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Simon Wengert,1 Gábor Csányi,2 Karsten Reuter,1, 3 and Johannes T. Margraf1, a)

1)Chair of Theoretical Chemistry, Technische Universität München, 85747 Garching,

Germany

2)Engineering Laboratory, University of Cambridge, Cambridge CB2 1PZ,

United Kingdom

3)Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin,

Germany

a)Electronic mail: johannes.margraf@ch.tum.de

1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2021



A. ML Fitting Workflow

The overall ∆-ML correction presented in the main document consists of two separate

contributions for intra- and intermolecular interactions. Figure 1 provides an overview for

the generation process of each of the two models, while the following section complement

the description of the individual parts.

FIG. 1: Diagram to illustrate the workflow for generating the intra- and intermolecular

machine-learning corrections.

B. Training Data Generation

Intramolecular ∆-ML: The training configurations for the intramolecular model are ob-

tained from three distinct sources, namely local minima on the potential energy surface,

configurations of the molecule in crystal environments and out-of-equilibrium geometries

(see Figure 1, left).

For the latter, a long molecular dynamics (MD) simulation is performed at 500 K, using a
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classical force field (gaff21 or Dreiding2). From this trajectory, a diverse subset is selected via

FPS. As a rule of thumb, we use maximally fifty structures per degree of freedom dependent

on the rigidity of the molecule. Additionally, the fifty most dissimilar conformations from

the MD are locally relaxed with both the DFTB+TS baseline and the DFT+MBD target

level of theory. This step doubles as a conformer search, as well as providing information

about the differences between the target and baseline methods at the bottom of the potential

well. If conformers of the molecule are known a priori, they are also included.

In the main document, we already described the third source for intramolecular training

data, namely condensed phases. Configurations are extracted from crystal structures relaxed

at the low-cost DFTB+TS baseline level. These configurations provide information about

the intramolecular strain the molecule undergoes upon crystalization. Note that these re-

laxed crystals are also used to generate the configurations for the intermolecular correction,

so that they are available at no additional cost.

The energy and force differences between DFT+MBD target and DFTB+TS baseline are

then used to generate the model for the ∆EGAP(intra) correction (see Equation 4 in the main

document). Thus, each geometry enters the training with elements for the intramolecular

correction and its derivative (in terms of force differences).

Intermolecular ∆-ML: An overview of the applied process for obtaining geometries for the

intermolecular ∆-ML model has been described in the main document and is illustrated by

the right-hand side of Figure 1. We will now provide a more detailed insight and separately

discuss the individual steps together with their function. For this purpose, the selection

process is illustrated with kernel principal component analysis (kPCA) in the upper part of

Figure 2, for the example of oxalic acid.3

Overall, this yields a set of highly diverse structures, which are representative of the

interactions expected in actual crystal polymorphs. This can be seen in the lower part of

Figure 2, again for oxalic acid. The sampled crystal structures cover a wide range of unit

cell shapes and volumes. Furthermore, the relaxed structures also display varied monomer

configurations and sample the typical H-bond distances between 1.6 and 2.0 Å.4 In particular,

it is notable that some crystals exhibit molecules that are strongly distorted with respect

to gas-phase conformations. Most prominently, the partial C-C double bond in the oxalic

acid molecule is twisted in some cases, to allow for H-bond formation. This highlights the

necessity for a CSP model that allows a flexible description of the monomers. While the
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FIG. 2: Visualization of the crystal structure selection process with kernel principal

component analysis. The top frames illustrate the FPS of crystals from an initial pool

(left), DFTB+TS relaxations (center, including some exemplary paths from initial to

relaxed geometries) and the final FPS selection from these crystals (right). The bottom

frames illustrate the distribution of lattice parameters (left) and hydrogen bond lengths

(right). The size of the symbols illustrates the unit cell volume (left, in the limits of 283 Å

to 331 Å) and the distortion of the molecule, relative to the tTt gas-phase conformer

(right, in the limits of 0 to 0.8 Å RMSD).

experimentally known polymorphs of oxalic acid both display a flat conformation5,6 this is

not known a priori.

Based on the above defined set of crystals, the X-mers are defined by cutting spherical

clusters out of the crystal, so that all molecules touching the sphere are assigned to the

X-mer. This procedure is repeated with multiple radii (typically 4-6 values between 2 and
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5 Å) and central atoms to obtain a range of X-mers for each crystal. The precise values are

system dependent and selected so that most X-mers contain 4-5 molecules. These X-mers

form the final training set for the intermolecular correction and each cluster enters with

the differences between DFTB+TS baseline and DFT+MBD target energies according to

Equation 5.

Note that it is not necessary to compute DFT+MBD and DFTB+TS energies for each

molecule of every X-mer explicitly, but only for the unit cell molecules of each crystal struc-

ture. Furthermore, distributing the corresponding calculations to available computational

resources is trivial, most notably since there are no special demand–for instance in terms

of memory or walltime restrictions—for these kind of systems. Overall, such a model can

therefore be trained without access to high-performance computing resources.

C. Detailed Description of the ML Methods

We will briefly discuss the most important hyperparameters of SOAP/GAP models and

how they are selected in this work, and subsequently provide a detailed listing of all the

remaining settings. For details about the underlying concepts we refer to the original

literature.7–9

SOAP: In SOAP, the atomic environment χa (within a given cutoff rcut) around a reference

atom a is described via the neighborhood density function ρa(r) which, in case of multi-

element systems, is evaluated separately for each species Z as

ρZ
a(r) =

∑
i∈χZ

a

exp

(
−(r − ri)

2

2σ2

)
· fcut(r). (1)

Thus, each atom i within χa is represented as a Gaussian with the parameter σ defining its

width. The function fcut ensures a smooth transition to zero at rcut within a cutoff region

of width d. It is defined as

fcut(r) =


1 for r ≤ rcut − d[
cos
(
π r−rcut+d

d
+ 1
)]
/2 for rcut − d < r < rcut

0 for r > rcut.

(2)

As described elsewhere,7 the SOAP kernel is then evaluated by expanding the neighbor-

hood density with spherical harmonics and forming a normalized polynomial kernel with the
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vector of expansion coefficients.

In principle the above hyperparameters can be optimized for each system, but we use fixed

defaults, which we have found to be accurate for all systems studied herein. Specifically, for

the intramolecular correction the Gaussian width σ is set to 0.3 Å and the cutoff is set to

3.0 Å, with a transition width d 0.5 Å. For the intermolecular correction with DFT+MBD

reference all length-related hyperparameters are increased by 20 %. Thus, the atomic en-

vironment χa is now defined by a 3.6 Å cutoff, the transition region has a width of 0.6 Å

and the atomic positions within the cutoff are broadened by a Gaussian with σ = 0.36 Å.

Similarly, for corrections with MP2 reference the hyperparemeters have been increased by

50 % such that the cutoff is 4.5 Å, d is 0.75 Å and σ is 0.45 Å.

GAP: The GAP approach uses Gaussian Process Regression (GPR) to learn an interatomic

potential from quantum mechanical data. The total energy is expanded as a sum of atomic

contributions εa, ensuring size-extensivity and linear scaling of computational effort. The

atomic contributions are in turn expressed as a weighted linear combination of kernel func-

tions:

εa =
∑
χb

αbk(χa, χb), (3)

where the sum runs over atomic environments χb in the training set and k(χa, χb) denotes

the SOAP Kernel between two environments. The regression coefficients α are obtained by

inverting the covariance matrix C, with the covariance between training points n and n′

defined as:

Cnn′ = δ2k(χn, χn′) + σ2
T (4)

Here σT denotes the uncertainty of the target values (i.e. force or energy) that is to be

fitted and δ denotes the standard deviation of the Gaussian process (related to the expected

magnitude of the potential). The latter is set to the standard deviation of the target values

per atom.

Meanwhile, the uncertainties in the training data (σE and σF for energies and forces,

respectively) require more careful consideration. For the intramolecular correction, σE is a

global parameter, optimized to minimize the error on a validation set. For this purpose, 1/3

of the training data is set aside and the root mean square error (RMSE) between actual and
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predicted energies is minimized. Here, σE is constrained to be smaller than 0.1δ. In contrast,

values for σF are selected to be proportional to the forces acting on each atom. This is to

ensure an approximately constant relative accuracy of predicted forces. Specifically, for each

atom σF is set to 10 % of the corresponding DFT+MBD force norm. However, the values

have been restricted, since forces vary by several orders of magnitude. To this end we define

a lower bound for σF as 5 % of the mean force norm of a room temperature MD (gaff21 or

Dreiding2) and an upper bound as 15 times the lower bound. Values outside this range have

been set to the corresponding boundary value. Finally, σE for the intermolecular correction

is set to 15 % of δ.

While the above heuristics are admittedly arbitrary, we have found that they offer good

performance for a wide range of systems. In our view, this is a significant advantage, as

it allows applying the framework routinely to different CSP tasks. In principle, a more

system-specific optimization of parameters is also possible, of course.

Intramolecular ∆-ML: The hyperparameters that come along with the combination

GAP+SOAP have been set to the following values for the generation of intramolecular

models. Beside the length-related parameters from above we used l max 8 and n max 8 for

the descriptor. Furthermore, we used covariance type dot product, a zeta value of 2.0 and

CUR POINTS as our sparse method for selecting a total of 2,000 sparse points (n sparse).

Finally, the e0 method has been set to isolated and the atoms with the corresponding

DFTB+TS to DFT+MBD differences have been added to the fit.

Intermolecular ∆-ML: Compared to the intramolecular fit the value for e0 method

has been changed to average. Apart from that l max, n max, covariance type, zeta,

sparse method and n sparse remain the same leaving us with no additional hyperparameter

to be optimized.

D. Force Accuracy for Intramolecular ∆-ML

For monomer configurations an analysis equivalent to the energetic consideration (see

Figure 2, top, in the main document) has been performed for the second kind of target

values, the force components, which is illustrated in Figure 3. It show the MAEs compared

to the high-level target method DFT+MBD for the individual test systems. On the baseline

(DFTB+TS) level of theory, this error can be as large as 630 meV/Å (for oxalic acid). After
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applying the ∆-ML correction, however, MAEs at the DFTB+TS+GAP level are reduced by

at least one order of magnitude. For water the improvement is especially pronounced as the

DFTB+TS baseline error for test monomers of above 370 meV/Å vanishes almost completely

after applying the ∆-ML model with a remaining error below 0.8 meV/Å. In addition to the

finding for energetics, the good agreement between training and test errors on forces further

confirms that the models are not overfitted.
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FIG. 3: Mean absolute error of force components obtained with the DFTB+TS baseline

and ∆-ML corrected DFTB+TS+GAP against the DFT+MBD target for monomer

conformations from training and test crystals.

E. Accuracy of Intermolecular ∆-ML for Crystals

In Section 3.2 of the main document we discussed the improvements achieved by applying

the intermolecular correction on training targets (i.e. X-mers). Similarly, we have also been

analysing the effect on the intermolecular description in periodic systems by applying the

correction on the respective crystal structures. The resulting MAEs per molecule are shown

in Figure 4. Note that intermolecular energies of crystals are not entering the fit of the

∆-ML model and, thus, even the ”training” crystals can be viewed as validation.
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FIG. 4: Mean absolute error of intermolecular energies per molecule obtained with the

DFTB+TS baseline and the ∆-ML corrected DFTB+TS+GAP against the DFT+MBD

target method for training and test crystals.

In comparison to X-mers (see Figure 2, center, in the main document), the MAEs per

molecule on the baseline (DFTB+TS) level are between 2.2 and 3.3 times larger for crystal

structures. Despite the differences that arise when going from finite to periodic systems,

the ∆-ML model achieves significant improvements with MAEs between 10 and 27 meV per

molecule for test and training crystals which illustrates a successful translation to these kind

of systems.

The fact that the remaining errors are on the same order as obtained for lattice energies

(compare Figure 2, bottom, in the main document) is not surprising. In fact, the MAEs of

Figure 4 can be viewed as lattice energy errors when neglecting intramolecular contributions.

Keeping in mind that intramolecular errors are in most cases below a meV when applying

the corresponding correction (see Figure 2, top, in the main document), thus, explains the

resemblance between ∆-ML corrected results in Figure 4 and the corresponding plot for

the lattice energies. As a results, we also obtain the excellent agreement between test and

training crystals which substantiates a good generalization of the ∆-ML model, even for

periodic systems. Moreover, we also recover DFTB+TS baseline MAEs for training crystals
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being consistently above the corresponding test crystals which, again, confirms the selection

of a particular challenging and diverse training set.

F. Decomposition of Lattice Energies into Intra- and Intermolecular

Contributions

In Section 3.3 of the main document we have been discussing different kinds of error

the ∆-ML correction is able to cure when applied to the DFTB+TS baseline. These errors

can be traced back to their origin in terms of intra- and intermolecular deviations from the

DFT+MBD target method. For this purpose, we disassemble the lattice energy into the two

contributions according to:

Elatt
crys =

[
N∑
i

Eintra
mono,i + Einter

crys

]
/N − Emol

=

[
1

N

N∑
i

Eintra
mono,i − Emol

]
+

1

N
Einter
crys

=Elatt,intra
crys + Elatt,inter

crys .

(5)

Figure 5 illustrates the correlation of these contributions with the DFT+MBD target

method for the test crystals before and after applying the ∆-ML correction. The left column

clearly identifies intermolecular deviations as the origin of systematic errors for pyrazine and

water lattice energies, while the effect of intramolecular deviations is less pronounced. Oxalic

acid, on the other hand, exhibits additional intramolecular deviations which cause the offset

in lattice energies described in the main document.

Overall, applying the ∆-ML corrections leads to a significantly decreased scattering in

correlation for both the intra- and intermolecular contribution as can be seen from the

right-hand side of Figuren 5.
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FIG. 5: Correlation plot for intra- and intermolecular lattice energy contributions of test

crystals for the DFTB+TS baseline (left) and the ∆-ML corrected DFTB+TS+GAP

method (right).
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G. Details on the Crystal Structure Prediction Showcase
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FIG. 6: Correlation plot for lattice energies of XXII crystals entering the training and test

crystals obtained with the DFTB+TS baseline and the ∆-ML corrected DFTB+TS+GAP

method (left) and ranking order of test crystals (right), both with respect to the

DFT+MBD target values. Note that DFTB+TS(test) values are identical to Figure 5

(without the experimental XXII values) in the main document.

Lattice Energies of training and test crystals: For target XXII, we have been analysing

the accuracy of the baseline (DFTB+TS) and ∆-ML method against the DFT+MBD target

method for lattice energies of crystals entering the training and test crystals (similar to

Section 3.3 in the main document). Applying the ∆-ML model decreases the MAE from

above 1 eV (1.077 eV training and 1.005 eV test crystals) to only 28 meV for training

and 34 meV for test crystals. The huge discrepancy largely originates from correcting

for the offset in lattice energies obtained with the baseline method as can be seen from

Figure 6. Figure 7 provides a more detailed insight by separate consideration of intra-

and intermolecular contributions and shows that this is partly explained by intramolecular

deviations. However, also intermolecular deviations contribute to the offset. Moreover,

the right-hand side shows an excellent correction that removes the offset and leads to an

overall improved correlation with the DFT+MBD target method. As a result, the coefficient
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FIG. 7: Correlation plot for intra- and intermolecular lattice energy contributions of XXII

test crystals for DFTB+TS (left) and DFTB+TS+GAP (right).

of determination improves from 0.478 for the DFTB+TS baseline to 0.924 for the ∆-ML

corrected DFTB+TS+GAP method.

Relaxed Geometries of the Experimental Structure XXII: In Figure 8 we compare

relaxed experimental XXII crystal structures (in terms of the often used overlay of 15-mers),

obtained individually with the DFTB+TS baseline, the ∆-ML corrected DFTB+TS+GAP

and the DFT+MBD target method. The DFTB+TS baseline guides the experimental geom-

etry into an area that differs from the DFT+MBD minimum. The overlay reveals that the

same geometrical differences discussed in the main document for monomers are also found

in the condensed phase. In particular, the preference of DFTB+TS for the flat conformation

and more acute C-S-N angles of the five-membered rings can be seen. As mentioned in the

main document, the crystal structure predicted with the ∆-ML corrected DFTB+TS+GAP

and the DFT+MBD target are in excellent agreement. More generally, the generation of

sound structures via DFTB+TS+GAP relaxations can also be seen from Figure 5 in the

main document as the DFT+MBD evaluation of each trial crystal, as well, yields a negative

lattice energy.
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FIG. 8: Overlay of best-matching 15-mers from a) DFT+MBD- and DFTB+TS-relaxed

(RMSD 0.317 Å) and b) DFT+MBD- and DFTB+TS+GAP-relaxed (RMSD 0.087 Å)

experimental XXII crystals. (DFT+MBD: green, DFTB+TS: gray, DFTB+TS+GAP:

blue)

Timing: In the following we will provide details about the timings for GAP training and

crystal relaxations that have been outlined in the main document.

For the intramolecular part we used a total number of 3,000 monomer configurations

to obtain robust values for average timings of DFT+MBD and DFTB+TS evaluations, as

well as the GAP predictions. The total timing for generating DFT+MBD training data

additionally includes relaxations of 52 monomer configurations.

Similarly, for the intermolecular part a total number of 41,655 X-mers has been used to

obtain the corresponding timings, except for the GAP predictions where a subset of 10,000

X-mers has been used. For MP2 evaluations a subset of 31,682 X-mers has been used.

Average timings for crystal relaxations are computed from 20 geometries for DFT+MBD,

92 geometries for DFTB+TS+GAP and 51 geometries for DFTB+TS. In case of DFT+MBD

and DFTB+TS the internal relaxation algorithm of the respective code (FHI-aims10 and

DFTB+11) has been used as it allows for a speed up by making use of information from

previous steps. For DFTB+TS+GAP relaxations we used the BFGS12–15 algorithm imple-

mented in ASE16. In order to obtain comparable values, we calculated the average time

required for a single relaxation step for each of the three methods and multiplied it with

the average number of relaxation steps required to optimize rigid crystals (with DFTB+TS)

obtained from genarris17.

The timings required to generate a model trained on periodic data were computed from
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the average timing of 500 DFT+MBD single-point calculations.

H. ∆-ML Models Trained on Periodic Reference Data

In Section 3.3 of the main document we compare the X-mer based intermolecular mod-

els with alternative models that are exclusively trained on periodic reference calculations.

The corresponding MAEs for test and training crystals of all molecules considered in this

work (including target XXII) are shown in Figure 9. As discussed in the main document

these models show slightly improved lattice energies for most systems, except for target

XXII where the MAE is slightly higher. The figure also shows that ∆-ML models exclu-

sively trained on crystals exhibit a considerably larger gap between training and test MAEs

indicating that such models are more prone to overfitting.
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I. Crystal Structure Prediction Beyond Density Functional Theory

In Section 3.5 of the main document we modified the XXII model of Section 3.4 by

replacing its intermolecular part with a model trained on SCS-MP2 reference data. Figure 10

provides detailed insight regarding the predictive quality of the intermolecular energies of

the training set, as well as 10,295 test X-mers. The corresponding results obtained with

the DFT+MBD intermolecular GAP model of Section 3.4 are also shown, allowing for a

direct comparison. Training and test MAEs obtained with the model trained on SCS-MP2

reference data are 3 meV and 7 meV and, thus, slightly lower than the ones obtained with

the DFT+MBD reference (7 meV for training and 10 meV for test set). The former benefits

from a better correlation with the baseline model compared to the DFT+MBD reference

case.

In analogy to Section 3.4 the modified model has been used to relax a set of 251 XXII trial

crystals (including the experimental structure). The subsequent energetic ordering of the

resulting geometries is illustrated in Figure 11 and reveals that the model correctly identifies

the experimental geometry to be the most stable one.
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data are shown left, while the right frame shows the results for the model trained on
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J. k-Grid Convergence for Validation

The presented workflow for the ∆-ML model generation does not use periodic calculations,

and is therefore not dependent on the convergence of any k-grid. For validation, however,

periodic calculations are required, which do have a k-grid dependency. In Figure 12 we

therefore test whether the convergence criterion of 1.5 meV/atom is sufficiently accurate for a

sound validation.
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FIG. 12: Correlation plot of DFTB+TS+GAP vs DFT+MBD lattice energies with k-grids

converged to 1.5 meV/atom and a larger grid with two additional k-points in each direction.

For this purpose, we selected ten crystal structures with a particular large deviation

between the ∆-ML corrected DFTB+TS+GAP and the target DFT+MBD lattice energies,

for each of the four test systems. For these cases, we reevaluated the lattice energies with
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increased k-grids. Our findings show that our choice of k-grids is robust and increasing the

grid has virtually no effect on the predicted lattice energies.
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