С	-4.153735	-2.095019	1.692293
н	-4.403012	-2.596529	2.619145
С	3.421633	1.020051	1.780932
н	2.647118	1.625871	1.315535
С	-4.606910	-1.664780	-0.617459
н	-5.214416	-1.842175	-1.493038
С	3.467695	1.337867	-1.937517
н	4.142592	1.253483	-1.092177
н	3.966948	1.943841	-2.694337
н	3.324406	0.344511	-2.358861
С	-4.945592	-2.288906	0.574408
н	-5.812159	-2.933950	0.624847
С	-3.773895	2.110482	0.617093
н	-4.299629	1.537623	-0.141920
н	-4.368353	3.001364	0.822511
н	-3.745454	1.520399	1.529040
С	-1.834453	3.518996	1.250760
н	-1.712807	3.005169	2.204484
н	-2.541621	4.336115	1.399729
н	-0.873018	3.946982	0.973812
С	4.070252	-2.547494	-0.569136
н	4.236242	-3.459096	-1.125458
С	4.833575	-0.940367	1.041014
н	5.591129	-0.612537	1.739397
С	-0.764277	-1.656000	2.812715
н	-0.689636	-2.510544	2.118889
н	-0.391811	-2.044977	3.760231
н	-0.059718	-0.839943	2.584286
С	-2.558683	3.368837	-1.140709
н	-1.644825	3.865526	-1.460406
н	-3.307941	4.143953	-0.975406
н	-2.909043	2.744422	-1.962034

С	5.048699	-2.094390	0.304767
Н	5.969516	-2.649472	0.422117
С	2.468024	3.404338	-0.987486
Н	1.581254	4.013283	-0.821788
н	3.116843	3.948153	-1.675416
н	2.995611	3.310272	-0.039166
С	-2.221399	0.250614	3.571907
н	-1.714939	0.974809	2.936904
н	-1.713648	0.230801	4.538171
Н	-3.241864	0.593394	3.737244
С	1.752628	-2.356700	-1.600041
Н	1.263475	-1.488437	-2.043743
С	2.879123	0.573385	3.146092
Н	1.963539	-0.012103	3.035314
н	2.651354	1.435692	3.774764
н	3.606824	-0.048943	3.669744
С	1.394203	2.217612	-2.932944
н	1.130379	1.252918	-3.370909
н	2.047632	2.737533	-3.634480
н	0.481179	2.798291	-2.827105
С	-1.969340	-1.042784	-2.691500
Н	-1.062498	-1.007960	-2.084464
н	-1.710040	-0.636848	-3.670360
н	-2.266663	-2.085064	-2.822479
С	-4.256926	-0.046913	-3.026377
н	-4.638279	-1.002907	-3.388365
н	-3.920793	0.516634	-3.897511
н	-5.085402	0.497278	-2.571402
С	4.656218	1.908411	1.953182
Н	5.439275	1.410873	2.526450
н	4.389446	2.818423	2.492459
н	5.079082	2.197377	0.990453
С	2.176633	-3.266966	-2.750441
Н	2.899824	-2.764743	-3.392298
Н	1.311093	-3.532632	-3.359285
н	2.625011	-4.194453	-2.392451
C	0.703304	-3.084194	-0.706435
Н	0.762816	-4.167595	-0.810683
Н	-0.338656	-2.838912	-0.963099
Н	0.917244	-2.955063	0.371116
	0.01/211	2.5555666	01071110
	103		
tBuBDI	Mg+PhI. Dispe	rsion	
1	0.273494	-2.637216	1.144085
Mg	-0.084924	-0.121411	0.070138
N	0.797577	1.628504	-0.068882
N	-1 937355	0 412446	-0 306912
C	2,201634	1.482723	0.157569
c	3.031089	1.138031	-0.929277
C	4.394421	-2.526272	-0.284512
H	5.290788	-1.981185	-0.025853
С	-3.239004	-0.947838	1.246819
		-	-

С	2.704954	1.511919	1.469326
С	-3.130857	0.140346	2.303604
Н	-3.139011	1.099426	1.786181
С	4.061886	1.250440	1.663867
н	4.471497	1.291005	2.664659
С	-2.758477	-0.729086	-0.061020
С	4.378314	0.899492	-0.687932
н	5.035611	0.661511	-1.512137
С	2.067642	-3.917029	-0.950896
Н	1.164558	-4.452030	-1.205995
С	-1.275915	2.679695	-0.667495
Н	-1.677739	3.632241	-0.947495
С	3.246835	-4.144493	-1.652301
Н	3.252903	-4.866952	-2.457404
С	0.113804	2.717058	-0.434005
С	3.226832	-2.278820	0.430680
н	3.220339	-1.544755	1.223406
С	-2.863414	-1.724973	-1.047119
C	4.406220	-3.453551	-1.318565
H	5.320304	-3.639553	-1.865954
С	1.823997	1.837223	2.662503
Н	0.818201	2.031583	2.288025
C	-2.257134	1.668848	-0.605090
C	2.259478	4.248476	-0.482618
Н	2.637931	3.933575	0.484254
Н	2.524070	5.299013	-0.609123
Н	2.783671	3.688253	-1.252650
C	2.091195	-2.988661	0.078640
C	-3.689383	2,144465	-0.977864
C	2.444458	1.009153	-2.324273
Н	1.607043	1.702973	-2.397317
C	-3.456091	-2.939166	-0.704745
Н	-3.555638	-3.712268	-1.455529
C	4.897684	0.963261	0.598315
Н	5.951927	0.787036	0.767629
C	0.732634	4,137225	-0.605257
C	-2.346903	-1.508310	-2.459009
Н	-1.935839	-0.499058	-2.509901
C	-3.811564	-2.181490	1.542994
н	-4.193262	-2.368335	2,536989
C	-3.918837	-3,175130	0.578591
н	-4.372399	-4.125074	0.827874
C	1.747624	0.651567	3,633129
н	1.399657	-0.256821	3,137471
н	1 062966	0.868536	4 454222
н	2 725843	0.433626	4 064555
C	-1 802893	0.058842	3 065015
н	-1.681177	-0.912702	3,547521
н	-1.745403	0.829705	3.834724
н	-0.943529	0.220645	2.408567
C	-4.303846	0.147867	3.286633
H	-5.260290	0.160817	2.763183

Н	-4.251808	1.034017	3.920419
Н	-4.292263	-0.722178	3.944746
С	2.291542	3.100522	3.395972
Н	3.283478	2.962686	3.828891
Н	1.605118	3.342547	4.208986
Н	2.337702	3.958909	2.726423
С	0.376469	4.688472	-2.002992
Н	0.750382	4.029894	-2.788944
Н	0.847761	5.663465	-2.132765
Н	-0.692323	4.818734	-2.154542
С	3.423773	1.359011	-3.445817
Н	3.865455	2.343696	-3.290683
Н	2.905043	1.368202	-4.405238
Н	4.234946	0.633466	-3.522353
С	-4.810991	1.113966	-0.789938
Н	-4.667961	0.216841	-1.383599
Н	-5.744841	1.574477	-1.114632
Н	-4.939785	0.818370	0.248345
С	-4.076497	3.375262	-0.132569
Н	-4.038677	3.146524	0.933795
Н	-5.098876	3.667913	-0.374741
Н	-3.438523	4.237178	-0.313838
С	-3.666080	2.526149	-2.474158
Н	-2.956564	3.324097	-2.684730
Н	-4.657853	2.863267	-2.779533
Н	-3.399311	1.665791	-3.090264
С	1.888694	-0.403594	-2.542519
Н	2.674295	-1.155220	-2.468520
Н	1.401727	-0.496045	-3.513559
Н	1.132208	-0.679567	-1.795169
С	0.122411	5.044128	0.485282
Н	-0.959820	5.120310	0.402953
Н	0.540674	6.048202	0.399568
Н	0.357373	4.666089	1.481268
С	-1.220891	-2.492142	-2.802996
Н	-0.396530	-2.434277	-2.089659
Н	-0.817994	-2.286759	-3.795913
Н	-1.582962	-3.521466	-2.794807
С	-3.470855	-1.597476	-3.498807
Н	-3.912815	-2.594777	-3.519058
Н	-3.083636	-1.384191	-4.496565
Н	-4.268007	-0.885319	-3.286765
	103		
tBuBD)IMg+PhBr, Di	ispersion	
Br	0 202715	-2 528405	1 200522

tBuBDIMg+PhBr, Dispersion				
Br	0.203715	-2.538405	1.290532	
Mg	-0.074018	-0.264052	0.141439	
Ν	0.909117	1.418522	-0.104929	
Ν	-1.894657	0.348209	-0.256600	
С	2.305568	1.210596	0.118832	
С	3.106042	0.767186	-0.953861	
С	4.141414	-2.916876	-0.042204	

Н	5.087322	-2.433542	0.154813
С	-3.281749	-0.833453	1.370245
С	2.821796	1.282548	1.423881
С	-3.079702	0.295271	2.368928
н	-3.039369	1.227778	1.805937
C	4.164700	0.959832	1.623835
н	4 584883	1 031220	2 618485
C	-2 785228	-0 724548	0.055266
c	4 440668	0.468775	-0 708144
н	5 077588	0.400773	-1 522622
C C	1 697120	1 150625	0 550400
с u	0.722605	-4.130023	0.330403
п С	1 107075	-4.020409	-0.755624
	-1.10/8/5	2.549007	-0.751138
H	-1.45/4/0	3.506099	-1.083080
C	2.834126	-4.56/631	-1.216696
Н	2.766192	-5.3/6596	-1.931342
С	0.282859	2.522181	-0.526655
С	3.008825	-2.478084	0.636713
Н	3.072651	-1.662313	1.341983
С	-2.960335	-1.763013	-0.874539
С	4.055855	-3.954159	-0.961998
Н	4.943628	-4.287863	-1.481727
С	1.969097	1.713891	2.603858
Н	0.972914	1.945552	2.225151
С	-2.144743	1.601279	-0.626859
С	2.509062	3.929959	-0.666762
Н	2.875753	3.647417	0.314556
Н	2.828497	4.956540	-0.850217
Н	2.998178	3.302390	-1.407302
С	1.815258	-3.115704	0.358688
С	-3.549460	2.137841	-1.021872
С	2.503003	0.604709	-2.338561
Н	1.715374	1.350473	-2.446289
С	-3.645087	-2.907817	-0.470206
Н	-3.800579	-3.712169	-1.177453
С	4.974146	0.571365	0.569914
Н	6.018919	0.347619	0.741693
С	0.977699	3.894808	-0.778236
С	-2.424634	-1.662767	-2.292134
Н	-1.961244	-0.681289	-2.402460
С	-3.953399	-1.998286	1.727950
н	-4.351957	-2.100165	2.727472
С	-4.134275	-3.032359	0.818928
Н	-4.663064	-3.928054	1.116216
С	1.834262	0.582243	3.631110
н	1.429509	-0.327594	3,183415
н	1 170931	0.877293	4 445248
н	2.802364	0.329201	4.066185
C	-1.740429	0.160516	3,103397
н	-1.665892	-0.797971	3,619712
н	-1.615732	0.955509	3,839879
н	-0.889041	0.246285	2.421814
••	0.000011	0.2.0200	0_

С	-4.222407	0.426904	3.378045
Н	-5.189796	0.478384	2.877578
Н	-4.095761	1.336834	3.965931
Н	-4.249251	-0.409736	4.077702
С	2.510741	2.983430	3.272702
Н	3.496309	2.812373	3.708280
н	1.843976	3.302559	4.075354
Н	2.599674	3.804127	2.561421
С	0.642855	4.387652	-2.202793
Н	0.974607	3.667494	-2.952827
Н	1.165981	5.326603	-2.387873
Н	-0.418181	4.568111	-2.357187
С	3.497302	0.826213	-3.479458
Н	4.008967	1.783481	-3.376682
Н	2.973879	0.823467	-4.436312
Н	4.254190	0.041543	-3.521310
С	-4.729708	1.187288	-0.778447
Н	-4.642673	0.252675	-1.323265
Н	-5.635234	1.685177	-1.127296
Н	-4.872409	0.955767	0.274119
С	-3.859870	3.432378	-0.242405
Н	-3.830827	3.258364	0.834497
Н	-4.864418	3.771354	-0.498303
Н	-3.173282	4.244599	-0.469771
С	-3.511443	2.437632	-2.536523
Н	-2.759758	3.182291	-2.791108
Н	-4.484330	2.812916	-2.857599
Н	-3.296179	1.532052	-3.106231
С	1.848212	-0.774740	-2.482004
Н	2.576129	-1.575935	-2.355945
Н	1.363841	-0.887490	-3.452206
Н	1.064807	-0.948075	-1.732129
С	0.425198	4.892262	0.263047
Н	-0.651878	5.022403	0.181390
Н	0.896380	5.865876	0.119857
Н	0.646917	4.557682	1.277487
С	-1.347879	-2.722802	-2.556936
Н	-0.529065	-2.659463	-1.837376
Н	-0.923720	-2.605380	-3.555310
Н	-1.762802	-3.729476	-2.484571
С	-3.542224	-1.759806	-3.337609
Н	-4.034339	-2.732867	-3.303258
Н	-3.136199	-1.627301	-4.341882
Н	-4.303857	-0.996802	-3.177958
	103		

tBuBDIMg+PhCl, Dispersion				
Cl	-0.197957	2.451096	1.484172	
Mg	0.067835	0.379535	0.258683	
Ν	-0.985170	-1.234580	-0.121121	
Ν	1.862005	-0.269655	-0.189934	
С	2.797715	0.744128	0.183745	

С	-0.400419	-2.330674	-0.616642
С	0.989576	-2.399503	-0.834309
С	-2.374864	-0.984433	0.100855
С	-3.142074	-0.436986	-0.947747
С	-2.910520	-1.122421	1.392712
С	3.295743	0.754561	1.502316
С	2.063187	-1.504397	-0.642942
С	-4.464980	-0.095139	-0.694552
Н	-5.077535	0.301210	-1.491844
С	-1.147816	-3.653888	-0.964779
С	-2.516632	-0.213532	-2.314021
н	-1.764465	-0.988081	-2.464077
С	3.028736	1.820876	-0.688053
С	-2.857884	2.626622	0.860039
Н	-2.997796	1.744796	1.468245
С	-5.017963	-0.257800	0.568931
н	-6.053397	0.002252	0.745857
С	-1.382343	4.312049	-0.107456
н	-0.388505	4.719721	-0.217976
С	-2.091792	-1.669902	2.548417
н	-1.104903	-1.927190	2.161964
С	-2.680574	-3.633729	-0.868921
Н	-3.046655	-3.403496	0.126193
Н	-3.038840	-4.631776	-1.124062
Н	-3.136023	-2.938459	-1.569363
С	-4.240180	-0.753791	1.601548
Н	-4.675642	-0.872810	2.584982
C	3.025431	-0.412340	2.439114
н	2,953904	-1.313408	1.829457
C	-1.612457	3.193107	0.672288
C	-3.936377	3.228429	0.220290
н	-4.921603	2.803796	0.347377
C	3.447331	-2.072264	-1.066820
C	-2.476700	4.892322	-0.737655
н	-2.329870	5,769600	-1.352700
C	-3.748154	4.352813	-0.573412
н	-4.594589	4.813024	-1.064635
C	3,774421	2,902982	-0.222907
н	3 974292	3 735158	-0 885395
C	2,492199	1.826257	-2.108755
н	1 986634	0 874182	-2 276004
C	4 032245	1 857949	1 920963
н	4 435083	1 883240	2 923525
c	4 271059	2 928190	1 069076
н	4 849486	3 775114	1 413203
C	-1.910575	-0.612989	3,645911
н	-1 455488	0 301609	3 260229
н	-1 271851	-0 991772	<u>Δ</u> ΔΔΔΩ11
н	-2.869333	-0.338307	4.088479
C	1.680122	-0.251744	3,157970
н	1.633261	0.689426	3.707796
н	1.510823	-1.068257	3.861195

Н	0.836145	-0.281403	2.461404
С	4.140582	-0.646151	3.460318
н	5.114410	-0.716131	2.974870
н	3.962104	-1.577913	3.998401
Н	4.190425	0.152208	4.202199
С	4.666641	-1.195005	-0.750371
н	4.628578	-0.222880	-1.231211
н	5.552220	-1.709699	-1.125074
н	4.808204	-1.042002	0.316645
С	1.462186	2.945014	-2.307813
Н	0.638572	2.869746	-1.594835
н	1.036589	2.908999	-3.311838
н	1.918543	3.926813	-2.171270
С	3.694577	-3.430162	-0.377262
н	3.657121	-3.330919	0.708845
н	4.688317	-3.790894	-0.645152
н	2.979898	-4.196142	-0.669265
С	-2.702328	-2.950099	3.131829
Н	-3.682185	-2.757866	3.571375
н	-2.059829	-3.352426	3.916668
Н	-2.825084	-3.718643	2.369110
С	-3.508050	-0.312201	-3.474478
Н	-4.066754	-1.247767	-3.438015
Н	-2.974579	-0.273665	-4.424971
Н	-4.225404	0.509838	-3.471459
С	-0.817083	-4.067288	-2.415251
н	-1.110142	-3.287010	-3.119871
н	-1.376271	-4.969594	-2.665567
н	0.237239	-4.281907	-2.571869
С	-0.647973	-4.738201	0.014633
Н	0.423855	-4.906842	-0.065848
Н	-1.156448	-5.680421	-0.195378
Н	-0.867685	-4.460687	1.046629
С	3.409774	-2.264566	-2.598774
Н	2.626281	-2.953272	-2.908975
Н	4.366997	-2.662612	-2.938986
Н	3.242899	-1.312687	-3.105674
С	-1.793768	1.138120	-2.362634
Н	-2.481500	1.964723	-2.185036
Н	-1.299315	1.290805	-3.322199
Н	-1.005881	1.219255	-1.602332
С	3.613889	1.936630	-3.148410
Н	4.145175	2.885429	-3.060596
Н	3.203755	1.877261	-4.157988
Н	4.343779	1.135580	-3.032849
Н	1.302954	-3.345313	-1.226952

tBuBDIMg+--PhF, DispersionN1.662096-0.6317030.004818N-1.310396-1.0163150.066548C1.623334-1.874684-0.464043

С	0.394916	-2.552220	-0.638183
Н	0.518063	-3.551109	-1.005033
С	-0.955424	-2.193695	-0.460632
С	2.754122	0.247523	0.268728
С	3.221693	0.321738	1.599726
С	2.872832	-2.702781	-0.871271
С	3.184514	1.167180	-0.703160
С	-2.592361	-0.388596	0.084996
С	4.100109	2.147903	-0.321132
н	4.455835	2.854562	-1.059524
С	4.228761	-2.074665	-0.520906
н	4.404483	-1.126526	-1.015807
н	5.010918	-2.761862	-0.845393
н	4.353150	-1.926422	0.550105
С	4.568703	2.232319	0.978394
Н	5.280443	2,999665	1.252070
C	2.700035	1.115867	-2.141627
н	1.973954	0.306023	-2.219224
C	1 281198	-0 449189	3 078920
н	1.023699	0.615627	3.066702
н	1 111643	-0 776166	4 104727
н	0 568749	-1 055564	2 501332
C	-3 246323	-0 210815	1 317277
c C	-1 959690	-3 331420	-0 814011
c c	4 130912	1 320755	1 930434
н	4 515286	1 389639	2 937343
Ċ	-2 733002	-0.857692	2.557545
н	-1 859867	-1 /157357	2.332330
C	2 7/15210	-0 692506	2.527570
ч	2.745210	-1.673098	2.055050
C C	-2 250615	0.050970	-2 108368
с ц	-2.330013	-0 033673	-2.408308
с С	2 002254	0.922092	1 001226
C C	-3.032234 2.034650	2 016505	-1.091330
с u	2.024030	-2.910393	-2.396033
п u	2 602960	-3.433744	-2.705607
п U	2.092000	-5.495950	-2.715550
п С	2.044072	-1.904569	-2.926701
	2.838242	-4.072093	-0.157450
	2.790897	-3.948899	0.920103
н	3.752638	-4.618297	-0.391547
н с	2.000166	-4.694488	-0.461864
C	-2.300311	0.192085	3.624901
H	-1.568052	0.896173	3.221006
н	-1.861478	-0.284146	4.503078
Н	-3.152304	0.785632	3.959164
L 	3.846916	0.818811	-3.118022
H	4.584805	1.622612	-3.111569
H	3.462528	0./29586	-4.135465
Н	4.364601	-0.10/007	-2.8/2020
C 	1.99/177	2.41/078	-2.547222
Н	1.156734	2.645781	-1.894037
Н	1.618625	2.343544	-3.567596

Н	2.685477	3.263171	-2.510972
С	3.644910	-0.774943	3.868859
Н	4.685537	-0.937790	3.589473
Н	3.331078	-1.607423	4.499433
Н	3.593110	0.132296	4.473365
С	-3.255792	0.129868	-3.638589
н	-4.090830	-0.567592	-3.561758
Н	-2.684648	-0.123774	-4.532451
Н	-3.664080	1.130416	-3.789932
С	-4.409627	0.558782	1.353205
Н	-4.930453	0.692925	2.292224
С	-1.222589	1.092054	-2.513059
Н	-1.613694	2.109284	-2.469199
н	-0.675281	0.974434	-3.448965
н	-0.498076	0.972414	-1.705879
C	-4.260986	0.957898	-1.007355
Н	-4.668720	1.410509	-1.899911
C	-3,760231	-1.819871	3,201616
н	-4.661748	-1.290959	3,513709
н	-3.343644	-2.315151	4.080215
н	-4.055030	-2.588512	2.487346
C	-4.919478	1,136916	0.203026
н	-5 829611	1 720370	0 244893
C	-1 686646	-3 882646	-2 227569
Н	-1.782044	-3.099583	-2.981127
н	-2.420603	-4.656034	-2.457215
н	-0.700112	-4.328661	-2.330668
C	-1.736607	-4.448954	0.231418
н	-0.722292	-4.842071	0.206774
н	-2.425790	-5.271912	0.036299
н	-1.932169	-4.079491	1.239898
C	-3.451051	-2.971385	-0.761127
н	-3.763744	-2.602585	0.211053
н	-4 018485	-3 880822	-0.962325
н	-3 736341	-2 239075	-1 511493
C	-0 598710	3 194613	0 648742
F	-0.149369	2.043158	1.369860
Ċ	-1 942488	3 282624	0 394848
c c	-2 355099	4 400560	-0 325557
c c	-1 429138	5 351020	-0 741843
c	0 365678	4 093378	0.271117
c	-0.078020	5 201656	-0 445718
н	-2 637321	2 524253	0 725791
н	-3 404520	4 517737	-0 557355
н	-1 761989	6 215323	-1 299790
н	1,407463	3,933099	0.510883
н	0.638350	5,942596	-0.772091
Mg	0.064884	0.171527	0.823490

103 tBuBDIMg-FPh linear geometry, Dispersion

Mg	0.004113	-0.310537	0.350696
F	0.783420	-2.050886	0.175199
С	1.363039	-3.345292	0.044671
С	2.471339	-5.787129	-0.216949
Ν	-1.769405	0.413836	-0.009482
Ν	1.092463	1.298416	0.115444
С	-1.960972	1.721469	-0.178194
С	-0.878506	2.627557	-0.191028
Н	-1.187880	3.645436	-0.318523
С	0.520373	2.488787	-0.075585
С	-2.698903	-0.666077	0.102305
С	-3.153554	-1.028898	1.387176
С	-3.348568	2.381854	-0.408141
С	-2.966717	-1.476330	-1.014458
С	2.465550	0.911015	0.050531
С	-3.733761	-2.626256	-0.828606
н	-3.966423	-3.250967	-1.681129
С	-4.565167	1.457918	-0.260243
Н	-4.562506	0.631644	-0.963768
н	-5.459632	2.050272	-0.456436
н	-4.660280	1.050108	0.743561
С	-4.209425	-2.980014	0.422706
Н	-4.810041	-3.871566	0.544439
С	-2.441360	-1.136521	-2.397514
Н	-1.878085	-0.205881	-2.319188
С	-1.448672	-0.639827	3.190291
Н	-1.488081	-1.683736	3.502921
Н	-1.159458	-0.028110	4.045526
н	-0.612863	-0.555145	2.479339
C	3.123087	0.529884	1.233206
C	1.295518	3.837324	-0.095872
C	-3.912976	-2.185827	1.522512
H	-4.286841	-2.471042	2.495814
C	2.480981	0.709446	2.597811
Н	1.504239	1.173088	2.445553
C	-2.786593	-0.182816	2.594825
H	-2.655928	0.844236	2.254124
С	2.317270	1.046061	-2.486471
H	1.659119	1.886867	-2.270748
C	3.065343	0.703744	-1.209498
C	-3.363497	2.941506	-1.846465
H	-2.584445	3.684513	-2.006463
Н	-4.328008	3.411627	-2.044714
Н	-3.222405	2.142933	-2.576330
C	-3.551802	3.531968	0.601069
H	-3.476340	3.169624	1.627839
Н	-4.549613	3.951579	0.467747
н	-2.837582	4.342656	0.477303
С	2.265879	-0.641844	3,293419
Н	1.696643	-1.340489	2.673285
н	1.728427	-0.514363	4.234116
н	3.218233	-1.125050	3.515414

С	-3.574806	-0.904835	-3.404263
Н	-4.163998	-1.810994	-3.552824
Н	-3.167501	-0.610596	-4.372934
Н	-4.252378	-0.119267	-3.070459
С	-1.485726	-2.224577	-2.905433
Н	-0.660926	-2.397858	-2.211220
н	-1.057446	-1.943706	-3.868418
н	-2.006083	-3.174583	-3.035794
С	-3.858817	-0.166140	3.686421
Н	-4.829850	0.113338	3.277259
Н	-3.595258	0.557653	4.458623
н	-3.964916	-1,136730	4.172795
C	3,227908	1.471552	-3.639132
н	3 905763	2 270755	-3 337144
н	2 625546	1 835560	-4 472353
н	3 829714	0.642213	-4 013840
C C	1 300501	-0 02/628	1 138080
с u	4.33353	0.024028	2 042407
п С	4.923731	-0.304320	2.042407
с u	1.421507	1 026400	-2.914099
	2.009041	-1.020409	-3.060164
	0.880798	0.114523	-3.8318//
П	0.007510	-0.350695	-2.158188
C	4.338/68	0.146748	-1.252643
H	4.822148	-0.005651	-2.20/233
C	3.288527	1.655921	3.494059
н	4.2/9//5	1.251/52	3.704377
н	2.//96/3	1.805063	4.447808
Н	3.419099	2.630601	3.023916
С	5.008914	-0.213006	-0.089691
Н	6.003987	-0.634244	-0.145458
С	0.923500	4.655814	-1.348350
Н	1.164643	4.109816	-2.261631
Н	1.498520	5.582630	-1.353342
Н	-0.129860	4.924296	-1.385945
С	0.875148	4.610896	1.174637
Н	-0.193307	4.815029	1.200243
Н	1.404896	5.563954	1.211678
Н	1.133123	4.047782	2.073474
С	2.826826	3.738199	-0.068542
Н	3.200231	3.201465	0.798719
Н	3.225223	4.752371	-0.020940
Н	3.235989	3.271032	-0.960434
С	0.501093	-4.410570	0.018376
С	2.729404	-3.390789	-0.052054
С	1.089323	-5.666159	-0.116458
С	3.286580	-4.660311	-0.185688
н	-0.568600	-4.273404	0.093044
н	3.326043	-2.488915	-0.025596
н	0.460550	-6.545204	-0.143686
н	4.360098	-4.760767	-0.265909
Н	2.915989	-6.767073	-0.321646

	103			
tBuBDIMg-CIPh linear geometry, Dispersion				
Mg	0.091908	-0.129208	-0.725828	
Cl	-1.804770	-1.626223	-0.331883	
С	-3.192771	-2.721748	-0.043590	
С	-5.316629	-4.355922	0.419851	
Ν	1.937202	-0.293559	-0.078634	
Ν	-0.317655	1.707106	-0.150803	
С	2.630908	0.804660	0.218750	
С	2.009179	2.070882	0.305474	
Н	2.701162	2.858871	0.523475	
С	0.680644	2.526360	0.191878	
C	2.367273	-1.649173	-0.209870	
C	2.617760	-2.128947	-1.513386	
C	4.161080	0.835172	0.497425	
C	2.343832	-2.522846	0.887927	
C	-1.729628	1.899425	-0.049384	
C	2 644637	-3 866974	0.666032	
н	2.650566	-4 551932	1 503691	
C	4 918426	-0 479172	0 260295	
н	4 598794	-1 283607	0.913329	
н	5 974399	-0 295653	0.313323	
н	4 840598	-0.825613	-0 768364	
C C	2 937//2	-// 3/22013	-0 600079	
н	2.557442	-5 386828	-0.000075	
C C	1 982700	-2 05/18/15	2 285242	
ч	1 818603	-0.0770/8	2.205242	
C	1.010005	-0.377348	-2 082380	
с u	0.250122	1 122216	2.985380	
п	0.336133	-1.422310	-2.323630	
ц	0.843027	0.216284	-4.047038	
C	-2 /02056	1 020/08	-2.713723	
C C	-2.492930	1.939408	-1.220740	
C C	2 012000	2 175020	1 605062	
с u	2.913000	-3.473020	-1.063603	
п С	1 9/10/10	-3.000005	-2.071020	
с ц	-1.841010	2.043324	-2.59/103	
п С	-0.700975	2.097065	-2.442657	
	2.548197		-2.090181	
	3.089055		-2.400154	
	-1.52/159	1.758111	2.48/85/	
н С	-0.608192	2.310297	2.314047	
C	-2.352604	1.823417	1.213500	
C	4.369403	1.239700	1.9/12/8	
н	3.955993	2.222/11	2.189186	
н	5.436998	1.263039	2.195/15	
Н	3.900092	0.521286	2.643907	
C	4.825367	1.880331	-0.426556	
н	4.631322	1.653684	-1.4/6700	
н	5.904885	1.855122	-0.2/40//	
H	4.492547	2.897623	-0.235528	
C	-2.142/67	0.814094	-3.464762	
Н	-1.875766	-0.122181	-2.966973	

Н	-1.601526	0.862967	-4.411085
Н	-3.207337	0.749119	-3.693299
С	3.103003	-2.319024	3.298574
н	3.283156	-3.388116	3.420860
Н	2.830943	-1.916155	4.275567
н	4.041754	-1.857560	2.993605
С	0.675947	-2.711596	2.751896
н	-0.138470	-2.527569	2.050195
н	0.376625	-2.322879	3.726109
н	0.795232	-3.792244	2.845397
С	3.199649	-1.692041	-3.968119
н	4.232617	-1.989368	-3.788833
н	3.201973	-0.913523	-4.731993
н	2.663623	-2.551374	-4.374472
С	-2.214972	2.397559	3.695258
Н	-2.558523	3.408557	3.472501
н	-1.516581	2,453713	4,531196
н	-3.074467	1.815858	4.032185
C	-3 883175	1 898927	-1 129557
н	-4.483008	1.942753	-2.029363
C	-1 113688	0 316830	2 804430
н	-1 987880	-0 325885	2 922012
н	-0 533831	0 277008	3 727802
н	-0 489868	-0 100629	2 014910
C	-3 741932	1 786622	1 261841
н	-4 239696	1 738472	2 219996
C	-2 246868	3 378897	-3 328465
н	-3 318301	3 344802	-3 532777
н	-1 723728	3 106998	-// 283077
н	-2 007517	<i>A</i> 212711	-2 737379
C	-4 508063	1 810576	0 102002
ч	-5 588289	1.819570	0.102302
C	1 195671	1.8000007	1 675078
с ц	0.742756	4.542400	2 545506
н ц	1 021672	4.034970 E 616961	2.343300
п ц	1.031073	1 262202	1.782902
п С	2.230203	4.303203	0.840200
с ц	2 200006	4.713094	-0.840309
п	2.290000	4.403069 E 90004E	-0.001303
	1.140055	3.600945	-0.774605
	0.770888	4.590065	-1.770000
с ц	-0.910033	4.003/4/	0.378009
	-1.400039	4.351177	-0.523159
н	-0.862931	5.691694	0.434040
П	-1.490520	4.262255	1.234683
C	-4.422537	-2.128300	0.155229
C	-2.958790	-4.080789	-0.022001
C	-5.498843	-2.977984	0.390390
C II	-4.055412	-4.903/48	0.215802
н	-4.534648	-1.053/86	0.131353
Н	-1.970048	-4.485056	-0.1/9361
н	-6.480333	-2.552946	0.550990
Н	-3.914234	-5.975691	0.240812

-5.006039	0.603737
	-5.006039

tBuBDIMg-BrPh linear geometry, Dispersion				
Mg	-0.224957	-0.075490	-0.816729	
Br	2.130612	-1.215552	-0.355014	
С	3.858664	-2.051905	-0.016299	
С	6.283466	-3.179308	0.483818	
Ν	-0.148964	1.773274	-0.107422	
Ν	-2.014171	-0.598341	-0.200371	
С	-1.294296	2.411629	0.120166	
С	-2.530067	1.724016	0.141038	
Н	-3.365171	2.376337	0.297781	
С	-2.903027	0.369375	0.062210	
С	1.188125	2.271989	-0.166023	
С	1.712082	2.565911	-1.443300	
С	-1.424480	3.940584	0.378988	
С	2.014996	2.253744	0.968791	
С	-2.158403	-2.004474	0.014433	
С	3.364316	2.568096	0.803132	
Н	4.013073	2.579152	1.669145	
С	-0.140312	4.767218	0.221272	
Н	0.645955	4.479835	0.909315	
Н	-0.388714	5.809315	0.425728	
Н	0.261594	4.723653	-0.788746	
С	3.890442	2.867134	-0.441370	
Н	4.939138	3.112626	-0.545514	
С	1.496908	1.909817	2.354700	
Н	0.454299	1.605415	2.254000	
С	0.323726	1.138546	-3.044808	
Н	1.046596	0.378254	-2.717987	
Н	0.256726	1.008090	-4.124852	
Н	-0.695420	0.930278	-2.690205	
С	-2.182056	-2.860800	-1.100241	
С	-4.437158	0.131341	0.209348	
С	3.064865	2.863150	-1.558615	
Н	3.485735	3.106160	-2.522998	
С	-2.195910	-2.287825	-2.505542	
Н	-2.556933	-1.260118	-2.433159	
С	0.790784	2.565781	-2.658399	
Н	-0.106321	3.121083	-2.378901	
С	-2.015019	-1.605589	2.528398	
Н	-2.395044	-0.627550	2.240048	
С	-2.108496	-2.521832	1.321921	
С	-1.941767	4.138081	1.818922	
Н	-2.918947	3.683010	1.968895	
Н	-2.028676	5.204565	2.032476	
Н	-1.255134	3.703799	2.545480	
С	-2.438955	4.540224	-0.620544	
Н	-2.133359	4.350512	-1.651256	
Н	-2.480715	5.620783	-0.479262	
Н	-3.447725	4.155157	-0.493572	

С	-0.771865	-2.254457	-3.075867
Н	-0.044826	-1.794721	-2.389150
Н	-0.721075	-1.716017	-4.023119
Н	-0.393354	-3.265896	-3.230433
С	1.550503	3.119919	3.298556
н	2.580638	3.443137	3.458050
Н	1.129869	2.858862	4.271127
н	0.994074	3.970665	2.909681
С	2.272954	0.741743	2.977702
Н	2.251284	-0.143404	2.344593
н	1.843923	0.475578	3.944269
Н	3.317549	1.008246	3.145193
С	1.385138	3.260546	-3.883411
н	1.713959	4.271423	-3.643651
н	0.633362	3.329812	-4.670415
н	2.237388	2.712588	-4.289250
С	-2.849673	-2.079513	3.720226
н	-3.887079	-2.259062	3.435111
н	-2.840537	-1.322506	4.505951
Н	-2.457463	-3.000246	4.154015
С	-2.170464	-4.236941	-0.890818
Н	-2.203908	-4.909003	-1.737526
C	-0.548510	-1.410672	2.929155
Н	-0.095934	-2.358565	3.226346
Н	-0.463438	-0.714414	3.764807
Н	0.038407	-1.009579	2.102199
C	-2.101032	-3.904808	1.483538
Н	-2.071787	-4.322527	2.480413
C	-3.131727	-3.025290	-3.465865
н	-2.797562	-4.045676	-3.656557
Н	-3.171987	-2.509332	-4.426547
н	-4.143698	-3.073090	-3.063606
C	-2.133329	-4.760084	0.392161
н	-2.133119	-5.831490	0.542120
C	-4.940739	0.688326	1.554617
н	-4.474551	0.172505	2.394130
н	-6.018331	0.534172	1.626630
Н	-4.750335	1.753699	1.666969
C	-5.123674	0.888017	-0.952958
Н	-4.952950	1.961522	-0.918248
н	-6.200026	0.717534	-0.906095
н	-4.767988	0.520172	-1.917353
С	-4.914931	-1.323995	0.107933
Н	-4.619878	-1.794718	-0.826820
Н	-6.005186	-1.317706	0.139912
н	-4.568201	-1.946867	0.926702
C	4.932444	-1.203438	0.160204
C	3.921057	-3.428126	0.044360
Č	6.166008	-1,796066	0.414722
C	5.169251	-3.989507	0.300402
H	4.817476	-0.130760	0.105184
н	3.045205	-4.043052	-0.096838

н	7.032986	-1.165428	0.558615
Н	5.260026	-5.065902	0.355760
Н	7.247099	-3.627969	0.682305

tBuBDIMg-IPh linear geometry,	Dispersion
Mg -0.377908 0.06089	0 -0.668325
l 2.379671 0.81654	0 -0.239628
C 4.423065 1.37648	2 0.078040
C 7.033679 2.04475	4 0.505829
N -2.058943 0.88476	9 -0.080402
N -0.698162 -1.80256	-0.136941
C -3.117510 0.11366	0.169723
C -3.005571 -1.29204	0.260162
Н -3.944508 -1.77220	0.447841
C -1.932863 -2.20157	0.177811
C -1.961090 2.30646	5 -0.188732
C -1.949181 2.85938	7 -1.487194
C -4.566093 0.64182	3 0.379878
C -1.687743 3.10009	5 0.935603
C 0.549514 -2.48999	97 -0.015741
C -1.471482 4.46450	8 0.740583
Н -1.276663 5.09574	5 1.597490
C -4.782718 2.14227	3 0.136527
Н -4.229764 2.77401	7 0.822534
Н -5.842935 2.35261	9 0.281941
Н -4.529479 2.44090	4 -0.878807
C -1.501094 5.02759	6 -0.522825
Н -1.338144 6.08950	7 -0.649279
C -1.599088 2.51918	1 2.334527
Н -1.829942 1.45569	3 2.269249
C -0.941418 1.02354	9 -2.931374
Н -0.046591 1.38757	6 -2.396885
Н -0.624879 1.01642	7 -3.973966
Н -1.164676 -0.02999	91 -2.713911
C 1.262809 -2.80772	-1.184811
C -2.346998 -3.69198	0.352275
C -1.729261 4.22355	1 -1.632414
Н -1.739983 4.67236	0 -2.614809
C 0.625940 -2.70862	-2.560999
Н -0.399326 -2.35762	-2.423838
C -2.167668 1.94912	1 -2.687630
Н -3.009290 1.29725	0 -2.447730
C 0.365677 -2.28718	39 2.518386
Н -0.685654 -2.49444	46 2.323735
C 1.141496 -2.62899	1.256829
C -4.983747 0.33429	5 1.832409
Н -4.970343 -0.73283	2.046313
Н -5.996282 0.70209	0 2.006141
Н -4.320486 0.82755	7 2.543151
C -5.515239 -0.08680	-0.598063
Н -5.199825 0.06166	4 -1.632604

Н	-6.519259	0.325753	-0.493203
Н	-5.581076	-1.156921	-0.417510
С	1.360083	-1.708494	-3.463271
Н	1.449820	-0.721555	-3.002783
Н	0.841601	-1.594299	-4.416723
Н	2.375865	-2.044453	-3.675583
С	-2.605346	3.159425	3.298719
Н	-2.393492	4.219556	3.445518
Н	-2.553571	2.674378	4.274896
Н	-3.628367	3.073635	2.933862
С	-0.172989	2.657540	2.885203
Н	0.561423	2.205350	2.217807
Н	-0.088908	2.174265	3.859559
Н	0.096062	3.707823	3.008643
С	-2.521373	2.688361	-3.977308
н	-3.388582	3.332781	-3.835028
н	-2.761038	1.971118	-4.763315
н	-1.694076	3.304311	-4.333642
С	0.768695	-3.132206	3.728303
H	0.746277	-4.198158	3.498198
н	0.079197	-2.948930	4.553352
Н	1.770113	-2.885026	4.084096
C	2.580876	-3.245543	-1.064540
н	3,139917	-3.502419	-1.954868
C	0.465072	-0.794977	2.849783
н	1.502156	-0.492831	3.002031
н	-0.096167	-0.564396	3,756493
н	0.048837	-0 179598	2 051775
C	2 458789	-3 067478	1 324584
н	2 931600	-3 184848	2 289413
C	0.537810	-4.079148	-3.244846
н	1 531165	-4 492356	-3 425436
н	0.031052	-3 993536	-4 207622
н	-0.013660	-4 793635	-2 634176
C	3 181736	-3 366853	0 176065
н	4 203480	-3 71/1981	0.254250
Ċ	-3 178752	-3 886126	1 635251
н	-2 616514	-3 584012	2 519911
н	-3 426457	-4 942789	1 743388
н	-4 114362	-3 331591	1.743300
C	-3 207102	-1 019317	-0.88217/
н	-4 100873	-3 /132719	-0.954475
н	-3 517303	-5 093/10	-0 818906
н	-2 633653	-3 92/62/	-0.818500
C C	-2.055055	-3.524024	-1.802022
с н	-1.201031	-4.112422 -1 601070	-0 177252
п ц	-0.370210	-4.064372 E 707E07	-0.477555
н Ц	-1.04J2/4 _0 560215	-3.707307	0.437003 1 20025
יי ר	5 200150	-4.332//3	1.2003/3 0 20/370
C C	J.JZZIJJ A 757167	0.331024 2 716/70	0.304270
C C	4.737107 6 650401	0 700171	0.034340
C C	6 002/01	2 0/1075	0.320640
C	0.022401	J.0412/J	0.2/4400

5.011645	-0.682885	0.314328
4.020271	3.484593	-0.124817
7.380927	-0.068167	0.701208
6.389559	4.081738	0.262871
8.068276	2.309919	0.675244
	5.011645 4.020271 7.380927 6.389559 8.068276	5.011645-0.6828854.0202713.4845937.380927-0.0681676.3895594.0817388.0682762.309919

2. References

- S1 Rigaku Oxford Diffraction, 2019, CrysAlisPro Software system, version 1.171.40.67a, Rigaku Corporation, Oxford, UK.
- S2 O. V. Dolomanov, L. J. Bourhis, R.J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.
- S3 A: G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3–8; B: G. M. Sheldrick, *Acta Cryst. C*, 2015, **71**, 3–8.
- S4 A. Higelin, I. Krossing, CSD Commun. Private Commun. 2012, CCDC 912659.
- L. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V. Brecht, I.
 Krossing, Angew. Chemie Int. Ed. 2008, 47, 7659–7663.
- S6 F. Basuli, H. Aneetha, J. C. Huffman, D. J. Mindiola, *J. Am. Chem. Soc.* 2005, **127**, 17992–17993.
- M. W. Bouwkamp, P. H. M. Budzelaar, J. Gercama, I. Del Hierro Morales, J. De Wolf, A. Meetsma, S. I. Troyanov, J. H. Teuben, B. Hessen, J. Am. Chem. Soc. 2005, 127, 14310–14319.
- M. W. Bouwkamp, J. De Wolf, I. Del Hierro Morales, J. Gercama, A. Meetsma, S. I. Troyanov, B.
 Hessen, J. H. Teuben, *J. Am. Chem. Soc.* 2002, **124**, 12956–12957.
- S9 P. G. Williard, Q.-Y. Liu, J. Org. Chem. 1994, **59**, 1596–1597.
- S10 P. Valerga, M. C. Puerta, F. E. Fernandez, CSD Commun. Private Commun. 2016.
- S11 M. Schleep, C. Hettich, J. Velázquez Rojas, D. Kratzert, T. Ludwig, K. Lieberth, I. Krossing, Angew. Chemie - Int. Ed. 2017, 56, 2880–2884.
- S12 X. Y. Liu, K. Venkatesan, H. W. Schmalle, H. Berke, Organometallics 2004, 23, 3153–3163.
- S13 A. M. Chapman, M. F. Haddow, D. F. Wass, J. Am. Chem. Soc. 2011, **133**, 18463–18478.
- S14 O. J. Metters, S. J. K. Forrest, H. A. Sparkes, I. Manners, D. F. Wass, J. Am. Chem. Soc. 2016, 138, 1994–2003.
- S15 P. Ren, S. D. Pike, I. Pernik, A. S. Weller, M. C. Willis, Organometallics 2015, 34, 711–723.
- S16 A. V. Korolev, F. Delpech, S. Dagorne, I. A. Guzei, R. F. Jordan, *Organometallics* 2001, **20**, 3367–3369.
- S17 A. V. Korolev, E. Ihara, I. A. Guzei, V. G. Young, R. F. Jordan, J. Am. Chem. Soc. 2001, 123, 8291–
 8309.
- S18 M. D. Butts, B. L. Scott, G. J. Kubas, J. Am. Chem. Soc. 1996, **118**, 11831–11843.
- S19 L. P. Press, B. J. Mcculloch, W. Gu, C. H. Chen, B. M. Foxman, O. V. Ozerov, *Chem. Commun.* 2015, **51**, 14034–14037.
- S20 J. Powell, M. Horvath, A. Lough, J. Organomet. Chem. 1993, **456**, C27–C28.
- J. Powell, M. J. Horvath, A. Lough, A. Phillips, J. Brunet, J. Chem. Soc. Dalt. Trans. 1998, 637–646.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. A.03, Wallingford CT, 2016.
- S23 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988,
 37, 785-789; F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-305; F. Weigend,
 Phys. Chem. Chem. Phys., 2006, 8 1057-1065.
- S24 S. Grimme, S. Ehrlich, L. Goerigk, *J. Comp. Chem.* 2011, **32**, 1456 1465.
- S25 E. F. Silva, H. F. Svendsen, K. M. Merz, J. Phys. Chem. A 2009, 6404–6409.
- S26 N. van Eikema Hommes, Molecule, Erlangen, 2018.
- S27 R. F. W. Bader, *Chem. Rev.* 1991, **91**, 893-928.
- 528 T. A. Keith, AIMAII (Version 17.01.25), TK Gristmill Software, Overland Park KS USA, 2017.

Author Contributions

A.F. and J.P. conducted the experimental work. DFT calculations were done by J.E.; crystal structure determination was done by J.P and J.L. The manuscript was written by S.H. and A.F. while S.H., A.G and N.v.E.-H. were responsible for supervision and discussion.